Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28482, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601514

RESUMEN

In recent years, the growth of Internet of Things devices has increased the use of sustainable energy sources. An alternative technology is offered by triboelectric nanogenerators (TENGs) that can harvest green energy and convert it into electrical energy. Herein, we assessed three different nopal powder types that were used as triboelectric layers of eco-friendly and sustainable TENGs for renewable energy harvesting from environmental vibrations and powering electronic devices. These nanogenerators were fabricated using waste and recycled materials with a compact design for easy transportation and collocation on non-homogeneous surfaces of different vibration or motion sources. In addition, these TENGs have advantages such as high output performance, stable output voltage, lightweight, low-cost materials, and a simple fabrication process. These nanogenerators use the contact-separation mode between two triboelectric layers to convert the vibration energy into electrical energy. TENG with the best output performance is based on dehydrated nopal powder, generating an output power density of 2.145 mWm-2 with a load resistance of 39.97 MΩ under 3g acceleration and 25 Hz operating frequency. The proposed TENGs have stable output voltages during 22500 operating cycles. These nanogenerators can light 116 ultra-bright blue commercial LEDs and power a digital calculator. Also, the TENGs can be used as a chess clock connected to a mobile phone app for smart motion sensing. These nanogenerators can harvest renewable vibration energy and power electronic devices, sensors, and smart motion sensing.

2.
Environ Sci Pollut Res Int ; 31(13): 20678-20688, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367116

RESUMEN

The transition to a low-carbon economy is imperative to reduce reliance on fossil fuels and mitigate pollution emissions. This preposition also aligns with the United Nations Sustainable Development Goals (SDGs-13), which highlight the climate change action. In this vein, Brazil has implemented the Decarbonization Credit (CBIOS) program to incentivize biofuel production and promote environmental sustainability through carbon credit emissions. To this end, the present study evaluates the effectiveness of the CBIO contract as a hedging tool for investors in the face of energy price fluctuations and decarbonization efforts. Specifically, we employ conditional dynamic correlation (DCC-GARCH) and optimal hedge ratio (HR) techniques to assess the relationship between CBIO and the futures and spot prices of sugar, oil, and ethanol. Our findings suggest that the current CBIO contract is not an effective hedge against energy spot and future prices. However, our analysis identifies a strengthening correlation between ethanol traded in Chicago and CBIO over time, highlighting the potential for an underlying contract to serve as an effective hedging tool in the future. Our study adds to the existing literature on carbon pricing mechanisms and their impact on financial markets, emphasizing the importance of sustainable energy policies and their potential to mitigate the risks associated with energy price volatility and decarbonization efforts.


Asunto(s)
Biocombustibles , Carbono , Brasil , Cambio Climático , Etanol
3.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37177398

RESUMEN

Triboelectric nanogenerators (TENGs) based on organic materials can harvest green energy to convert it into electrical energy. These nanogenerators could be used for Internet-of-Things (IoT) devices, substituting solid-state chemical batteries that have toxic materials and limited-service time. Herein, we develop a portable triboelectric nanogenerator based on dehydrated nopal powder (NOP-TENG) as novel triboelectric material. In addition, this nanogenerator uses a polyimide film tape adhered to two copper-coated Bakelite plates. The NOP-TENG generates a power density of 2309.98 µW·m-2 with a load resistance of 76.89 MΩ by applying a hand force on its outer surface. Furthermore, the nanogenerator shows a power density of 556.72 µW·m-2 with a load resistance of 76.89 MΩ and under 4g acceleration at 15 Hz. The output voltage of the NOP-TENG depicts a stable output performance even after 27,000 operation cycles. This nanogenerator can light eighteen green commercial LEDs and power a digital calculator. The proposed NOP-TENG has a simple structure, easy manufacturing process, stable electric behavior, and cost-effective output performance. This portable nanogenerator may power electronic devices using different vibration energy sources.

4.
Biochem Mol Biol Educ ; 51(2): 221-229, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36495269

RESUMEN

Nowadays there is a concern to improve the quality of education by including an interdisciplinary approach of concepts and their integration in the curriculum of scientific disciplines. The development of microbial fuel cells as a potential alternative for production of renewable energies gives undergraduate students the challenge of integrating interdisciplinary concepts in a hot topic of global interest as alternative energies. We present a laboratory experiment that has been part of a third-year undergraduate course in biology where students gained experience in assembling microbial fuel cells and the understanding of how they work. In this process, the students could integrate biological, biochemical, and electric concepts. In addition, the acquisition of manual skills and experimental design decisions are important for the development of future professionals.


Asunto(s)
Fuentes de Energía Bioeléctrica , Humanos , Evaluación Educacional , Curriculum , Estudiantes , Estudios Interdisciplinarios
5.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36558257

RESUMEN

The internet of medical things (IoMT) is used for the acquisition, processing, transmission, and storage of medical data of patients. The medical information of each patient can be monitored by hospitals, family members, or medical centers, providing real-time data on the health condition of patients. However, the IoMT requires monitoring healthcare devices with features such as being lightweight, having a long lifetime, wearability, flexibility, safe behavior, and a stable electrical performance. For the continuous monitoring of the medical signals of patients, these devices need energy sources with a long lifetime and stable response. For this challenge, conventional batteries have disadvantages due to their limited-service time, considerable weight, and toxic materials. A replacement alternative to conventional batteries can be achieved for piezoelectric and triboelectric nanogenerators. These nanogenerators can convert green energy from various environmental sources (e.g., biomechanical energy, wind, and mechanical vibrations) into electrical energy. Generally, these nanogenerators have simple transduction mechanisms, uncomplicated manufacturing processes, are lightweight, have a long lifetime, and provide high output electrical performance. Thus, the piezoelectric and triboelectric nanogenerators could power future medical devices that monitor and process vital signs of patients. Herein, we review the working principle, materials, fabrication processes, and signal processing components of piezoelectric and triboelectric nanogenerators with potential medical applications. In addition, we discuss the main components and output electrical performance of various nanogenerators applied to the medical sector. Finally, the challenges and perspectives of the design, materials and fabrication process, signal processing, and reliability of nanogenerators are included.

6.
Nanomaterials (Basel) ; 12(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893517

RESUMEN

Natural sources of green energy include sunshine, water, biomass, geothermal heat, and wind. These energies are alternate forms of electrical energy that do not rely on fossil fuels. Green energy is environmentally benign, as it avoids the generation of greenhouse gases and pollutants. Various systems and equipment have been utilized to gather natural energy. However, most technologies need a huge amount of infrastructure and expensive equipment in order to power electronic gadgets, smart sensors, and wearable devices. Nanogenerators have recently emerged as an alternative technique for collecting energy from both natural and artificial sources, with significant benefits such as light weight, low-cost production, simple operation, easy signal processing, and low-cost materials. These nanogenerators might power electronic components and wearable devices used in a variety of applications such as telecommunications, the medical sector, the military and automotive industries, and internet of things (IoT) devices. We describe new research on the performance of nanogenerators employing several green energy acquisition processes such as piezoelectric, electromagnetic, thermoelectric, and triboelectric. Furthermore, the materials, applications, challenges, and future prospects of several nanogenerators are discussed.

7.
J Environ Manage ; 296: 113373, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34351288

RESUMEN

The bioeconomy is considered one of the three main sectors with the greatest opportunities for the development of the circular economy in Brazil, who is one of the largest silk producers in the world; and sericulture is an agribusiness that contributes greatly to the bioeconomy in Brazil. Therefore, this research aimed to identify opportunities for creating value by internalizing flows in the production of silk cocoons by promoting a circular bioeconomy. To that end, a tool was used to assess the circularity of the referred system. The current circularity of the production of silk cocoons, at the farm level, is 74.19 % for material, and 0 % for energy. A range of measures are proposed, based on (i) engaging with reverse logistics practices, (ii) establishing a local agroindustrial cooperative, and (iii) building community biodigesters, which aid a potential circularity of 85.51 % (material), and 100 % (energy) at the farm level, and 98.42 % (material) and 100 % (energy), at the cooperative level. On top of increasing circular value, the proposed measures might bring environmental benefits, such as lessening environmental impacts of logistics (by valuing local resources) and replacing non-renewable energy, and social impacts, through increased quality of life for sericulturists. Economic implications need further investigation and are suggested to be addressed in future research endeavors, along with policy implications for the development of a circular bioeconomy. Furthermore, an increased circularity can also contribute to a few of the sustainable development goals (SDGs) proposed by the United Nations, such as SDGs 2, 7, 9, 11, 12 and 13.


Asunto(s)
Calidad de Vida , Seda , Brasil , Políticas , Naciones Unidas
8.
Sensors (Basel) ; 21(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34300513

RESUMEN

Large cities have a significant area of buildings with roofs that are not used most of the time. Vertical-axis wind turbines are suitable for this kind of on-site renewable energy generation. Since wind speeds are not high in these cities, a suitable solution to improve energy generation is to add a Wind Booster. This paper presents a methodology useful for selecting and optimizing the main components of a Wind Booster. As a case of study, we present this methodology in a Wind Booster for a Vertical Axis Wind Turbine (VAWT) that considers the wind flow's specific behavior in a particular city. The final Wind Booster design is state of the art and makes use of Computational Fluid Dynamics (CFD) and Design of Experiments (DOE) techniques. We experimented with the conditions of Mexico City, obtaining a 35.23% increase in torque with the optimized Wind Booster configuration. The results obtained show the potential of this methodology to improve the performance of this kind of system. Moreover, since wind behavior is very different in each city, our proposal could be beneficial for researchers looking to implement the best possible wind turbine in their locality.

9.
Int J Biol Macromol ; 179: 80-89, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667559

RESUMEN

Herein, the advantages of enzyme mimetics by redefining the catalytic attributes and implementing artificial enzymes (AEs) for energy-related applications have presented. The intrinsic enzyme-like catalytic characteristics of nanozymes have become a growing area of prime interest in bio-catalysis. The development of AEs has redefined the concept of catalytic activity, opening a wide range of possibilities in biotechnological and energy sectors. Nowadays, power-energy is one of the most valuable resources that enable the development and progress of humanity. Over the last 50 years, fossil fuels' burning has released greenhouse gases and negatively impacted the environment and health. In 2019, around 84% of global primary energy came from coal, oil, and gas. Therefore, a global energy transition to renewable and sustainable energy is urgently needed to generate clean energy as biofuels and biohydrogen. However, to achieve this, the implementation of natural enzymes brings more significant challenges because their practical application is limited by the low operational stability, harsh environmental conditions, and expensive preparation processes. Hence, to accelerate the transition, promising substitutes are AEs, well-defined structures made of organic or inorganic materials that can mimic the catalytic power of natural enzymes. Despite being still in the midst, enzyme mimics overcome the main obstacles for a conventional enzyme. It opens future opportunities to optimize the production of renewable energies with excellent performance, high efficiency, and increasingly competitive prices. Thus, this work is a comprehensive study covering the promising potential of AEs, as biocatalysts, specifically for renewable energy production.


Asunto(s)
Biocombustibles , Materiales Biomiméticos/química , Enzimas/química , Hidrógeno/química , Nanoestructuras/química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA