Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Chemosphere ; 364: 143221, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233299

RESUMEN

Environmental pollution due to plastic waste is a global challenge causing adverse impacts on the ecosystem and public health. Microplastic (MP) originates at the upstream processes such as industrial and household activities; however, their existence is affecting the downstream environment. Even though many governments and non-government organizations have taken technological and regulatory steps, these current efforts and strategies are insufficient to prevent the MP release in the environment. Thus, a multidisciplinary global approach is required, which must prioritize the reducing of plastic inputs to the environment. To regulate MP levels in the environment, worldwide reformative and preventive strategies are required because the issue is not limited to a single nation or region. In relation to marine plastic waste, a number of multilateral agreements and measures exist at global level. Several regulatory measures have been examined by regulatory bodies with the intention of safeguarding the environment from excessive MP contamination. However, neither of the frameworks in place is specifically made to stop the increased MP pollution in the environment. Therefore, this review focused on the preventive measures taken by the government and non-government organizations for MP control through legislations. The study also critically discussed MP-related policies aiming to increase the viability and efficiency of implementing future plastic management. This review is expected to provide the basic guidelines for formulating MP standards in the environment.

2.
Sci Rep ; 14(1): 18951, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147802

RESUMEN

Spatial accurate mapping of land susceptibility to wind erosion is necessary to mitigate its destructive consequences. In this research, for the first time, we developed a novel methodology based on deep learning (DL) and active learning (AL) models, their combination (e.g., recurrent neural network (RNN), RNN-AL, gated recurrent units (GRU), and GRU-AL) and three interpretation techniques (e.g., synergy matrix, SHapley Additive exPlanations (SHAP) decision plot, and accumulated local effects (ALE) plot) to map global land susceptibility to wind erosion. In this respect, 13 variables were explored as controlling factors to wind erosion, and eight of them (e.g., wind speed, topsoil carbon content, topsoil clay content, elevation, topsoil gravel fragment, precipitation, topsoil sand content and soil moisture) were selected as important factors via the Harris Hawk Optimization (HHO) feature selection algorithm. The four models were applied to map land susceptibility to wind erosion, and their performance was assessed by three measures consisting of area under of receiver operating characteristic (AUROC) curve, cumulative gain and Kolmogorov Smirnov (KS) statistic plots. The results revealed that GRU-AL model was considered as the most accurate, revealing that 38.5%, 12.6%, 10.3%, 12.5% and 26.1% of the global lands are grouped at very low, low, moderate, high and very high susceptibility classes to wind erosion hazard, respectively. Interpretation techniques were applied to interpret the contribution and impact of the eight input variables on the model's output. Synergy plot revealed that the soil carbon content exhibited high synergy with DEM and soil moisture on the model's predictions. ALE plot showed that soil carbon content and precipitation had negative feedback on the prediction of land susceptibility to wind erosion. Based on SHAP decision plot, soil moisture and DEM presented the highest contribution on the model's output. Results highlighted new regions at high latitudes (southern Greenland coast, hotspots in Alaska and Siberia), which exhibited high and very high land susceptibility to wind erosion.

3.
Foodborne Pathog Dis ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052696

RESUMEN

Staphylococcus aureus (S. aureus) is a pathogen capable of causing severe diseases and exhibiting resistance to multiple antibiotics. However, there is a significant lack of comprehensive research on the global prevalence of its antibiotic resistance genes (ARGs). This study provided a comprehensive analysis of ARGs in S. aureus, using 113,842 S. aureus genome sequences from the National Center for Biotechnology Information database. The results revealed that a significant majority (84%) of these genomes harbored at least one ARG, with a total of 389,464 ARG sequences identified across 19 major types and 103 subtypes. These ARGs exhibited varied abundances and diversities, linked primarily to clinical cases worldwide. ARGs for fluoroquinolones, multidrug resistance, bacitracin, tetracyclines, beta-lactams, and aminoglycosides were notably abundant, ranging from 3.16 × 10-5 to 1.49 copies of ARG per million bp. Variations in the abundance and diversity of ARGs were observed between countries, with middle- and low-income countries showing higher gene abundance but lower diversity compared with high-income countries. Temporal analysis over 30 years showed a fluctuating decline in ARG abundance alongside an increase in diversity, suggesting evolving resistance mechanisms. The study also explored the role of mobile genetic elements in ARG dissemination, finding a substantial proportion of ARG subtypes associated with plasmids and insertion sequence elements, indicating their potential for spread across borders. The global distribution of mobile ARGs was further analyzed, revealing the extensive reach of certain ARGs across countries. This research provides valuable insights into the prevalence and dissemination of antibiotic resistance in S. aureus on a global scale, aiding in the development of effective monitoring and control strategies to combat ARGs in S. aureus and other pathogens.

4.
Environ Int ; 190: 108869, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968831

RESUMEN

Assessing the risk of human pathogens in the environment is crucial for controlling the spread of diseases and safeguarding human health. However, conducting a thorough assessment of low-abundance pathogens in highly complex environmental microbial communities remains challenging. This study compiled a comprehensive catalog of 247 human-pathogenic bacterial taxa from global biosafety agencies and identified more than 78 million genome-specific markers (GSMs) from their 17,470 sequenced genomes. Subsequently, we analyzed these pathogens' types, abundance, and diversity within 474 shotgun metagenomic sequences obtained from diverse environmental sources. The results revealed that among the four habitats studied (air, water, soil, and sediment), the detection rate, diversity, and abundance of detectable pathogens in the air all exceeded those in the other three habitats. Air, sediment, and water environments exhibited identical dominant taxa, indicating that these human pathogens may have unique environmental vectors for their transmission or survival. Furthermore, we observed the impact of human activities on the environmental risk posed by these pathogens, where greater amounts of human activities significantly increased the abundance of human pathogenic bacteria, especially in water and air. These findings have remarkable implications for the environmental risk assessment of human pathogens, providing valuable insights into their presence and distribution across different habitats.


Asunto(s)
Microbiología del Aire , Bacterias , Microbiología del Suelo , Humanos , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Microbiología del Agua , Monitoreo del Ambiente , Metagenómica , Reservorios de Enfermedades/microbiología , Medición de Riesgo
5.
J Hazard Mater ; 477: 135290, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047563

RESUMEN

The rapid expansion of fast fashion has significantly increased microplastic fiber (MPF) release during laundry practices, accounting for approximately one-third of primary microplastics entering the ocean. Currently, a significant gap exists in global-scale research on the release of MPFs from washing textiles. This study introduces an innovative empirical model to assess the spatial distribution of MPF emissions. The model estimates an annual global emission of 5.69 million tons of MPFs from laundry. Of this total, machine washing accounts for the majority (93.7 %), with hand washing contributing the remaining 6.3 %. As the primary source of MPF pollution, Asia's emissions reach 3.71 million tons, far exceeding those of North America (1.18 million tons) and Europe (0.45 million tons). The primary issue is that wastewater management efficiency varies significantly worldwide. In Asia, there is persistently high discharge of MPFs into natural waters, and the removal efficiency of wastewater treatment plants is still comparatively low. In contrast, the United States and many European countries exhibit better MPF retention. The global nature of this challenge mandates international collaboration for comprehensive environmental conservation. Our study provides the first high-resolution global distribution map of MPF emissions and discharge into natural waters, establishing a data foundation for global and regional management of microplastics originating from household laundry sources.

6.
Water Res ; 260: 121946, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38906080

RESUMEN

Landscape changes resulting from anthropogenic activities and climate changes severely impact surface water quality. A global perspective on understanding their relationship is a prerequisite for pursuing equity in water security and sustainable development. A sequent meta-analysis synthesizing 625 regional studies from 63 countries worldwide was conducted to analyze the impacts on water quality from changing landscape compositions in the catchment and explore the moderating factors and temporal evolution. Results exhibit that total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) in water are mostly concerned and highly responsive to landscape changes. Expansion of urban lands fundamentally degraded worldwide water quality over the past 20 years, of which the arid areas tended to suffer more harsh deterioration. Increasing forest cover, particularly low-latitude forests, significantly decreased the risk of water pollution, especially biological and heavy metal contamination, suggesting the importance of forest restoration in global urbanization. The effect size of agricultural land changes on water quality was spatially scale-dependent, decreasing and then increasing with the buffer radius expanding. Wetland coverage positively correlated with organic matter in water typified by COD, and the correlation coefficient peaked in the boreal areas (r=0.82, p<0.01). Overall, the global impacts of landscape changes on water quality have been intensifying since the 1990s. Nevertheless, knowledge gaps still exist in developing areas, especially in Africa and South America, where the water quality is sensitive to landscape changes and is expected to experience dramatic shifts in foreseeable future development. Our study revealed the worldwide consistency and heterogeneity between regions, thus serving as a research roadmap to address the quality-induced global water scarcity under landscape changes and to direct the management of land and water.


Asunto(s)
Calidad del Agua , Fósforo/análisis , Nitrógeno/análisis , Humedales , Monitoreo del Ambiente , Cambio Climático
7.
Environ Int ; 187: 108653, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669719

RESUMEN

Pesticides are widely used in agriculture, but their impact on the environment and human health is a major concern. While much attention has been given to their presence in soil, water, and food, there have been few studies on airborne pesticide pollution on a global scale. This study aimed to assess the extent of atmospheric pesticide pollution in countries worldwide and identify regional differences using a scoring approach. In addition to analyzing the health risks associated with pesticide pollution, we also examined agricultural practices and current air quality standards for pesticides in these countries. The pollution scores varied significantly among the countries, particularly in Europe. Asian and Oceanic countries generally had higher scores compared to those in the Americas, suggesting a relatively higher level of air pollution caused by pesticides in these regions. It is worth noting that the current pollution levels, as assessed theoretically, pose minimal health risks to humans. However, studies in the literature have shown that excessive exposure to pesticides present in the atmosphere has been associated with various health problems, such as cancer, neuropsychiatric disorders, and other chronic diseases. Interestingly, European countries had the highest overall pesticide application intensities, but this did not necessarily correspond to higher atmospheric pesticide pollution scores. Only a few countries have established air quality standards specifically for pesticides. Furthermore, pollution scores across states in the USA were investigated and the global sampling sites were mapped. The findings revealed that the scores varied widely in the USA and the current sampling sites were limited or unevenly distributed in some countries, particularly the Nordic countries. These findings can help global relevant environmental agencies to set up comprehensive monitoring networks. Overall, the present research highlights the need to create a pesticide monitoring system and increase efforts to enhance pesticide regulation, ensure consistency in standards, and promote international cooperation.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Plaguicidas , Plaguicidas/análisis , Humanos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Atmósfera/química
8.
Environ Geochem Health ; 46(5): 165, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592368

RESUMEN

Soil pollution around Pb-Zn smelters has attracted widespread attention around the world. In this study, we compiled a database of eight potentially toxic elements (PTEs) Pb, Zn, Cd, As, Cr, Ni, Cu, and Mn in the soil of Pb-Zn smelting areas by screening the published research papers from 2000 to 2023. The pollution assessment and risk screening of eight PTEs were carried out by geo-accumulation index (Igeo), potential ecological risk index (PERI) and health risk assessment model, and Monte Carlo simulation employed to further evaluate the probabilistic health risks. The results suggested that the mean values of the eight PTEs all exceeded the corresponding values in the upper crust, and more than 60% of the study sites had serious Pb and Cd pollution (Igeo > 4), with Brazil, Belgium, China, France and Slovenia having higher levels of pollution than other regions. Besides, PTEs in smelting area caused serious ecological risk (PERI = 10912.12), in which Cd was the main contributor to PREI (86.02%). The average hazard index (HI) of the eight PTEs for adults and children was 7.19 and 9.73, respectively, and the average value of total carcinogenic risk (TCR) was 4.20 × 10-3 and 8.05 × 10-4, respectively. Pb and As are the main contributors to non-carcinogenic risk, while Cu and As are the main contributors to carcinogenic risk. The probability of non-carcinogenic risk in adults and children was 84.05% and 97.57%, while carcinogenic risk was 92.56% and 79.73%, respectively. In summary, there are high ecological and health risks of PTEs in the soil of Pb-Zn smelting areas, and Pb, Cd, As and Cu are the key elements that cause contamination and risk, which need to be paid attention to and controlled. This study is expected to provide guidance for soil remediation in Pb-Zn smelting areas.


Asunto(s)
Cadmio , Plomo , Adulto , Niño , Humanos , Plomo/toxicidad , Carcinogénesis , Carcinógenos , Contaminación Ambiental , Probabilidad , Medición de Riesgo , Suelo , Zinc
9.
Proc Natl Acad Sci U S A ; 121(13): e2318475121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466879

RESUMEN

Deforestation poses a global threat to biodiversity and its capacity to deliver ecosystem services. Yet, the impacts of deforestation on soil biodiversity and its associated ecosystem services remain virtually unknown. We generated a global dataset including 696 paired-site observations to investigate how native forest conversion to other land uses affects soil properties, biodiversity, and functions associated with the delivery of multiple ecosystem services. The conversion of native forests to plantations, grasslands, and croplands resulted in higher bacterial diversity and more homogeneous fungal communities dominated by pathogens and with a lower abundance of symbionts. Such conversions also resulted in significant reductions in carbon storage, nutrient cycling, and soil functional rates related to organic matter decomposition. Responses of the microbial community to deforestation, including bacterial and fungal diversity and fungal guilds, were predominantly regulated by changes in soil pH and total phosphorus. Moreover, we found that soil fungal diversity and functioning in warmer and wetter native forests is especially vulnerable to deforestation. Our work highlights that the loss of native forests to managed ecosystems poses a major global threat to the biodiversity and functioning of soils and their capacity to deliver ecosystem services.


Asunto(s)
Ecosistema , Microbiota , Suelo/química , Conservación de los Recursos Naturales , Biodiversidad , Bosques , Bacterias , Microbiología del Suelo
10.
Water Res ; 253: 121253, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350193

RESUMEN

Human activities have long impacted the health of Earth's rivers and lakes. These inland waters, crucial for our survival and productivity, have suffered from contamination which allows the formation and spread of antibiotic-resistant genes (ARGs) and consequently, ARG-carrying pathogens (APs). Yet, our global understanding of waterborne pathogen antibiotic resistance remains in its infancy. To shed light on this, our study examined 1240 metagenomic samples from both open and closed inland waters. We identified 22 types of ARGs, 19 types of mobile genetic elements (MGEs), and 14 types of virulence factors (VFs). Our findings showed that open waters have a higher average abundance and richness of ARGs, MGEs, and VFs, with more robust co-occurrence network compared to closed waters. Out of the samples studied, 321 APs were detected, representing a 43 % detection rate. Of these, the resistance gene 'bacA' was the most predominant. Notably, AP hotspots were identified in regions including East Asia, India, Western Europe, the eastern United States, and Brazil. Our research underscores how human activities profoundly influence the diversity and spread of resistome. It also emphasizes that both abiotic and biotic factors play pivotal roles in the emergence of ARG-carrying pathogens.


Asunto(s)
Antibacterianos , Genes Bacterianos , Humanos , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología , Metagenómica , Metagenoma
11.
Glob Chang Biol ; 30(1): e17057, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273541

RESUMEN

The worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global-scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice-free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r-ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K-ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.


Asunto(s)
Ecosistema , Nematodos , Animales , Suelo , Cubierta de Hielo , Biodiversidad
12.
Glob Chang Biol ; 30(1): e17084, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273567

RESUMEN

Excessive fine sediment (particles <2 mm) deposition in freshwater systems is a pervasive stressor worldwide. However, understanding of ecological response to excess fine sediment in river systems at the global scale is limited. Here, we aim to address whether there is a consistent response to increasing levels of deposited fine sediment by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New Zealand and the UK). Results indicate ecological responses are not globally consistent and are instead dependent on both the region and the facet of invertebrate diversity considered, that is, taxonomic or functional trait structure. Invertebrate communities of Australia were most sensitive to deposited fine sediment, with the greatest rate of change in communities occurring when fine sediment cover was low (below 25% of the reach). Communities in the UK displayed a greater tolerance with most compositional change occurring between 30% and 60% cover. In both New Zealand and Brazil, which included the most heavily sedimented sampled streams, the communities were more tolerant or demonstrated ambiguous responses, likely due to historic environmental filtering of invertebrate communities. We conclude that ecological responses to fine sediment are not generalisable globally and are dependent on landscape filters with regional context and historic land management playing important roles.


Asunto(s)
Sedimentos Geológicos , Invertebrados , Animales , Invertebrados/fisiología , Agua Dulce , Ríos , Nueva Zelanda , Ecosistema , Biodiversidad , Monitoreo del Ambiente
13.
Environ Sci Pollut Res Int ; 31(3): 3526-3544, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38085483

RESUMEN

The main objective of this study is to analyze hazardous elements in nanoparticles (NPs) (smaller than 100 nm) and ultrafine particles (smaller than 1 µm) in Porto Alegre City, southern Brazil using a self-made passive sampler and Sentinel-3B SYN satellite images in 32 collection points. The Aerosol Optical Thickness proportion (T550) identification was conducted using images of the Sentinel-3B SYN satellite at 634 points sampled in 2019, 2020, 2021, and 2022. Focused ion beam scanning electron microscopy analyses were performed to identify chemical elements present in NPs and ultrafine particles, followed by single-stage cascade impactor to be processed by high-resolution transmission electron microscopy. This process was coupled with energy-dispersive X-ray spectroscopy and later analysis via secondary ion mass spectrometry. Data was acquired from Sentinel-3B SYN images, normalized to a standard mean of 0.83 µg/mg, at moderate spatial resolution (260 m), and modeled in the Sentinel Application Platform (SNAP) software v.8.0. Statistical matrix data was generated in the JASP software (Jeffreys's Amazing Statistics Program) v.0.14.1.0 followed by a K-means cluster analysis. The results demonstrate the presence of between 1 and 100 nm particles of the following chemical elements: Si, Al, K, Mg, P, and Ti. Many people go through these areas daily and may inhale or absorb these elements that can harm human health. In the Sentinel-3B SYN satellite images, the sum of squares in cluster 6 is 168,265 and in cluster 7 a total of 21,583. The use of images from the Sentinel-3B SYN satellite to obtain T550 levels is of great importance as it reveals that atmospheric pollution can move through air currents contaminating large areas on a global scale.


Asunto(s)
Contaminantes Atmosféricos , Nanopartículas , Humanos , Contaminantes Atmosféricos/análisis , Brasil , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Aerosoles/análisis , Tamaño de la Partícula
14.
Naturwissenschaften ; 110(6): 54, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37957333

RESUMEN

The current ecological crisis has risen extinction rates to similar levels of ancient mass extinctions. However, it seems to not be acting uniformly across all species but affecting species differentially. This suggests that species' susceptibility to the extinction process is mediated by specific traits. Since understanding this response mechanism at large scales will benefit conservation effort around the world, we used the IUCN global threat status and population trends of 8281 extant bird species as proxies of the extinction risk to identify the species-specific traits affecting their susceptibility to extinction within the biogeographic regions and at the global scale. Using linear mixed effect models and multinomial models, we related the global threat status and the population trends with the following traits: migratory strategy, habitat and diet specialization, body size, and generation length. According to our results and independently of the proxy used, more vulnerable species are sedentary and have larger body size, longer generation time, and higher degree of habitat specialization. These relationships apply globally and show little variation across biogeographic regions. We suggest that such concordant patterns might be caused either by a widespread occurrence of the same threats such as habitat modification or by a uniform capacity of some traits to reflect the impact of different local threats. Regardless of the cause of this pattern, our study identified the traits that affect species' response capability to the current ecological crisis. Conservation effort should focus on the species with trait values indicating the limited response capacity to overcome this crisis.


Asunto(s)
Cambio Climático , Extinción Biológica , Animales , Ecosistema , Especificidad de la Especie , Aves , Conservación de los Recursos Naturales , Biodiversidad
15.
Sci Total Environ ; 903: 166805, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690751

RESUMEN

Changes in land-use structure and pattern can affect both atmospheric CO2 concentrations and the terrestrial carbon budget. To explore the effects of non-uniformly distributed CO2 concentration on terrestrial carbon uptake under land-use changes, this study integrated global CO2 concentrations, Net Primary Productivity (NPP), and land-use data under historical period and SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios from 1850 to 2100. Land-use intensity (LUI) and the CO2 correlation to NPP were calculated using partial correlation analysis by controlling LUI. The results showed that NPP growth over the forest was the highest among the land-use types, reaching 0.54 g C·m2, 2.06 g C·m2 and 4.64 g C·m2, respectively, under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. Among all the scenarios, the average correlation levels of atmospheric CO2 and NPP considering the LUI effect and controlling LUI ranged respectively from 0.34 to 0.68 and from 0.32 to 0.61 at a 5 % level of significance. It suggested that sensible land use planning might enhance the CO2 fertilization effect and that rises in CO2 concentrations could stimulate terrestrial carbon absorption. The findings add to the body of knowledge about the effects of atmospheric CO2 on terrestrial carbon uptake and serve as a scientific guide for protecting terrestrial carbon stocks and managing land use.

16.
Adv Sci (Weinh) ; 10(26): e2301980, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37424042

RESUMEN

Antibiotic overuse and the subsequent environmental contamination of residual antibiotics poses a public health crisis via an acceleration in the spread of antibiotic resistance genes (ARGs) through horizontal gene transfer. Although the occurrence, distribution, and driving factors of ARGs in soils have been widely investigated, little is known about the antibiotic resistance of soilborne pathogens at a global scale. To explore this gap, contigs from 1643 globally sourced metagnomes are assembled, yielding 407 ARG-carrying pathogens (APs) with at least one ARG; APs are detected in 1443 samples (sample detection rate of 87.8%). The richness of APs is greater in agricultural soils (with a median of 20) than in non-agricultural ecosystems. Agricultural soils possess a high prevalence of clinical APs affiliated with Escherichia, Enterobacter, Streptococcus, and Enterococcus. The APs detected in agricultural soils tend to coexist with multidrug resistance genes and bacA. A global map of soil AP richness is generated, where anthropogenic and climatic factors explained AP hot spots in East Asia, South Asia, and the eastern United States. The results herein advance this understanding of the global distribution of soil APs and determine regions prioritized to control soilborne APs worldwide.


Asunto(s)
Metagenómica , Suelo , Ecosistema , Microbiología del Suelo , Antibacterianos
17.
Environ Monit Assess ; 195(7): 885, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358677

RESUMEN

Residential buildings generate significant greenhouse gas (GHG) emissions and consume energy throughout their life cycle. In recent years, research on GHG emissions and energy consumption of buildings has developed rapidly in response to the growing climate change and energy crisis. Life cycle assessment (LCA) is an important method for evaluating the environmental impacts of the building sector. However, LCA studies of buildings show widely varying outcomes across the world. Besides, environmental impact assessment from a whole life cycle perspective has been undeveloped and slow. Our work presents a systematic review and meta-analysis of LCA studies on GHG emissions and energy consumption in the preuse, use, and demolition stages of residential buildings. We aim to examine the differences among the results of diverse case studies and demonstrate the spectrum of variations under contextual disparities. Results show that residential building emits about 2928 kg GHG emission and consumes about 7430 kWh of energy per m2 of gross building area on average throughout the life cycle. Residential buildings have an average GHG emission of 84.81% in the use phase, followed by the preuse phase and demolition phase; the mean energy consumption in the use stage occupied the largest share of 84.52%, followed by preuse stage and demolition stage. GHG emissions and energy use vary significantly in different regions due to different building types, natural conditions, and lifestyles. Our study stresses the compelling requirement to slash GHG emissions and optimize energy consumption from residential buildings by use of low carbon building materials, energy structure adjustment, consumer behavior transformation, etc.


Asunto(s)
Gases de Efecto Invernadero , Monitoreo del Ambiente , Materiales de Construcción , Carbono , Cambio Climático , Efecto Invernadero
18.
Biology (Basel) ; 12(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237466

RESUMEN

Species distribution modeling (SDM) has been widely used to predict the distribution of invasive plant species based on bioclimatic variables. However, the specific selection of these variables may affect the performance of SDM. This investigation elucidates a new bioclimate variable dataset (i.e., CMCC-BioClimInd) for its use in SDM. The predictive performance of SDM that includes WorldClim and CMCC-BioClimInd was evaluated by AUC and omission rate and the explanatory power of both datasets was assessed by the jackknife method. Furthermore, the ODMAP protocol was used to record CMCC-BioClimInd to ensure reproducibility. The results indicated that CMCC-BioClimInd effectively simulates invasive plant species' distribution. Based on the contribution rate of CMCC-BioClimInd to the distribution of invasive plant species, it was inferred that the modified and simplified continentality and Kira warmth index from CMCC-BioClimInd had a strong explanatory power. Under the 35 bioclimatic variables of CMCC-BioClimInd, alien invasive plant species are mainly distributed in equatorial, tropical, and subtropical regions. We tested a new bioclimate variable dataset to simulate the distribution of invasive plant species worldwide. This method has great potential to improve the efficiency of species distribution modeling, thereby providing a new perspective for risk assessment and management of global invasive plant species.

19.
Huan Jing Ke Xue ; 44(1): 367-375, 2023 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-36635824

RESUMEN

Copper smelting can cause heavy metal pollution in surrounding soil and threaten human health. This study examined the characteristics, distribution, and health risk of heavy metals in soil with different land uses around 40 copper smelting sites at home and abroad by collecting published literature data. The results showed that the mean values of ω(As), ω(Cd), ω(Cu), ω(Pb), and ω(Zn) in the soil around the copper smelting sites were 196, 10.5, 1948, 604, and 853 mg·kg-1, respectively. The order of Igeo was Cd(5.63)>Cu(3.88)>As(2.96)>Pb(2.30)>Zn(1.27), and the accumulation of Cd and Cu was the most serious. High Nemero index (NIPI) values were found in the soil around smelting sites with a long history of smelting, outdated process, and insufficient environmental protection measures. Significant correlations were found between the concentrations of heavy metals in the soil, which decreased with the sampling distance. The heavy metals mainly accumulated within 2-3 km from the smelting sites. Compared with the smelting history, scale, and process, land use type had a lower effect on soil heavy metal concentrations. The heavy metals in the soil around copper smelters may pose carcinogenic and non-carcinogenic risks on residents. The high health risks were mainly caused by As and Pb in smelting production areas, and Pb in woodland. These results may guide the risk prevention of heavy metal pollution in the soil around smelting sites.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Cobre , Suelo , Cadmio , Plomo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Medición de Riesgo , China
20.
Ann Bot ; 131(5): 737-750, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36273331

RESUMEN

BACKGROUND AND AIMS: The hart's tongue fern (HTF) complex is a monophyletic group composed of five geographically segregated members with divergent abundance patterns across its broad geographic range. We postulated hierarchical systems of environmental controls in which climatic and land-use change drive abundance patterns at the global scale, while various ecological conditions function as finer scale determinants that further increase geographic disparities at regional to local scales. METHODS: After quantifying the abundance patterns of the HTF complex, we estimated their correlations with global climate and land-use dynamics. Regional determinants were assessed using boosted regression tree models with 18 potential ecological variables. Moreover, we investigated long-term population trends in the USA to understand the interplay of climate change and anthropogenic activities on a temporal scale. KEY RESULTS: Latitudinal climate shifts drove latitudinal abundance gradients, and regionally different levels of land-use change resulted in global geographic disparities in population abundance. At a regional scale, population isolation, which accounts for rescue effects, played an important role, particularly in Europe and East Asia where several hot spots occurred. Furthermore, the variables most strongly influencing abundance patterns greatly differed by region: precipitation seasonality in Europe; spatial heterogeneity of temperature and precipitation in East Asia; and magnitudes of past climate change, temperature seasonality and edaphic conditions in North America. In the USA, protected populations showed increasing trends compared with unprotected populations at the same latitude, highlighting the critical role of habitat protection in conservation measures. CONCLUSIONS: Geographic disparities in the abundance patterns of the HTF complex were determined by hierarchical systems of environmental controls, wherein climatic and land-use dynamics act globally but are modulated by various regional and local determinants operating at increasingly finer scales. We highlighted that fern conservation must be tailored to particular geographic contexts and environmental conditions by incorporating a better understanding of the dynamics acting at different spatiotemporal scales.


Asunto(s)
Helechos , Ecosistema , Cambio Climático , Temperatura , Asia Oriental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA