Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1727: 464996, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763087

RESUMEN

Supermacroporous composite cryogels with enhanced adjustable functionality have received extensive interest in bioseparation, tissue engineering, and drug delivery. However, the variations in their components significantly impactfinal properties. This study presents a two-step hybrid machine learning approach for predicting the properties of innovative poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose (pHEMA-PVA-BC) based on their compositions. By considering the ratios of HEMA (1.0-22.0 wt%), PVA (0.2-4.0 wt%), poly(ethylene glycol) diacrylate (1.0-4.5 wt%), BC (0.1-1.5 wt%), and water (68.0-96.0 wt%) as investigational variables, overlay sampling uniform design (OSUD) was employed to construct a high-quality dataset for model development. The random forest (RF) model was used to classify the preparation conditions. Then four models of artificial neural network, RF, gradient boosted regression trees (GBRT), and XGBoost were developed to predict the basic properties of the composite cryogels. The results showed that the RF model achieved an accurate three-class classification of preparation conditions. Among the four models, the GBRT model exhibited the best predictive performance of the basic properties, with the mean absolute percentage error of 16.04 %, 0.85 %, and 2.44 % for permeability, effective porosity, and height of theoretical plate (1.0 cm/min), respectively. Characterization results of the representative pHEMA-PVA-BC composite cryogel showed an effective porosity of 81.01 %, a permeability of 1.20 × 10-12 m2, and a range of height of theoretical plate between 0.40-0.49 cm at flow velocities of 0.5-3.0 cm/min. These indicate that the pHEMA-PVA-BC cryogel was an excellent material with supermacropores, low flow resistance and high mass transfer efficiency. Furthermore, the model output demonstrates that the alteration of the proportions of PVA (0.2-3.5 wt%) and BC (0.1-1.5 wt%) components in composite cryogels resulted in significant changes in the material basic properties. This work represents an attempt to efficiently design and prepare target composite cryogels using machine learning and providing valuable insights for the efficient development of polymers.


Asunto(s)
Celulosa , Criogeles , Aprendizaje Automático , Polihidroxietil Metacrilato , Alcohol Polivinílico , Criogeles/química , Alcohol Polivinílico/química , Polihidroxietil Metacrilato/química , Celulosa/química , Porosidad , Redes Neurales de la Computación
2.
Front Public Health ; 11: 1259410, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146480

RESUMEN

Introduction: There is a vast literature on the performance of different short-term forecasting models for country specific COVID-19 cases, but much less research with respect to city level cases. This paper employs daily case counts for 25 Metropolitan Statistical Areas (MSAs) in the U.S. to evaluate the efficacy of a variety of statistical forecasting models with respect to 7 and 28-day ahead predictions. Methods: This study employed Gradient Boosted Regression Trees (GBRT), Linear Mixed Effects (LME), Susceptible, Infectious, or Recovered (SIR), and Seasonal Autoregressive Integrated Moving Average (SARIMA) models to generate daily forecasts of COVID-19 cases from November 2020 to March 2021. Results: Consistent with other research that have employed Machine Learning (ML) based methods, we find that Median Absolute Percentage Error (MAPE) values for both 7-day ahead and 28-day ahead predictions from GBRTs are lower than corresponding values from SIR, Linear Mixed Effects (LME), and Seasonal Autoregressive Integrated Moving Average (SARIMA) specifications for the majority of MSAs during November-December 2020 and January 2021. GBRT and SARIMA models do not offer high-quality predictions for February 2021. However, SARIMA generated MAPE values for 28-day ahead predictions are slightly lower than corresponding GBRT estimates for March 2021. Discussion: The results of this research demonstrate that basic ML models can lead to relatively accurate forecasts at the local level, which is important for resource allocation decisions and epidemiological surveillance by policymakers.


Asunto(s)
COVID-19 , Humanos , Ciudades/epidemiología , Estaciones del Año , Incidencia , COVID-19/epidemiología , Modelos Estadísticos
3.
Sci Total Environ ; 847: 157662, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35907552

RESUMEN

Excessive urban temperature exerts a substantially negative impact on urban sustainability. Three-dimensional (3D) landscapes have a great impact on urban thermal environments, while their heat conditions and driving factors still remain unclear. This study mapped urban 3D neighborhoods and their associated SUHI (surface urban heat island) intensities in summer daytime across 57 Chinese cities, and then explored their relationships, driving factors as well as implications. Nine categories of urban 3D neighborhoods existed in Chinese cities and the 3D neighborhood of High Density & Medium Rise (HDMR) contributed the largest share of urban areas. The distribution of 3D neighborhoods varied among cities due to their distinct natural and economic traits. The average SUHI intensity can amount to 4.27 °C across all Chinese 3D neighborhoods. High Density & Low Rise (HDLR) and HDMR presented higher SUHI intensities than other 3D neighborhoods in China. Urban green space (UGI) and building height (BH) had great influences on SUHI intensities. The relative contribution of UGI decreased with the increase of building density and building height, but BH presented the opposite trend. The interaction of urban 3D landscapes and function zones led to highly complicated urban thermal environments, with higher SUHI intensities in industrial zones. Besides, the SUHI intensities of 3D neighborhoods presented great diurnal and seasonal variations, with higher SUHI intensities in HDHR and HDMR at nighttime in winter and summer. What's more, urban residents may suffer unequal heat risk inside cities due to the deviations of SUHI intensities among different 3D neighborhoods. It could be a highly effective way to mitigate SUHI effects in cities by increasing urban greening and improving urban ventilation.


Asunto(s)
Benchmarking , Calor , China , Ciudades , Monitoreo del Ambiente/métodos , Crecimiento Sostenible
4.
Front Plant Sci ; 13: 1075856, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618628

RESUMEN

The tiller density is a key agronomic trait of winter wheat that is essential to field management and yield estimation. The traditional method of obtaining the wheat tiller density is based on manual counting, which is inefficient and error prone. In this study, we established machine learning models to estimate the wheat tiller density in the field using hyperspectral and multispectral remote sensing data. The results showed that the vegetation indices related to vegetation cover and leaf area index are more suitable for tiller density estimation. The optimal mean relative error for hyperspectral data was 5.46%, indicating that the results were more accurate than those for multispectral data, which had a mean relative error of 7.71%. The gradient boosted regression tree (GBRT) and random forest (RF) methods gave the best estimation accuracy when the number of samples was less than around 140 and greater than around 140, respectively. The results of this study support the extension of the tested methods to the large-scale monitoring of tiller density based on remote sensing data.

5.
Environ Sci Pollut Res Int ; 29(14): 20556-20570, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34739667

RESUMEN

This study evaluates the potential of kriging-based (kriging and kriging-logistic) and machine learning models (MARS, GBRT, and ANN) in predicting the effluent arsenic concentration of a wastewater treatment plant. Two distinct input combination scenarios were established, using seven quantitative and qualitative independent influent variables. In the first scenario, all of the seven independent variables were taken into account for constructing the data-driven models. For the second input scenario, the forward selection k-fold cross-validation method was employed to select effective explanatory influent parameters. The results obtained from both input scenarios show that the kriging-logistic and machine learning models are effective and robust. However, using the feature selection procedure in the second scenario not only made the architecture of the model simpler and more effective, but also enhanced the performance of the developed models (e.g., around 7.8% performance enhancement of the RMSE). Although the standard kriging method provided the least good predictive results (RMSE = 0.18 ug/l and NSE=0.75), it was revealed that the kriging-logistic method gave the best performance among the applied models (RMSE = 0.11 ug/l and NSE=0.90).


Asunto(s)
Arsénico , Purificación del Agua , Aprendizaje Automático , Análisis Espacial
6.
Sensors (Basel) ; 21(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209332

RESUMEN

Most eye tracking methods are light-based. As such, they can suffer from ambient light changes when used outdoors, especially for use cases where eye trackers are embedded in Augmented Reality glasses. It has been recently suggested that ultrasound could provide a low power, fast, light-insensitive alternative to camera-based sensors for eye tracking. Here, we report on our work on modeling ultrasound sensor integration into a glasses form factor AR device to evaluate the feasibility of estimating eye-gaze in various configurations. Next, we designed a benchtop experimental setup to collect empirical data on time of flight and amplitude signals for reflected ultrasound waves for a range of gaze angles of a model eye. We used this data as input for a low-complexity gradient-boosted tree machine learning regression model and demonstrate that we can effectively estimate gaze (gaze RMSE error of 0.965 ± 0.178 degrees with an adjusted R2 score of 90.2 ± 4.6).


Asunto(s)
Realidad Aumentada , Movimientos Oculares , Fijación Ocular , Aprendizaje Automático , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA