Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mar Pollut Bull ; 197: 115758, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979533

RESUMEN

Long-finned pilot whales (Globicephala melas) are the most frequently stranded cetaceans in the world; however, the predominant drivers of these events are poorly understood. In this study the levels of persistent organic pollutants from pilot whales stranded in North-east Iceland were quantified and compared to historical data and physical parameters to investigate whether contaminant load may have influenced the physiological state of stranded individuals, how these loads fluctuate with sex and age group, and if this is consistent with the literature. Historical comparison was also carried out to discern how pollutant contamination has changed throughout the past few decades. DDE, transnonachlor and PCB-153 were the top three pollutants respectively. The accumulation of POPs was greater on average in immature individuals than adults, whilst among adults, males had higher concentration than females. Moreover, despite an indication of decreasing POP loads throughout the years, knowledge of harmful thresholds remains exceedingly limited.


Asunto(s)
Contaminantes Ambientales , Ballena de Aleta , Calderón , Animales , Femenino , Masculino , Monitoreo del Ambiente , Islandia , Calderón/fisiología
2.
Animals (Basel) ; 11(6)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067447

RESUMEN

In this work, the fetal and newborn anatomical structures of the dolphin oropharyngeal cavities were studied. The main technique used was endoscopy, as these cavities are narrow tubular spaces and the oral cavity is difficult to photograph without moving the specimen. The endoscope was used to study the mucosal features of the oral and pharyngeal cavities. Two pharyngeal diverticula of the auditory tubes were discovered on either side of the choanae and larynx. These spaces begin close to the musculotubaric channel of the middle ear, are linked to the pterygopalatine recesses (pterygoid sinus) and they extend to the maxillopalatine fossa. Magnetic Resonance Imaging (MRI), osteological analysis, sectional anatomy, dissections, and histology were also used to better understand the function of the pharyngeal diverticula of the auditory tubes. These data were then compared with the horse's pharyngeal diverticula of the auditory tubes. The histology revealed that a vascular plexus inside these diverticula could help to expel the air from this space to the nasopharynx. In the oral cavity, teeth remain inside the alveolus and covered by gums. The marginal papillae of the tongue differ in extension depending on the fetal specimen studied. The histology reveals that the incisive papilla is vestigial and contain abundant innervation. No ducts were observed inside lateral sublingual folds in the oral cavity proper and caruncles were not seen in the prefrenular space.

3.
Sci Total Environ ; 770: 145259, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33517007

RESUMEN

Long-finned pilot whales (LFPW) are cetaceans with strong social groups often involved in mass strandings worldwide. However, these beachings occur for reasons that are not fully understood. In 2016, 124 LFPW were stranded on the Chilean Patagonian islands, offering a unique opportunity to obtain crucial information on the ecology, biology, and genetics of this population. In addition, we examined whether persistent organic pollutants (POPs) and trace elements (TEs) were responsible for this mass mortality. Stable isotopes (δ13C & δ15N) and genetic analyses were used to reconstruct the trophic ecology, social structure, and kinship of LFPW and compared to POPs and TEs levels found in LFPW. Mitochondrial DNA analyses on 71 individuals identified four maternal lineages within the stranded LFPW. Of these animals, 32 individuals were analyzed for a suite of POPs, TEs, and lipid content in blubber. The highest levels were found for ΣDDXs (6 isomers) (542.46 ± 433.46 ng/g, lw) and for total Hg (2.79 ± 1.91 mg/kg, dw). However, concentrations found in these LFPW were lower than toxicity thresholds and those reported for LFPW stranded in other regions. Evidence was found of ΣDDX, Σ7PCBs, and Cd bioaccumulation and maternal transfer of POPs in mother/offspring groups. Nevertheless, no clear relationship between contaminant concentrations and LFPW mortality was established. Further research is still needed to assess LFPW populations including conservations status and exposure to chemicals in remote areas such as Patagonia.


Asunto(s)
Contaminantes Ambientales , Ballena de Aleta , Contaminantes Químicos del Agua , Calderón , Animales , Bioacumulación , Chile , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
4.
Parasitol Res ; 119(7): 2237-2244, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32451718

RESUMEN

Ecological data on marine mammal parasites represent an excellent opportunity to expand our understanding of host-parasite systems. In this study, we used a dataset of intestinal helminth parasites on 167 long-finned pilot whales Globicephala melas (Traill, 1809) from seven localities in the Faroe Islands to evaluate the extent to which the host's age and sex influence the occurrence, richness, and nested pattern of helminth parasites and the importance of individual hosts to the helminth community. We found positive effects of age on both the occurrence and richness of helminths. Older host individuals showed an ordered accumulation of parasites, as evidenced by the nested pattern in their composition. Males had a higher occurrence of parasites than females, but the richness of helminths did not differ between sexes. Our findings suggest that differences in host-parasite interactions in long-finned pilot whales result mainly from age-structured variations in biological and behavioral characteristics.


Asunto(s)
Helmintiasis/epidemiología , Helmintos/aislamiento & purificación , Interacciones Huésped-Parásitos/fisiología , Calderón/parasitología , Distribución por Edad , Factores de Edad , Animales , Dinamarca/epidemiología , Femenino , Humanos , Intestinos/parasitología , Masculino , Factores Sexuales
5.
J Exp Biol ; 223(Pt 10)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32321748

RESUMEN

Group-living animals must communicate to stay in contact. In long-finned pilot whales, there is a trade-off between the benefits of foraging individually at depth and the formation of tight social groups at the surface. Using theoretical modelling and empirical data of tagged pairs within a group, we examined the potential of pilot whale social calls to reach dispersed group members during foraging periods. Both theoretical predictions and empirical data of tag pairs showed a potential for communication between diving and non-diving group members over separation distances up to 385 m (empirical) and 1800 m (theoretical). These distances match or exceed pilot whale dive depths recorded across populations. Call characteristics and environmental characteristics were analysed to investigate determinants of call detectability. Longer calls with a higher sound pressure level (SPL) that were received in a quieter environment were more often detected than their shorter, lower SPL counterparts within a noisier environment. In a noisier environment, calls were louder and had a lower peak frequency, indicating mechanisms for coping with varying conditions. However, the vulnerability of pilot whales to anthropogenic noise is still of concern as the ability to cope with increasing background noise may be limited. Our study shows that combining propagation modelling and actual tag recordings provides new insights into the communicative potential for social calls in orientation and reunion with group members for deep-diving pilot whales.


Asunto(s)
Ballena de Aleta , Calderón , Animales , Vocalización Animal
6.
Anim Cogn ; 22(5): 863-882, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31230140

RESUMEN

Killer whales (KW) may be predators or competitors of other cetaceans. Since their foraging behavior and acoustics differ among populations ('ecotypes'), we hypothesized that other cetaceans can eavesdrop on KW sounds and adjust their behavior according to the KW ecotype. We performed playback experiments on long-finned pilot whales (Globicephala melas) in Norway using familiar fish-eating KW sounds (fKW) simulating a sympatric population that might compete for foraging areas, unfamiliar mammal-eating KW sounds (mKW) simulating a potential predator threat, and two control sounds. We assessed behavioral responses using animal-borne multi-sensor tags and surface visual observations. Pilot whales barely changed behavior to a broadband noise (CTRL-), whereas they were attracted and exhibited spyhops to fKW, mKW, and to a repeated-tonal upsweep signal (CTRL+). Whales never stopped nor started feeding in response to fKW, whereas they reduced or stopped foraging to mKW and CTRL+. Moreover, pilot whales joined other subgroups in response to fKW and CTRL+, whereas they tightened individual spacing within group and reduced time at surface in response to mKW. Typical active intimidation behavior displayed to fKW might be an antipredator strategy to a known low-risk ecotype or alternatively a way of securing the habitat exploited by a heterospecific sympatric population. Cessation of feeding and more cohesive approach to mKW playbacks might reflect an antipredator behavior towards an unknown KW ecotype of potentially higher risk. We conclude that pilot whales are able to acoustically discriminate between familiar and unfamiliar KW ecotypes, enabling them to adjust their behavior according to the perceived disturbance type.


Asunto(s)
Percepción Auditiva , Aprendizaje Discriminativo , Ecotipo , Ballena de Aleta , Vocalización Animal , Orca , Calderón , Acústica , Animales , Ballena de Aleta/psicología , Peces , Sonido , Espectrografía del Sonido , Orca/psicología
7.
Ecol Appl ; 29(5): e01903, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30980583

RESUMEN

Understanding the full scope of human impact on wildlife populations requires a framework to assess the population-level repercussions of nonlethal disturbance. The Population Consequences of Disturbance (PCoD) framework provides such an approach, by linking the effects of disturbance on the behavior and physiology of individuals to their population-level consequences. Bio-energetic models have been used as implementations of PCoD, as these integrate the behavioral and physiological state of an individual with the state of the environment, to mediate between disturbance and biological significant changes in vital rates (survival, growth, and reproduction). To assess which levels of disturbance lead to adverse effects on population growth rate requires a bio-energetic model that covers the complete life cycle of the organism under study. In a density-independent setting, the expected lifetime reproductive output of a single female can then be used to predict the level of disturbance that leads to population decline. Here, we present such a model for a medium-sized cetacean, the long-finned pilot whale (Globicephala melas). Disturbance is modeled as a yearly recurrent period of no resource feeding for the pilot whale female and her calf. Short periods of disturbance lead to the pre-weaned death of the first one or more calves of the young female. Higher disturbance levels also affect survival of calves produced later in the life of the female, in addition to degrading female survival. The level of disturbance that leads to a negative population growth rate strongly depends on the available resources in the environment. This has important repercussion for the timing of disturbance if resource availability fluctuates seasonally. The model predicts that pilot whales can tolerate on average three times longer periods of disturbance in seasons of high resource availability, compared to disturbance happening when resources are low. Although our model is specifically parameterized for pilot whales, it provides useful insights into the general consequences of nonlethal disturbance. If appropriate data on life history and energetics are available, it can be used to provide management advice for specific species or populations.


Asunto(s)
Calderón , Animales , Femenino , Reproducción , Estaciones del Año
8.
Front Physiol ; 9: 1462, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459631

RESUMEN

Air-breathing marine predators that target sub-surface prey have to balance the energetic benefit of foraging against the time, energetic and physiological costs of diving. Here we use on-animal data loggers to assess whether such trade-offs can be revealed by the breathing rates (BR) and timing of breaths in long-finned pilot whales (Globicephela melas). We used the period immediately following foraging dives in particular, for which respiratory behavior can be expected to be optimized for gas exchange. Breath times and fluke strokes were detected using onboard sensors (pressure, 3-axis acceleration) attached to animals using suction cups. The number and timing of breaths were quantified in non-linear mixed models that incorporated serial correlation and individual as a random effect. We found that pilot whales increased their BR in the 5-10 min period prior to, and immediately following, dives that exceeded 31 m depth. While pre-dive BRs did not vary with dive duration, the initial post-dive BR was linearly correlated with duration of >2 min dives, with BR then declining exponentially. Apparent net diving costs were 1.7 (SE 0.2) breaths per min of diving (post-dive number of breaths, above pre-dive breathing rate unrelated to dive recovery). Every fluke stroke was estimated to cost 0.086 breaths, which amounted to 80-90% average contribution of locomotion to the net diving costs. After accounting for fluke stroke rate, individuals in the small body size class took a greater number of breaths per diving minute. Individuals reduced their breathing rate (from the rate expected by diving behavior) by 13-16% during playbacks of killer whale sounds and their first exposure to 1-2 kHz naval sonar, indicating similar responses to interspecific competitor/predator and anthropogenic sounds. Although we cannot rule out individuals increasing their per-breath O2 uptake to match metabolic demand, our results suggest that behavioral responses to experimental sound exposures were not associated with increased metabolic rates in a stress response, but metabolic rates instead appear to decrease. Our results support the hypothesis that maximal performance leads to predictable (optimized) breathing patterns, which combined with further physiological measurements could improve proxies of field metabolic rates and per-stroke energy costs from animal-borne behavior data.

9.
J Exp Biol ; 220(Pt 20): 3802-3811, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29046419

RESUMEN

To maximize foraging duration at depth, diving mammals are expected to use the lowest cost optimal speed during descent and ascent transit and to minimize the cost of transport by achieving neutral buoyancy. Here, we outfitted 18 deep-diving long-finned pilot whales with multi-sensor data loggers and found indications that their diving strategy is associated with higher costs than those of other deep-diving toothed whales. Theoretical models predict that optimal speed is proportional to (basal metabolic rate/drag)1/3 and therefore to body mass0.05 The transit speed of tagged animals (2.7±0.3 m s-1) was substantially higher than the optimal speed predicted from body mass (1.4-1.7 m s-1). According to the theoretical models, this choice of high transit speed, given a similar drag coefficient (median, 0.0035) to that in other cetaceans, indicated greater basal metabolic costs during diving than for other cetaceans. This could explain the comparatively short duration (8.9±1.5 min) of their deep dives (maximum depth, 444±85 m). Hydrodynamic gliding models indicated negative buoyancy of tissue body density (1038.8±1.6 kg m-3, ±95% credible interval, CI) and similar diving gas volume (34.6±0.6 ml kg-1, ±95% CI) to those in other deep-diving toothed whales. High diving metabolic rate and costly negative buoyancy imply a 'spend more, gain more' strategy of long-finned pilot whales, differing from that in other deep-diving toothed whales, which limits the costs of locomotion during foraging. We also found that net buoyancy affected the optimal speed: high transit speeds gradually decreased during ascent as the whales approached neutral buoyancy owing to gas expansion.


Asunto(s)
Buceo , Metabolismo Energético , Calderón/fisiología , Animales , Fenómenos Biomecánicos , Femenino , Masculino , Natación
10.
Adv Mar Biol ; 75: 173-203, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27770984

RESUMEN

Mediterranean Sea long-finned pilot whales (Globicephala melas) are currently classified as Data Deficient on the International Union for the Conservation of Nature (IUCN) Red List. Multiple lines of evidence, including molecular genetic and photo-identification mark-recapture analyses, indicate that the Strait of Gibraltar population (distributed from 5.8°W longitude to west of Djibouti Bank and Alborán Dorsal in the Alborán Sea) is differentiated from the Mediterranean Sea population (east of Djibouti Bank and the Alborán Dorsal up to the Ligurian Sea). There is low genetic diversity within the Mediterranean population, and recent gene flow with the Strait of Gibraltar population is restricted. Current total abundance estimates are lacking for the species in the Mediterranean. Pilot whales in the Alborán Sea region were negatively affected by a morbillivirus epizootic from 2006 to 2007, and recovery may be difficult. The Strait of Gibraltar population, currently estimated to be fewer than 250 individuals, decreased by 26.2% over 5 years after the morbillivirus epizootic. Population viability analyses predicted an 85% probability of extinction for this population over the next 100 years. Increasing maritime traffic, increased contaminant burdens, and occasional fisheries interactions may severely impair the capacity of the Strait of Gibraltar population to recover after the decline due to the pathogen.


Asunto(s)
Conservación de los Recursos Naturales , Calderón/fisiología , Animales , Ecosistema , Mar Mediterráneo
11.
J Wildl Dis ; 51(4): 868-71, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26285099

RESUMEN

Brucella ceti is an emerging zoonotic pathogen that has been recovered from several species of cetaceans in the world's oceans over the past 20 yr. We report the recovery of B. ceti from a Sowerby's beaked whale (Mesoploden bidens) and a long-finned pilot whale (Globicehala melas). Recovery from the testis of a long-finned pilot whale provides further evidence of potential for B. ceti infection to impact the reproductive success of cetaceans, many of which are threatened species. The addition of another two cetacean species to the growing number from which B. ceti has been recovered also further emphasizes the concern for human infections with this organism.


Asunto(s)
Brucella/aislamiento & purificación , Brucelosis/veterinaria , Ballenas , Animales , Brucelosis/microbiología
12.
Int. j. morphol ; 32(4): 1399-1406, Dec. 2014. ilus
Artículo en Español | LILACS | ID: lil-734690

RESUMEN

Existe una estrecha relación entre las características morfológicas de los sistemas sensoriales, su funcionamiento y el hábitat al que están adaptados los organismos. En este sentido, de todos los mamíferos marinos estudiados, los cetáceos son los que más profundamente han modificado su estructura y fisiología ocular por su estrecha adaptación a una vida exclusivamente acuática. Para aportar más datos a la literatura, el objetivo de este trabajo es describir morfológicamente la retina de la ballena piloto a través de técnicas de microscopia óptica, con el fin de relacionarla con su adaptación al medio acuático. Nuestros datos muestran que la retina de Globicephala melas se organiza de acuerdo al mismo plan básico de los vertebrados. Tiene un grosor medio alrededor de 330±23 µm en las zonas de alta densidad de células ganglionares y 175±2 µm en la zona periférica. La capa de los fotorreceptores se corresponde con el 45% del grosor de la retina total. Presenta largos segmentos externos. La capa más característica de cetáceos en general y de Globicephala melas en particular, es la capa de células ganglionares. Su grosor, de 77,76±37,26 siendo la más variable de toda la retina. Esta capa presenta baja densidad celular pero tamaños excepcionalmente grandes, de 10 a 75 µm (promedio de 33,5 µm), denominadas células ganglionares gigantes.


There is a close relationship between morphological features of sensory systems, their function and habitat to which these organisms are adapting. In this sense, of all marine mammals that have been studied, cetaceans are the ones that have profoundly changed structure and ocular physiology in their adaptation to an exclusively aquatic life. To add further data to the literature, the aim of this paper is to describe morphologically the retina of the pilot whale through optical microscopy and relate their adaptation to the aquatic environment. Our data show that the retina of the long-finned pilot whale is organized according to the same basic plan of vertebrates. It has an average thickness of about 330±23 microns in areas of high ganglion cell density of 175±2 microns in the peripheral zone. Photoreceptor layer corresponds to 45% of total thickness of the retina and has long outer segments. The most significant characteristic of cetaceans in general and long-finned pilot whale in particular, is the ganglion cell layer. Thickness of 77.76±37.26 being the most variable of the entire retina. This layer has a low density but exceptionally large cell size of 10 to 75 microns (average of 33.5 microns), known as giant ganglion cells.


Asunto(s)
Animales , Retina/ultraestructura , Ecosistema , Calderón/anatomía & histología , Retina/citología , Microscopía
13.
Behav Processes ; 99: 12-20, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23769937

RESUMEN

Synchronous behavior, as a form of social interaction, has been widely reported for odontocete cetaceans observed at the sea surface. However, few studies have quantified synchronous behavior underwater. Using data from an animal-borne data recorder and camera, we described how a pair of deep-diving odontocetes, long-finned pilot whales, coordinated diving behavior. Diving data during overlapping periods of 3.7 h were obtained from two whales within a stable trio. The tagged whales made highly synchronous movements, and their dive durations differed only slightly (3±3 s). The pair of whales maintained a constant and narrow vertical separation (ca. 3 m) throughout synchronous dives. The overall fluking rate for the same travel speed during synchronous dives was virtually the same as that during asynchronous dives, suggesting that synchronous behavior did not affect locomotion effort. In addition, a possible affiliative behavior was recorded by the animal-borne camera: another individual appeared in 8% of the frames, both with and without body contact to the tagged whale. The primary type of body contact was flipper-to-body. Our study, the first on underwater synchronous behavior and body contact of pilot whales, highlights the utility of using animal-borne devices for enabling new insights into social interactions.


Asunto(s)
Buceo/psicología , Relaciones Interpersonales , Natación/psicología , Calderón/fisiología , Aceleración , Animales , Interpretación Estadística de Datos , Locomoción/fisiología , Esfuerzo Físico/fisiología , Telemetría , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA