Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mol Autism ; 15(1): 12, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566250

RESUMEN

BACKGROUND: Glutamatergic synapse dysfunction is believed to underlie the development of Autism Spectrum Disorder (ASD) and Intellectual Disability (ID) in many individuals. However, identification of genetic markers that contribute to synaptic dysfunction in these individuals is notoriously difficult. Based on genomic analysis, structural modeling, and functional data, we recently established the involvement of the TRIO-RAC1 pathway in ASD and ID. Furthermore, we identified a pathological de novo missense mutation hotspot in TRIO's GEF1 domain. ASD/ID-related missense mutations within this domain compromise glutamatergic synapse function and likely contribute to the development of ASD/ID. The number of ASD/ID cases with mutations identified within TRIO's GEF1 domain is increasing. However, tools for accurately predicting whether such mutations are detrimental to protein function are lacking. METHODS: Here we deployed advanced protein structural modeling techniques to predict potential de novo pathogenic and benign mutations within TRIO's GEF1 domain. Mutant TRIO-9 constructs were generated and expressed in CA1 pyramidal neurons of organotypic cultured hippocampal slices. AMPA receptor-mediated postsynaptic currents were examined in these neurons using dual whole-cell patch clamp electrophysiology. We also validated these findings using orthogonal co-immunoprecipitation and fluorescence lifetime imaging (FLIM-FRET) experiments to assay TRIO mutant overexpression effects on TRIO-RAC1 binding and on RAC1 activity in HEK293/T cells. RESULTS: Missense mutations in TRIO's GEF1 domain that were predicted to disrupt TRIO-RAC1 binding or stability were tested experimentally and found to greatly impair TRIO-9's influence on glutamatergic synapse function. In contrast, missense mutations in TRIO's GEF1 domain that were predicted to have minimal effect on TRIO-RAC1 binding or stability did not impair TRIO-9's influence on glutamatergic synapse function in our experimental assays. In orthogonal assays, we find most of the mutations predicted to disrupt binding display loss of function but mutants predicted to disrupt stability do not reflect our results from neuronal electrophysiological data. LIMITATIONS: We present a method to predict missense mutations in TRIO's GEF1 domain that may compromise TRIO function and test for effects in a limited number of assays. Possible limitations arising from the model systems employed here can be addressed in future studies. Our method does not provide evidence for whether these mutations confer ASD/ID risk or the likelihood that such mutations will result in the development of ASD/ID. CONCLUSIONS: Here we show that a combination of structure-based computational predictions and experimental validation can be employed to reliably predict whether missense mutations in the human TRIO gene impede TRIO protein function and compromise TRIO's role in glutamatergic synapse regulation. With the growing accessibility of genome sequencing, the use of such tools in the accurate identification of pathological mutations will be instrumental in diagnostics of ASD/ID.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Células HEK293 , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación , Mutación Missense , Neuronas/metabolismo
2.
Eur J Pharmacol ; 971: 176489, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492875

RESUMEN

Substance abuse disorder is a chronic condition for which pharmacological treatment options remain limited. L-type calcium channels (LTCC) have been implicated in drug-related plasticity and behavior. Specifically, dopaminergic neurons in the mesocorticolimbic pathway express Cav1.2 and Cav1.3 channels, which may regulate dopaminergic activity associated with reward behavior. Therefore, this study aimed to investigate the hypothesis that pre-administration of the LTCC blocker, isradipine can mitigate the effects of cocaine by modulating central glutamatergic transmission. For that, we administered isradipine at varying concentrations (1, 7.5, and 15 µg/µL) via intracerebroventricular injection in male Swiss mice. This pretreatment was carried out prior to subjecting animals to behavioral assessments to evaluate cocaine-induced locomotor sensitization and conditioned place preference (CPP). The results revealed that isradipine administered at a concentration of 1 µg/µL effectively attenuated both the sensitization and CPP induced by cocaine (15 mg/kg, via i. p.). Moreover, mice treated with 1 µg/µL of isradipine showed decreased presynaptic levels of glutamate and calcium in the cortex and hippocampus as compared to control mice following cocaine exposure. Notably, the gene expression of ionotropic glutamate receptors, AMPA, and NMDA, remained unchanged, as did the expression of Cav1.2 and Cav1.3 channels. Importantly, these findings suggest that LTCC blockage may inhibit behavioral responses to cocaine, most likely by decreasing glutamatergic input in areas related to addiction.


Asunto(s)
Bloqueadores de los Canales de Calcio , Cocaína , Ratones , Masculino , Animales , Bloqueadores de los Canales de Calcio/farmacología , Isradipino/farmacología , Ácido Glutámico , Cocaína/farmacología , Dopamina/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38279303

RESUMEN

Glutamine (Gln), a non-essential amino acid, is synthesized de novo by glutamine synthetase (GS) in various organs. In the brain, GS is exclusively expressed in astrocytes under normal physiological conditions, producing Gln that takes part in glutamatergic neurotransmission through the glutamate (Glu)-Gln cycle. Because the Glu-Gln cycle and glutamatergic neurotransmission play a pivotal role in normal brain activity, maintaining Gln homeostasis in the brain is crucial. Recent findings indicated that a neuronal Gln deficiency in the medial prefrontal cortex in rodents led to depressive behaviors and mild cognitive impairment along with lower glutamatergic neurotransmission. In addition, exogenous Gln supplementation has been tested for its ability to overcome neuronal Gln deficiency and reverse abnormal behaviors induced by chronic immobilization stress (CIS). Although evidence is accumulating as to how Gln supplementation contributes to normalizing glutamatergic neurotransmission and the Glu-Gln cycle, there are few reviews on this. In this review, we summarize recent evidence demonstrating that Gln supplementation ameliorates CIS-induced deleterious changes, including an imbalance of the Glu-Gln cycle, suggesting that Gln homeostasis is important for emotional and cognitive functions. This is the first review of detailed mechanistic studies on the effects of Gln supplementation on emotional and cognitive functions.


Asunto(s)
Ácido Glutámico , Glutamina , Glutamina/metabolismo , Ácido Glutámico/metabolismo , Astrocitos/metabolismo , Neuronas/metabolismo , Cognición
4.
Neurochem Res ; 49(1): 170-183, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37684384

RESUMEN

The glutamatergic hypothesis of schizophrenia suggests a correlation between NMDA receptor hypofunction and negative psychotic symptoms. It has been observed that the expression of the proline transporter (PROT) in the central nervous system (CNS) is associated with glutamatergic neurotransmission, as L-proline has the capacity to activate and modulate AMPA and NMDA receptors. In this study, we aimed to investigate whether inhibition of proline transporters could enhance glutamatergic neurotransmission and potentially exhibit antipsychotic effects in an experimental schizophrenia model. Using molecular dynamics analysis in silico, we validated an innovative PROT inhibitor, LQFM215. We quantified the cytotoxicity of LQFM215 in the Lund human mesencephalic cell line (LUHMES). Subsequently, we employed the ketamine-induced psychosis model to evaluate the antipsychotic potential of the inhibitor, employing behavioral tests including open-field, three-chamber interaction, and prepulse inhibition (PPI). Our results demonstrate that LQFM215, at pharmacologically active concentrations, exhibited negligible neurotoxicity when astrocytes were co-cultured with neurons. In the ketamine-induced psychosis model, LQFM215 effectively reduced hyperlocomotion and enhanced social interaction in a three-chamber social approach task across all administered doses. Moreover, the compound successfully prevented the ketamine-induced disruption of sensorimotor gating in the PPI test at all tested doses. Overall, these findings suggest that PROT inhibition could serve as a potential therapeutic target for managing symptoms of schizophrenia model.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Antipsicóticos , Ketamina , Esquizofrenia , Humanos , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Ketamina/farmacología , Ketamina/uso terapéutico , Sistemas de Transporte de Aminoácidos Neutros/uso terapéutico , Receptores de N-Metil-D-Aspartato
5.
Neurobiol Dis ; 189: 106360, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992785

RESUMEN

Cortical-striatal synaptic dysfunction, including enhanced toxic signaling by extrasynaptic N-methyl-d-aspartate receptors (eNMDARs), precedes neurodegeneration in Huntington disease (HD). A previous study showed Activin A, whose transcription is upregulated by calcium influx via synaptic NMDARs, suppresses eNMDAR signaling. Therefore, we examined the role of Activin A in the YAC128 HD mouse model, comparing it to wild-type controls. We found decreased Activin A secretion in YAC128 cortical-striatal co-cultures, while Activin A overexpression in this model rescued altered eNMDAR expression. Striatal overexpression of Activin A in vivo improved motor learning on the rotarod task, and normalized striatal neuronal eNMDAR-mediated currents, membrane capacitance and spontaneous excitatory postsynaptic current frequency in the YAC128 mice. These results support the therapeutic potential of Activin A signaling and targeting eNMDARs to restore striatal neuronal health and ameliorate behavioral deficits in HD.


Asunto(s)
Enfermedad de Huntington , Receptores de N-Metil-D-Aspartato , Ratones , Animales , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/metabolismo , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Modelos Animales de Enfermedad , Cuerpo Estriado/metabolismo
6.
Biol Psychiatry Glob Open Sci ; 3(4): 773-784, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37881551

RESUMEN

Background: In addition to memory deficits, patients with Alzheimer's disease (AD) experience neuropsychiatric disturbances. Recent studies have suggested the association of obsessive-compulsive disorder with the early stages of AD. However, there is a lack of understanding of the neurobiological underpinnings of compulsive-like behaviors at the neuronal circuit level and their relationship with AD. Methods: We have addressed this issue in an amyloid-ß 1-42-induced mouse model of AD by studying compulsive-like behaviors. Next, we compared the hippocampal and medial prefrontal cortex (mPFC) local field potential pattern and coherence between these regions of control and AD mice. We also assessed the expression pattern of acetylcholine and glutamatergic signaling in these regions, using quantitative polymerase chain reaction. Results: Our findings show that AD mice exhibit compulsive-like behaviors, as evidenced by enhanced marble burying, nest building, and burrowing. Furthermore, AD mice exhibited hippocampo-cortical circuit dysfunction demonstrated by decreased power of rhythmic oscillations at the theta (4-12 Hz) and gamma (25-50 Hz) frequencies in the hippocampus and mPFC, two functionally interconnected brain regions involved both in AD and compulsive behaviors. Importantly, coherence between the hippocampus and mPFC in the theta band of AD animals was significantly reduced. Furthermore, we found reduced cholinergic and glutamatergic neurotransmission in the hippocampus and mPFC of AD mice. Conclusions: We conclude that the hippocampo-cortical functional alterations may play a significant role in mediating the compulsive-like behaviors observed in AD mice. These findings may help in understanding the underlying circuit mechanisms of obsessive-compulsive disorder-like phenotypes associated with AD.

7.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445950

RESUMEN

One prevalent neurological disorder is epilepsy. Modulating GABAergic/glutamatergic neurotransmission, Nrf2/HO-1, PI3K/Akt, and TLR-4/NF-B pathways might be a therapeutic strategy for epilepsy. Eight-week-old BALB/c mice were administered 12.5, 25, or 50 mg/kg (-) pseudosemiglabrin orally one hour before inducing epilepsy with an i.p. injection of 360 mg/kg pilocarpine. (-) Pseudosemiglabrin dose-dependently alleviated pilocarpine-induced epilepsy, as revealed by the complete repression of pilocarpine-induced convulsions and 100% survival rate in mice. Furthermore, (-) pseudosemiglabrin significantly enhanced mice's locomotor activities, brain GABA, SLC1A2, GABARα1 levels, glutamate decarboxylase activity, and SLC1A2 and GABARα1mRNA expression while decreasing brain glutamate, SLC6A1, GRIN1 levels, GABA transaminase activity, and SLC6A1 and GRIN1 mRNA expression. These potentials can be due to the suppression of the TLR-4/NF-κB and the enhancement of the Nrf2/HO-1 and PI3K/Akt pathways, as demonstrated by the reduction in TLR-4, NF-κB, IL-1ß, TNF-α mRNA expression, MDA, NO, caspase-3, Bax levels, and Bax/Bcl-2 ratio, and the enhancement of Nrf2, HO-1, PI3K, Akt mRNA expression, GSH, Bcl-2 levels, and SOD activity. Additionally, (-) pseudosemiglabrin abrogated the pilocarpine-induced histopathological changes. Interestingly, the (-) pseudosemiglabrin intervention showed a comparable effect to the standard medication, diazepam. Therefore, (-) pseudosemiglabrin can be a promising medication for the management of epilepsy.


Asunto(s)
Antioxidantes , Epilepsia , Ratones , Animales , Antioxidantes/efectos adversos , Pilocarpina/efectos adversos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína X Asociada a bcl-2 , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Toll-Like 4/genética , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transmisión Sináptica , ARN Mensajero
8.
Front Mol Neurosci ; 16: 1120993, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284463

RESUMEN

Introduction: Deficits in social communication are in the core of clinical symptoms characterizing many neuropsychiatric disorders such as schizophrenia and autism spectrum disorder. The occurrence of anxiety-related behavior, a common co-morbid condition in individuals with impairments in social domain, suggests the presence of overlapping neurobiological mechanisms between these two pathologies. Dysregulated excitation/inhibition balance and excessive neuroinflammation, in specific neural circuits, are proposed as common etiological mechanisms implicated in both pathologies. Methods and Results: In the present study we evaluated changes in glutamatergic/GABAergic neurotransmission as well as the presence of neuroinflammation within the regions of the Social Decision-Making Network (SDMN) using a zebrafish model of NMDA receptor hypofunction, following sub-chronic MK-801 administration. MK-801-treated zebrafish are characterized by impaired social communication together with increased anxiety levels. At the molecular level, the behavioral phenotype was accompanied by increased mGluR5 and GAD67 but decreased PSD-95 protein expression levels in telencephalon and midbrain. In parallel, MK-801-treated zebrafish exhibited altered endocannabinoid signaling as indicated by the upregulation of cannabinoid receptor 1 (CB1R) in the telencephalon. Interestingly, glutamatergic dysfunction was positively correlated with social withdrawal behavior whereas defective GABAergic and endocannabinoid activity were positively associated with anxiety-like behavior. Moreover, neuronal and astrocytic IL-1ß expression was increased in regions of the SDMN, supporting the role of neuroinflammatory responses in the manifestation of MK-801 behavioral phenotype. Colocalization of interleukin-1ß (IL-1ß) with ß2-adrenergic receptors (ß2-ARs) underlies the possible influence of noradrenergic neurotransmission to increased IL-1ß expression in comorbidity between social deficits and elevated anxiety comorbidity. Discussion: Overall, our results indicate the contribution of altered excitatory and inhibitory synaptic transmission as well as excessive neuroinflammatory responses in the manifestation of social deficits and anxiety-like behavior of MK-801-treated fish, identifying possible novel targets for amelioration of these symptoms.

9.
Front Cell Neurosci ; 17: 1132325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025701

RESUMEN

Hypoinsulinemia is a pathological consequence of diabetes mellitus that can cause a number of complications of the central and peripheral nervous system. Dysfunction of signaling cascades of insulin receptors under insulin deficiency can contribute to the development of cognitive disorders associated with impaired synaptic plasticity properties. Earlier we have shown that hypoinsulinemia causes a shift of short-term plasticity in glutamatergic hippocampal synapses from facilitation to depression and apparently involves mechanisms of glutamate release probability reduction. Here we used the whole cell patch-clamp recording of evoked glutamatergic excitatory postsynaptic currents (eEPSCs) and the method of local extracellular electrical stimulation of a single presynaptic axon to investigate the effect of insulin (100 nM) on the paired-pulse plasticity at glutamatergic synapses of cultured hippocampal neurons under hypoinsulinemia. Our data indicate that under normoinsulinemia additional insulin enhances the paired-pulse facilitation (PPF) of eEPSCs in hippocampal neurons by stimulating the glutamate release in their synapses. Under hypoinsulinemia, insulin did not have a significant effect on the parameters of paired-pulse plasticity on neurons of PPF subgroup, which may indicate the development of insulin resistance, while the effect of insulin on PPD neurons indicates its ability to recover the form normoinsulinemia, including the increasing probability of plasticity to the control level in of glutamate release in their synapses.

10.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36830006

RESUMEN

Reduced glutathione (GSH) and ascorbic acid (AA) are the two most abundant low-molecular-weight antioxidants in mammalian tissues. GclmKO knockout mice lack the gene encoding the modifier subunit of the rate-limiting enzyme in GSH biosynthesis; GclmKO mice exhibit 10-40% of normal tissue GSH levels and show no overt phenotype. GuloKO knockout mice, lacking a functional Gulo gene encoding L-gulono-γ-lactone oxidase, cannot synthesize AA and depend on dietary ascorbic acid for survival. To elucidate functional crosstalk between GSH and AA in vivo, we generated the GclmKO/GuloKO double-knockout (DKO) mouse. DKO mice exhibited spontaneous epileptic seizures, proceeding to death between postnatal day (PND)14 and PND23. Histologically, DKO mice displayed neuronal loss and glial proliferation in the neocortex and hippocampus. Epileptic seizures and brain pathology in young DKO mice could be prevented with AA supplementation in drinking water (1 g/L). Remarkably, in AA-rescued adult DKO mice, the removal of AA supplementation for 2-3 weeks resulted in similar, but more severe, neocortex and hippocampal pathology and seizures, with death occurring between 12 and 21 days later. These results provide direct evidence for an indispensable, yet underappreciated, role for the interplay between GSH and AA in normal brain function and neuronal health. We speculate that the functional crosstalk between GSH and AA plays an important role in regulating glutamatergic neurotransmission and in protecting against excitotoxicity-induced brain damage.

11.
Pharmacol Rep ; 75(2): 276-292, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36719635

RESUMEN

BACKGROUND: L-proline transporter (PROT/SLC6A7) is closely associated with glutamatergic neurotransmission, where L-proline modulates the NMDA receptor (NMDAR) function. NMDAR-mediated excitotoxicity is a primary cause of neuronal death following stroke, which is triggered by the uncontrolled release of glutamate during the ischemic process. After ischemic stroke, L-proline levels show a reduction in the plasma, but high circulating levels of this molecule indicate good functional recovery. This work aimed to produce new PROT inhibitors and explore their effects on ischemic stroke. METHODS: Initially, we built a three-dimensional model of the PROT protein and run a molecular docking with the newly designed compounds (LQFM215, LQFM216, and LQFM217). Then, we synthesized new PROT inhibitors by molecular hybridization, and proline uptake was measured in ex vivo and in vivo models. The behavioral characterization of the treated mice was performed by the open-field test, elevated plus-maze, Y-maze, and forced swimming test. We used the permanent middle cerebral artery occlusion (MCAO) model to study the ischemic stroke damage and analyzed the motor impairment with limb clasping or cylinder tests. RESULTS: LQFM215 inhibited proline uptake in hippocampal synaptosomes, and the LQFM215 treatment reduced proline levels in the mouse hippocampus. LQFM215 reduced the locomotor and exploratory activity in mice and did not show any anxiety-related or working memory impairments. In the MCAO model, LQFM215 pre-treatment and treatment reduced the infarcted area and reduced motor impairments in the cylinder test and limb clasping. CONCLUSIONS: This dataset suggests that the new compounds inhibit cerebral L-proline uptake and that LQFM215 promotes neuroprotection and neuro-repair in the acute ischemic stroke model.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Ratones , Animales , Accidente Cerebrovascular Isquémico/complicaciones , Neuroprotección , Simulación del Acoplamiento Molecular , Infarto de la Arteria Cerebral Media/complicaciones , Receptores de N-Metil-D-Aspartato , Prolina/farmacología , Isquemia Encefálica/complicaciones , Modelos Animales de Enfermedad
12.
Cells ; 11(24)2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36552776

RESUMEN

The etiology of hyperglycemic-induced depressive behaviors is unclear. We hypothesized that long-term hyperglycemia may induce long-lasting disturbances in glutamatergic signaling and neural damages, causing depressive behaviors. To prove our hypothesis, a C57BL/6N mouse model of hyperglycemia was maintained for 4 weeks (equivalent to approximately 3 years in humans), after which insulin treatment was administered for an additional 4 weeks to normalize hyperglycemia-induced changes. Hyperglycemic mice showed depressive-like behaviors. Glutamatergic neurons and glial cells in the medial prefrontal cortex (mPFC) were affected by hyperglycemia. Insulin treatment improved blood glucose, water intake, and food intake to normoglycemic levels, but did not improve depressive-like behaviors. Glutamatergic signaling decreased with long-term hyperglycemia and did not normalize with insulin-induced normoglycemia. Importantly, hyperglycemia-induced changes in the mPFC were almost not reversed by the 4-week insulin treatment. In particular, levels of insulin receptor beta subunit (IRß), IRS-1, vesicular glutamate transporter 1, glutamine transporter SNAT2, phosphate-activated glutaminase, and GLUT-3 were not changed by insulin. Nitration and the dephosphorylation of IRß in the PFC also did not improve with insulin treatment. Therefore, our results suggest that hypoactive glutamatergic activity in the mPFC is involved in diabetic-associated depressive behaviors, and it is difficult to cure with glycemic regulation alone.


Asunto(s)
Hiperglucemia , Corteza Prefrontal , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Hiperglucemia/complicaciones , Hiperglucemia/tratamiento farmacológico , Glutamina , Insulina
13.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36558924

RESUMEN

Temporal lobe epilepsy (TLE) is the most prevalent and treatment-refractory type of epilepsy. Among the different mechanisms associated with epileptogenesis, overstimulation of glutamatergic neurotransmission has been associated with the onset and progression of seizures in TLE. Experimental evidence indicates that blocking the N-methyl-D-aspartate (NMDA) receptor or suppressing the expression of its subunit, mainly GluN1, may be effective in preventing epileptic seizures. Small interfering RNA (siRNA) has received attention as a potential therapeutic tool due to the inhibition of gene expression in some diseases. The present work evaluated the potential silencing effect of intranasal administration of an siRNA conjugate against the GluN1 subunit in animals submitted to the pilocarpine model of epilepsy. The results showed that the siRNA conjugate transfection system silences the GluN1 subunit in the hippocampus of rats when administered intranasally. As demonstrated by the RT-qPCR and Western blotting approaches, the silencing of GluN1 was specific for this subunit without affecting the amount of mRNA for other subunits. Silencing increased the latency time for the first tonic-clonic seizure when compared to controls. The overlapping of findings and the validation of the intranasal route as a pharmacological route of siRNA targeting the GluN1 subunit give the work a significant biotechnological interest.

14.
Neurochem Int ; 159: 105404, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35853552

RESUMEN

Selegiline, also known as L-deprenyl, and (2R)-1-(1-benzofuran-2-yl)-N-propylpentane-2-amine (BPAP) were found to induce enhancement of monoamine neurotransmission in low and very low doses. In addition, these enhancers may modify glutamatergic neurotransmission. The aim of the present study was to test the hypothesis that under stress conditions, chronic treatment with enhancer drugs has a positive impact on the glutamatergic system and other parameters related to brain plasticity, stress-related systems, and anxiety behavior. We exposed male Wistar rats to a chronic mild stress procedure combined with chronic treatment with two synthetic enhancer drugs. The gene expression of GluR1, an AMPA receptor subunit was reduced by repeated treatment with deprenyl in the hippocampus and with both BPAP and deprenyl in the prefrontal cortex. A significant reduction of NMDA receptor subunit GluN2B expression was observed in the hippocampus but not in the prefrontal cortex. Deprenyl treatment led to an enhancement of hippocampal BDNFmRNA concentrations in stress-exposed rats. Treatment with enhancer drugs failed to induce significant changes in stress hormone concentrations or anxiety behavior. In conclusion, the present study in chronically stressed rats showed that concomitant treatment with enhancer drugs did not provoke substantial neuroendocrine changes, but modified gene expression of selected parameters associated with brain plasticity. Observed changes may indicate a positive influence of enhancer drugs on brain plasticity, which is important for preventing negative consequences of chronic stress and enhancement of stress resilience. It may be suggested that the changes in glutamate receptor subunits induced by enhancer drugs are brain region-specific and not dose-related.


Asunto(s)
Plasticidad Neuronal , Selegilina , Animales , Encéfalo/metabolismo , Expresión Génica , Hipocampo , Masculino , Plasticidad Neuronal/genética , Ratas , Ratas Wistar , Selegilina/metabolismo
15.
Behav Brain Res ; 417: 113625, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34637854

RESUMEN

Inflammation plays a key role in the pathogenesis of the major depressive disorder. Namely, neuroinflammation can induce the production of neuroactive metabolites that interfere with N-methyl-D-aspartate receptors (NMDAR)-mediated glutamatergic neurotransmission and contribute to depressive-like behaviour. On the other hand, mammalian target of rapamycin (mTOR) activity with synaptogenic effects is the main mediator of antidepressant effects of several potent NMDAR antagonists. In this study, we investigated the specific role of GluN2A subunits of NMDAR on the activity of mTOR signaling and behaviour in lipopolysaccharide (LPS)-induces model of depression. The results showed that mice lacking GluN2A subunit did not display depressive-like behavior after the immune challenge, opposite to LPS-treated wild-type mice. Specifically, in GluN2A knockout mice, we estimated the activity of the mTOR pathway in the hippocampus and prefrontal cortex (PFC) by measuring synaptic levels of upstream regulators (p-Akt, p-ERK, and p-GSK3ß) and downstream effectors (p-mTOR, and p-p70S6K) of mTOR activity. In addition, we assessed the changes in the levels of two important synaptic markers, GluA1 and PSD-95. Contrary to downregulated mTOR signaling and decreased synaptic markers in LPS-treated wild-type animals, the resilience of GluN2A KO mice to depressive-like behaviour was paralleled with sustained mTOR signaling activity synaptic stability in hippocampus and PFC. Finally, we disclosed that resistance of GluN2A knockouts to LPS-induced depressive-like behavior was ERK-dependent. These findings demonstrate that GluN2A-ERK-mTOR signaling is a vulnerability factor of inflammation-related depressive behaviour, making this signaling pathway the promising target for developing novel antidepressants.


Asunto(s)
Depresión/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Lipopolisacáridos/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Depresión/inducido químicamente , Masculino , Ratones , Ratones Noqueados , Corteza Prefrontal/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR
16.
Artículo en Inglés | MEDLINE | ID: mdl-34339759

RESUMEN

Methylphenidate (MPH) is a drug routinely used for patients with attention deficit and hyperactivity disorder (ADHD). Concerns arise about psychostimulant use, with dramatic increases in prescriptions. Besides, antipsychotic drugs are often administered in combination with MPH. In this study, we examine the consequences of MPH exposure in combination with dopamine D2 receptor antagonism (eticlopride) on midbrain dopaminergic neurons in anaesthetised rodents, using in vivo extracellular single-cell electrophysiology. As expected, we show that methylphenidate (2 mg/kg, i.v.) decreases the firing and bursting activities of ventral tegmental area (VTA) dopamine neurons, an effect that is reversed with eticlopride (0.2 mg/kg, i.v.). However, using such a paradigm, we observed higher firing and bursting activities than under baseline conditions. Furthermore, we demonstrate that such an effect is dependent on dual alpha-1 and dopamine D1 receptors, as well as glutamatergic transmission, through glutamate N-Methyl-D-aspartate (NMDA) receptor activation. Chronic MPH treatment during adolescence greatly dampens MPH-induced excitatory effects measured at adulthood. To conclude, we demonstrated here that a combination of methylphenidate and a dopamine D2 receptor antagonist produced long-lasting consequences on midbrain dopamine neurons, via glutamatergic-dependent mechanisms.


Asunto(s)
Inhibidores de Captación de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Electrofisiología , Metilfenidato/farmacología , Área Tegmental Ventral/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Modelos Animales de Enfermedad , Antagonistas de Dopamina/administración & dosificación , Neuronas Dopaminérgicas/citología , Quimioterapia Combinada , Masculino , Mesencéfalo , Ratas , Receptores Dopaminérgicos , Receptores de N-Metil-D-Aspartato/fisiología , Salicilamidas/administración & dosificación
17.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884460

RESUMEN

BACKGROUND: GRIN-related disorders (GRD), the so-called grinpathies, is a group of rare encephalopathies caused by mutations affecting GRIN genes (mostly GRIN1, GRIN2A and GRIN2B genes), which encode for the GluN subunit of the N-methyl D-aspartate (NMDA) type ionotropic glutamate receptors. A growing number of functional studies indicate that GRIN-encoded GluN1 subunit disturbances can be dichotomically classified into gain- and loss-of-function, although intermediate complex scenarios are often present. METHODS: In this study, we aimed to delineate the structural and functional alterations of GRIN1 disease-associated variants, and their correlations with clinical symptoms in a Spanish cohort of 15 paediatric encephalopathy patients harbouring these variants. RESULTS: Patients harbouring GRIN1 disease-associated variants have been clinically deeply-phenotyped. Further, using computational and in vitro approaches, we identified different critical checkpoints affecting GluN1 biogenesis (protein stability, subunit assembly and surface trafficking) and/or NMDAR biophysical properties, and their association with GRD clinical symptoms. CONCLUSIONS: Our findings show a strong correlation between GRIN1 variants-associated structural and functional outcomes. This structural-functional stratification provides relevant insights of genotype-phenotype association, contributing to future precision medicine of GRIN1-related encephalopathies.


Asunto(s)
Encefalopatías/patología , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Animales , Encefalopatías/genética , Células COS , Niño , Preescolar , Chlorocebus aethiops , Estudios de Cohortes , Femenino , Células HEK293 , Humanos , Lactante , Masculino , Modelos Moleculares , Conformación Proteica , España
18.
Drug Metab Pers Ther ; 37(2): 177-190, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34881837

RESUMEN

OBJECTIVES: GABA and glutamate neurotransmission play critical roles in both the neurobiology of depression and cognition; and Virgin coconut oil (VCO) is reported to support brain health. The present study investigated the effect of VCO on depression-associated cognitive deficits in mice. METHODS: Thirty male mice divided into five groups were either exposed to chronic unpredicted mild stress (CUMS) protocol for 28 days or pre-treated with 3 mL/kg b. wt. of VCO for 21 days or post-treated with 3 mL/kg b. wt. of VCO for 21 days following 28 days of CUMS exposure. Mice were subjected to behavioural assessments for depressive-like behaviours and short-term memory, and thereafter euthanised. Hippocampal tissue was dissected from the harvested whole brain for biochemical and immunohistochemical evaluations. RESULTS: Our results showed that CUMS exposure produced depressive-like behaviours, cognitive deficits and altered hippocampal redox balance. However, treatment with VCO abrogated depression-associated cognitive impairment, and enhanced hippocampal antioxidant concentration. Furthermore, immunohistochemical evaluation revealed significant improvement in GABAA and mGluR1a immunoreactivity following treatment with VCO in the depressed mice. CONCLUSIONS: Therefore, findings from this study support the dietary application of VCO to enhance neural resilience in patients with depression and related disorders.


Asunto(s)
Antioxidantes , Disfunción Cognitiva , Animales , Antioxidantes/farmacología , Aceite de Coco , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Depresión/tratamiento farmacológico , Hipocampo , Humanos , Masculino , Ratones , Ácido gamma-Aminobutírico
19.
Genes (Basel) ; 12(12)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34946848

RESUMEN

Schizophrenia is a disabling neuropsychiatric disorder of adulthood onset with high heritability. Worldwide collaborations have identified an association of ~270 common loci, with small individual effects and hence weak clinical implications. The recent technological feasibility of exome sequencing enables the identification of rare variants of high penetrance that refine previous findings and improve risk assessment and prognosis. We recruited two multiplex Pakistani families, having 11 patients and 19 unaffected individuals in three generations. We performed genome-wide SNP genotyping, next-generation mate pairing and whole-exome sequencing of selected members to unveil genetic components. Candidate variants were screened in unrelated cohorts of 508 cases, 300 controls and fifteen families (with 51 affected and 47 unaffected individuals) of Pakistani origin. The structural impact of substituted residues was assessed through in silico modeling using iTASSER. In one family, we identified a rare novel microduplication (5q14.1_q14.2) encompassing critical genes involved in glutamate signaling, such as CMYA5, HOMER and RasGRF2. The second family segregates two ultra-rare, predicted pathogenic variants in the GRIN2A (NM_001134407.3: c.3505C>T, (p.R1169W) and in the NRG3 NM_001010848.4: c.1951G>A, (p.E651K). These genes encode for parts of AMPA and NMDA receptors of glutamatergic neurotransmission, respectively, and the variants are predicted to compromise protein function by destabilizing their structures. The variants were absent in the aforementioned cohorts. Our findings suggest that rare, highly penetrant variants of genes involved in glutamatergic neurotransmission are contributing to the etiology of schizophrenia in these families. It also highlights that genetic investigations of multiplex, multigenerational families could be a powerful approach to identify rare genetic variants involved in complex disorders.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Ácido Glutámico/genética , Esquizofrenia/genética , Transducción de Señal/genética , Transmisión Sináptica/genética , Adulto , Exoma/genética , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Persona de Mediana Edad , Pakistán , Linaje , Penetrancia
20.
Front Behav Neurosci ; 15: 695735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497496

RESUMEN

The rodent medial prefrontal cortex (mPFC) is anatomically divided into cingulate (Cg1), prelimbic (PrL), and infralimbic (IL) subareas. The left and right mPFC (L and RmPFC) process emotional responses induced by stress-related stimuli, and LmPFC and RmPFC inhibition elicit anxiogenesis and anxiolysis, respectively. Here we sought to investigate (i) the mPFC functional laterality on social avoidance/anxiogenic-like behaviors in male mice subjected to chronic social defeat stress (SDS), (ii) the effects of left prelimbic (PrL) inhibition (with local injection of CoCl2) on the RmPFC glutamatergic neuronal activation pattern (immunofluorescence assay), and (iii) the effects of the dorsal right mPFC (Cg1 + PrL) NMDA receptor blockade (with local injection of AP7) on the anxiety induced by left dorsal mPFC inhibition in mice exposed to the elevated plus maze (EPM). Results showed that chronic SDS induced anxiogenic-like behaviors followed by the rise of ΔFosB labeling and by ΔFosB + CaMKII double-labeling bilaterally in the Cg1 and IL subareas of the mPFC. Chronic SDS also increased ΔFosB and by ΔFosB + CaMKII labeling only on the right PrL. Also, the left PrL inhibition increased cFos + CaMKII labeling in the contralateral PrL and IL. Moreover, anxiogenesis induced by the left PrL inhibition was blocked by NMDA receptor antagonist AP7 injected into the right PrL. These findings suggest the lateralized control of the glutamatergic neurotransmission in the modulation of emotional-like responses in mice subjected to chronic SDS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA