Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Intell (Dordr) ; 54(1): 470-489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38225993

RESUMEN

Goal Recognition is the task of discerning the intended goal that an agent aims to achieve, given a set of goal hypotheses, a domain model, and a sequence of observations (i.e., a sample of the plan executed in the environment). Existing approaches assume that goal hypotheses comprise a single conjunctive formula over a single final state and that the environment dynamics are deterministic, preventing the recognition of temporally extended goals in more complex settings. In this paper, we expand goal recognition to temporally extended goals in Fully Observable Non-Deterministic (fond) planning domain models, focusing on goals on finite traces expressed in Linear Temporal Logic (ltlf) and Pure-Past Linear Temporal Logic (ppltl). We develop the first approach capable of recognizing goals in such settings and evaluate it using different ltlf and ppltl goals over six fond planning domain models. Empirical results show that our approach is accurate in recognizing temporally extended goals in different recognition settings.

2.
Entropy (Basel) ; 25(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37895536

RESUMEN

The problem of goal recognition involves inferring the high-level task goals of an agent based on observations of its behavior in an environment. Current methods for achieving this task rely on offline comparison inference of observed behavior in discrete environments, which presents several challenges. First, accurately modeling the behavior of the observed agent requires significant computational resources. Second, continuous simulation environments cannot be accurately recognized using existing methods. Finally, real-time computing power is required to infer the likelihood of each potential goal. In this paper, we propose an advanced and efficient real-time online goal recognition algorithm based on deep reinforcement learning in continuous domains. By leveraging the offline modeling of the observed agent's behavior with deep reinforcement learning, our algorithm achieves real-time goal recognition. We evaluate the algorithm's online goal recognition accuracy and stability in continuous simulation environments under communication constraints.

3.
J Exp Biol ; 225(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36070865

RESUMEN

Following their emergence on land, sea turtle hatchlings need to travel through the open ocean. Whether hatchlings can detect ecologically and functionally relevant chemical cues released in the marine habitat is unknown. We collected seawater at 6 and 27 km off the Brazilian coast, i.e. within and beyond the continental shelf. In a two-choice flume, we exposed post-emergent (<24 h old) loggerhead (Caretta caretta) turtles to these seawaters. Based on their life history, we posited that if hatchlings could distinguish between the seawater from these regions, they should prefer the oceanic seawater and/or avoid the coastal seawater. Hatchlings were tested singly and could access any parts of the flume. We recorded the seawater plume first visited and the time spent in each plume. Of all the first choices and time spent in a plume, nearly 70% involved the oceanic seawater. The ability of hatchlings to distinguish between seawaters could provide goal-recognition information.


Asunto(s)
Tortugas , Animales , Brasil , Ecosistema , Océanos y Mares
4.
Front Artif Intell ; 5: 806262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558169

RESUMEN

In many scenarios where robots or autonomous systems may be deployed, the capacity to infer and reason about the intentions of other agents can improve the performance or utility of the system. For example, a smart home or assisted living facility is better able to select assistive services to deploy if it understands the goals of the occupants in advance. In this article, we present a framework for reasoning about intentions using probabilistic logic programming. We employ ProbLog, a probabilistic extension to Prolog, to infer the most probable intention given observations of the actions of the agent and sensor readings of important aspects of the environment. We evaluated our model on a domain modeling a smart home. The model achieved 0.75 accuracy at full observability. The model was robust to reduced observability.

6.
Front Artif Intell ; 4: 730990, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34870184

RESUMEN

The "science of magic" has lately emerged as a new field of study, providing valuable insights into the nature of human perception and cognition. While most of us think of magic as being all about deception and perceptual "tricks", the craft-as documented by psychologists and professional magicians-provides a rare practical demonstration and understanding of goal recognition. For the purposes of human-aware planning, goal recognition involves predicting what a human observer is most likely to understand from a sequence of actions. Magicians perform sequences of actions with keen awareness of what an audience will understand from them and-in order to subvert it-the ability to predict precisely what an observer's expectation is most likely to be. Magicians can do this without needing to know any personal details about their audience and without making any significant modification to their routine from one performance to the next. That is, the actions they perform are reliably interpreted by any human observer in such a way that particular (albeit erroneous) goals are predicted every time. This is achievable because people's perception, cognition and sense-making are predictably fallible. Moreover, in the context of magic, the principles underlying human fallibility are not only well-articulated but empirically proven. In recent work we demonstrated how aspects of human cognition could be incorporated into a standard model of goal recognition, showing that-even though phenomena may be "fully observable" in that nothing prevents them from being observed-not all are noticed, not all are encoded or remembered, and few are remembered indefinitely. In the current article, we revisit those findings from a different angle. We first explore established principles from the science of magic, then recontextualise and build on our model of extended goal recognition in the context of those principles. While our extensions relate primarily to observations, this work extends and explains the definitions, showing how incidental (and apparently incidental) behaviours may significantly influence human memory and belief. We conclude by discussing additional ways in which magic can inform models of goal recognition and the light that this sheds on the persistence of conspiracy theories in the face of compelling contradictory evidence.

7.
Front Robot AI ; 8: 643010, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041274

RESUMEN

Recognizing the actions, plans, and goals of a person in an unconstrained environment is a key feature that future robotic systems will need in order to achieve a natural human-machine interaction. Indeed, we humans are constantly understanding and predicting the actions and goals of others, which allows us to interact in intuitive and safe ways. While action and plan recognition are tasks that humans perform naturally and with little effort, they are still an unresolved problem from the point of view of artificial intelligence. The immense variety of possible actions and plans that may be encountered in an unconstrained environment makes current approaches be far from human-like performance. In addition, while very different types of algorithms have been proposed to tackle the problem of activity, plan, and goal (intention) recognition, these tend to focus in only one part of the problem (e.g., action recognition), and techniques that address the problem as a whole have been not so thoroughly explored. This review is meant to provide a general view of the problem of activity, plan, and goal recognition as a whole. It presents a description of the problem, both from the human perspective and from the computational perspective, and proposes a classification of the main types of approaches that have been proposed to address it (logic-based, classical machine learning, deep learning, and brain-inspired), together with a description and comparison of the classes. This general view of the problem can help on the identification of research gaps, and may also provide inspiration for the development of new approaches that address the problem in a unified way.

8.
Front Artif Intell ; 4: 737327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35156009

RESUMEN

Recently, we are seeing the emergence of plan- and goal-recognition algorithms which are based on the principle of rationality. These avoid the use of a plan library that compactly encodes all possible observable plans, and instead generate plans dynamically to match the observations. However, recent experiments by Berkovitz (Berkovitz, The effect of spatial cognition and context on robot movement legibility in human-robot collaboration, 2018) show that in many cases, humans seem to have reached quick (correct) decisions when observing motions which were far from rational (optimal), while optimal motions were slower to be recognized. Intrigued by these findings, we experimented with a variety of rationality-based recognition algorithms on the same data. The results clearly show that none of the algorithms reported in the literature accounts for human subject decisions, even in this simple task. This is our first contribution. We hypothesize that humans utilize plan-recognition in service of goal recognition, i.e., match observations to known plans, and use the set of recognized plans to conclude as to the likely goals. To test this hypothesis, a second contribution in this paper is the introduction of a novel offline recognition algorithm. While preliminary, the algorithm accounts for the results reported by Berkovitz significantly better than the existing algorithms. Moreover, the proposed algorithm marries rationality-based and plan-library based methods seamlessly.

9.
Front Artif Intell ; 4: 734521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35187473

RESUMEN

Goal or intent recognition, where one agent recognizes the goals or intentions of another, can be a powerful tool for effective teamwork and improving interaction between agents. Such reasoning can be challenging to perform, however, because observations of an agent can be unreliable and, often, an agent does not have access to the reasoning processes and mental models of the other agent. Despite this difficulty, recent work has made great strides in addressing these challenges. In particular, two Artificial Intelligence (AI)-based approaches to goal recognition have recently been shown to perform well: goal recognition as planning, which reduces a goal recognition problem to the problem of plan generation; and Combinatory Categorical Grammars (CCGs), which treat goal recognition as a parsing problem. Additionally, new advances in cognitive science with respect to Theory of Mind reasoning have yielded an approach to goal recognition that leverages analogy in its decision making. However, there is still much unknown about the potential and limitations of these approaches, especially with respect to one another. Here, we present an extension of the analogical approach to a novel algorithm, Refinement via Analogy for Goal Reasoning (RAGeR). We compare RAGeR to two state-of-the-art approaches which use planning and CCGs for goal recognition, respectively, along two different axes: reliability of observations and inspectability of the other agent's mental model. Overall, we show that no approach dominates across all cases and discuss the relative strengths and weaknesses of these approaches. Scientists interested in goal recognition problems can use this knowledge as a guide to select the correct starting point for their specific domains and tasks.

10.
Sensors (Basel) ; 19(12)2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216748

RESUMEN

Goal recognition is an important component of many context-aware and smart environment services; however, a person's goal often cannot be determined until their plan nears completion. Therefore, by modifying the state of the environment, our work aims to reduce the number of observations required to recognise a human's goal. These modifications result in either: Actions in the available plans being replaced with more distinctive actions; or removing the possibility of performing some actions, so humans are forced to take an alternative (more distinctive) plan. In our solution, a symbolic representation of actions and the world state is transformed into an Action Graph, which is then traversed to discover the non-distinctive plan prefixes. These prefixes are processed to determine which actions should be replaced or removed. For action replacement, we developed an exhaustive approach and an approach that shrinks the plans then reduces the non-distinctive plan prefixes, namely Shrink-Reduce. Exhaustive is guaranteed to find the minimal distinctiveness but is more computationally expensive than Shrink-Reduce. These approaches are compared using a test domain with varying amounts of goals, variables and values, and a realistic kitchen domain. Our action removal method is shown to increase the distinctiveness of various grid-based navigation problems, with a width/height ranging from 4 to 16 and between 2 and 14 randomly selected goals, by an average of 3.27 actions in an average time of 4.69 s, whereas a state-of-the-art approach often breaches a 10 min time limit.


Asunto(s)
Monitoreo del Ambiente , Intención , Motivación/fisiología , Algoritmos , Concienciación , Objetivos , Humanos
11.
Sensors (Basel) ; 19(3)2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30720749

RESUMEN

Wellbeing is often affected by health-related conditions. Among them are nutrition-related health conditions, which can significantly decrease the quality of life. We envision a system that monitors the kitchen activities of patients and that based on the detected eating behaviour could provide clinicians with indicators for improving a patient's health. To be successful, such system has to reason about the person's actions and goals. To address this problem, we introduce a symbolic behaviour recognition approach, called Computational Causal Behaviour Models (CCBM). CCBM combines symbolic representation of person's behaviour with probabilistic inference to reason about one's actions, the type of meal being prepared, and its potential health impact. To evaluate the approach, we use a cooking dataset of unscripted kitchen activities, which contains data from various sensors in a real kitchen. The results show that the approach is able to reason about the person's cooking actions. It is also able to recognise the goal in terms of type of prepared meal and whether it is healthy. Furthermore, we compare CCBM to state-of-the-art approaches such as Hidden Markov Models (HMM) and decision trees (DT). The results show that our approach performs comparable to the HMM and DT when used for activity recognition. It outperformed the HMM for goal recognition of the type of meal with median accuracy of 1 compared to median accuracy of 0.12 when applying the HMM. Our approach also outperformed the HMM for recognising whether a meal is healthy with a median accuracy of 1 compared to median accuracy of 0.5 with the HMM.


Asunto(s)
Conductas Relacionadas con la Salud/fisiología , Algoritmos , Culinaria/métodos , Humanos , Modelos Teóricos
12.
Entropy (Basel) ; 21(3)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33267014

RESUMEN

Recent research has found situations where the identification of agent goals could be purposefully controlled, either by changing the underlying environment to make it easier, or exploiting it during agent planning to delay the opponent's goal recognition. The paper tries to answer the following questions: what kinds of actions contain less information and more uncertainty about the agent's real goal, and how to describe this uncertainty; what is the best way to control the process of goal identification. Our contribution is the introduction of a new measure we call relative goal uncertainty (rgu) with which we assess the goal-related information that each action contains. The rgu is a relative value associated with each action and represents the goal uncertainty quantified by information entropy after the action is taken compared to other executable ones in each state. After that, we show how goal vagueness could be controlled either for one side or for both confronting sides, and formulate this goal identification control problem as a mixed-integer programming problem. Empirical evaluation shows the effectiveness of the proposed solution in controlling goal identification process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA