Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 962
Filtrar
1.
Exp Eye Res ; : 110099, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284507

RESUMEN

Loss of retinal ganglion cells (RGCs) is the cause of visual impairment and blindness in glaucoma. Previously, our studies showed that FK962 (N-[1-acetylpiperidin-4-yl]-4-fluorobenzamide) promoted neurite elongation in rat RGCs and trigeminal ganglion (TG) cells. In TG cells, glial cell line-derived neurotrophic factor (GDNF) is known to be involved in the mechanism. The purpose of the present study is to investigate whether, 1) FK962 shows an RGC-protective effect under hypoxia/reoxygenation (H/R) and 2) GDNF is involved in the neuroprotective mechanism of FK962. Rat primary retinal cells were cultured under 24-hour hypoxia/24-hour reoxygenation conditions, with or without FK962, recombinant GDNF, GDNF antibody and RET receptor tyrosine kinase inhibitor, GSK3179106. Cells were co-immunostained with RBPMS and Neurofilament 200 as a RGC marker, and the number of survived RGCs was counted. Results showed H/R treatment decreased the number of survived RGCs. FK962 promoted RGC survival under H/R by a bell-shaped dose response, with the highest RGC-protective effect of 10-8 M. The protective effect was the same level with 10-12M exogenous GDNF. Addition of GDNF antibody or GSK3179106 counteracted the neuroprotective effect of FK962. From these results, it is suggested that FK962 ameliorates RGC death under H/R, possibly via a GDNF signaling pathway.

2.
Brain Res Bull ; : 111078, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270804

RESUMEN

OBJECTIVE: The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions. METHODS: Newborn Sprague-Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (n=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3% sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses. The left hemibrains underwent Golgi staining, while the right hemibrains were used for hippocampal protein extraction to assess Protein kinase Mζ (PKMζ) and Kalirin expression through western blotting. RESULTS: GDNF demonstrated a mitigating effect on spatial learning and memory impairment, as well as context-related fear memory impairment, reductions in dendritic total lengths, and spinal density within the hippocampus induced by surgical intervention. Notably, all of these ameliorative effects of GDNF were reversed upon administration of the RET inhibitor BBT594. Additionally, GDNF alleviated the downregulation of protein expression of PKMζ and Kalirin in the hippocampus of rats subjected to surgery, subsequently reversed by BBT594. CONCLUSION: The effective impact of GDNF on learning and memory impairment caused by surgical intervention appears to be mediated through the RET pathway. Moreover, GDNF may exert its influence by upregulating the expression of PKMζ and Kalirin, consequently enhancing the development of dendrites and dendritic spines.

3.
Glia ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152717

RESUMEN

The mechanisms underlying regeneration of the central nervous system (CNS) following lesions have been studied extensively in both vertebrate and invertebrate models. To shed light on regeneration, ascidians, a sister group of vertebrates and with remarkable ability to regenerate their brains, constitute an appropriate model system. Glial cells have been implicated in regeneration in vertebrates; however, their role in the adult ascidian CNS regeneration is unknown. A model of degeneration and regeneration using the neurotoxin 3-acetylpyridine (3AP) in the brain of the ascidian Styela plicata was used to identify astrocyte-like cells and investigate their role. We studied the CNS of control ascidians (injected with artificial sea water) and of ascidians whose CNS was regenerating (1 and 10 days after the injection with 3AP). Our results show that the mRNA of the ortholog of glutamine synthetase (GS), a glial-cell marker in vertebrates, is increased during the early stages of regeneration. Confirming the identity of GS, the protein was identified via immunostaining in a cell population during the same regeneration stage. Last, a single ortholog of GS (GSII) is present in ascidian and amphioxus genomes, while two types exist in fungi, some invertebrates, and vertebrates, suggesting that ascidians have lost the GSI type. Taken together, our findings revealed that a cell population expressing glial-cell markers may play a role in regeneration in adult ascidians. This is the first report of astrocyte-like cells in the adult ascidian CNS, and contributes to understanding of the evolution of glial cells among metazoans.

4.
Biomed Pharmacother ; 179: 117290, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153433

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signaling molecule that influences digestive and nervous system functions. Enteric glial cells (EGCs) are integral to the enteric nervous system and play a role in regulating gastrointestinal motility. This study explored the dual effects of exogenous H2S on EGCs and the influence of apoptosis-related pathways and ion channels in EGCs. We also administered honokiol for further interventional studies. The results revealed that low-concentration H2S increased the mitochondrial membrane potential (MMP) of EGCs, decreased the whole-cell membrane potential, downregulated BAX and caspase-3, upregulated Bcl2 expression, reduced apoptosis, and promoted cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also increased. A high concentration of H2S had the opposite effect. In addition, GFAP mRNA expression was upregulated in the test-low group, downregulated in the test-high group, and upregulated in the test-high + Hon group. Honokiol treatment increased MMP, reduced whole-cell membrane potential, inhibited BAX and caspase-3 expression, increased Bcl2 expression, decreased cell apoptosis, and increased cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also upregulated. In conclusion, our study showed that exogenous H2S can bidirectionally regulate EGC proliferation and apoptosis by affecting MMP and cell membrane potential via the Bcl2/BAX/caspase-3 pathway and modulate Cx43-mediated Ca2+ responses in EGCs to regulate colonic motility bidirectionally. Honokiol can ameliorate the damage to EGCs induced by high H2S concentrations through the Bcl2/BAX/caspase-3 pathway and improve colon motility by increasing Cx43 expression and Ca2+ concentration.

5.
J Transl Med ; 22(1): 770, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143617

RESUMEN

BACKGROUND: Satellite glial cells (SGCs) in the dorsal root ganglia (DRG) play a pivotal role in the formation of neuropathic pain (NP). Sciatic nerve stimulation (SNS) neuromodulation was reported to alleviate NP and reduce neuroinflammation. However, the mechanisms underlying SNS in the DRG remain unclear. This study aimed to elucidate the mechanism of electric stimulation in reducing NP, focusing on the DRG. METHODS: L5 nerve root ligation (NRL) NP rat model was studied. Ipsilateral SNS performed 1 day after NRL. Behavioral tests were performed to assess pain phenotypes. NanoString Ncounter technology was used to explore the differentially expressed genes and cellular pathways. Activated SGCs were characterized in vivo and in vitro. The histochemical alterations of SGCs, macrophages, and neurons in DRG were examined in vivo on post-injury day 8. RESULTS: NRL induced NP behaviors including decreased pain threshold and latency on von Frey and Hargreaves tests. We found that following nerve injury, SGCs were hyperactivated, neurotoxic and had increased expression of NP-related ion channels including TRPA1, Cx43, and SGC-neuron gap junctions. Mechanistically, nerve injury induced reciprocal activation of SGCs and M1 macrophages via cytokines including IL-6, CCL3, and TNF-α mediated by the HIF-1α-NF-κB pathways. SNS suppressed SGC hyperactivation, reduced the expression of NP-related ion channels, and induced M2 macrophage polarization, thereby alleviating NP and associated neuroinflammation in the DRG. CONCLUSIONS: NRL induced hyperactivation of SGCs, which had increased expression of NP-related ion channels. Reciprocal activation of SGCs and M1 macrophages surrounding the primary sensory neurons was mediated by the HIF-1α and NF-κB pathways. SNS suppressed SGC hyperactivation and skewed M1 macrophage towards M2. Our findings establish SGC activation as a crucial pathomechanism in the gliopathic alterations in NP, which can be modulated by SNS neuromodulation.


Asunto(s)
Modelos Animales de Enfermedad , Ganglios Espinales , Neuralgia , Enfermedades Neuroinflamatorias , Ratas Sprague-Dawley , Nervio Ciático , Animales , Ganglios Espinales/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Nervio Ciático/patología , Macrófagos/metabolismo , Neuroglía/metabolismo , Ratas , Conducta Animal
6.
Poult Sci ; 103(10): 104070, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39094494

RESUMEN

Enteric glial cell (EGC) is involved in neuroimmune regulation within the enteric nervous system (ENS); however, limited information exists on the distribution and ultrastructure of EGC in the poultry gut. We aim to investigate the morphological features and distribution of EGC in the chicken cecum. Here, we investigated the distribution and ultrastructural features of chicken cecum EGC using immunohistochemistry (IHC) and transmission electron microscopy (TEM). IHC showed that EGC was widely distributed throughout the chicken cecum. In the mucosal layer, EGC was morphologically irregular, with occasionally interconnecting protrusions that outlined signal-negative neurons. The morphology of EGC in the submucosal layer was also irregular. In the inner circular muscle layer and between the inner circular and outer longitudinal muscle layers, EGC aligned parallel to the circular muscle cells. A small number of EGC with an irregular morphology were found in the outer longitudinal muscle layer. In addition, in the submucosal and myenteric plexus, EGC were aggregated, and the protrusions of the immunoreactive cells interconnected to outline the bodies of nonreactive neurons. TEM-guided ultrastructural characterization confirmed the IHC findings that EGC were morphologically irregular and revealed they developed either a star, bipolar, or fibrous shape. The nucleus was also irregular, with electron-dense heterochromatin distributed in the center of the nucleus or on the nuclear membrane. The cytoplasm contained many glial filaments and vesicle-containing protrusions from neuronal cells; organelles were rare. EGC was in close contact with other cells in their vicinity. These findings suggest that EGC is well-situated to exert influence on intestinal motility and immune functions through mechanical contraction and chemical secretion.

7.
Biochem Soc Trans ; 52(4): 1939-1946, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39171662

RESUMEN

Intracellular communication and regulation in brain cells is controlled by the ubiquitous Ca2+ and by redox signalling. Both of these independent signalling systems regulate most of the processes in cells including the cell surviving mechanism or cell death. In physiology Ca2+ can regulate and trigger reactive oxygen species (ROS) production by various enzymes and in mitochondria but ROS could also transmit redox signal to calcium levels via modification of calcium channels or phospholipase activity. Changes in calcium or redox signalling could lead to severe pathology resulting in excitotoxicity or oxidative stress. Interaction of the calcium and ROS is essential to trigger opening of mitochondrial permeability transition pore - the initial step of apoptosis, Ca2+ and ROS-induced oxidative stress involved in necrosis and ferroptosis. Here we review the role of redox signalling and Ca2+ in cytosol and mitochondria in the physiology of brain cells - neurons and astrocytes and how this integration can lead to pathology, including ischaemia injury and neurodegeneration.


Asunto(s)
Encéfalo , Señalización del Calcio , Calcio , Mitocondrias , Neuronas , Estrés Oxidativo , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Humanos , Mitocondrias/metabolismo , Encéfalo/metabolismo , Animales , Calcio/metabolismo , Neuronas/metabolismo , Astrocitos/metabolismo , Oxidación-Reducción , Apoptosis , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
8.
Biol Cell ; : e2400021, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159475

RESUMEN

BACKGROUND INFORMATION: The purinergic ligand-gated ion channel 7 receptor (P2X7R) is an ATP-gated ion channel that transmits extracellular signals and induces corresponding biological effects, transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel that maintains normal physiological functions; numerous studies showed that P2X7R and TRPV1 are associated with inflammatory reactions. RESULTS: The effect of P2X7R knockdown in satellite glial cells (SGCs) on neuronal TRPV1 expression under high glucose and high free fat (HGHF) environment was investigated. P2X7 short hairpin RNA (shRNA) was utilized to downregulate P2X7R in SGCs, and treated and untreated SGCs were co-cultured with neuronal cell lines. The expression levels of inflammatory factors and signaling pathways in SGCs and neurons were measured using Western blot analysis, RT-qPCR, immunofluorescence, and enzyme-linked immunosorbent assays. Results suggested that P2X7 shRNA reduced the expression levels of P2X7R protein and mRNA in SGCs surrounding DRG neurons and downregulated the release of tumor necrosis factor-alpha and interleukin-1 beta via the Ca2+/p38 MAPK/NF-κB pathway. Additionally, the downregulation of P2X7R might decrease TRPV1 expression in neurons via the Ca2+/PKC-ɛ/p38 MAPK pathway. CONCLUSIONS: Reducing P2X7R expression in SCGs in an HGHF environment could decrease neuronal TRPV1 expression via the Ca2+/PKC-ɛ/p38 MAPK pathway.

9.
Ren Fail ; 46(2): 2394637, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39189638

RESUMEN

BACKGROUND: Recent studies have reported that helix B surface polypeptide (HBSP), an erythropoietin derivative, exhibits strong tissue protective effects, independent of erythropoietic effects, in a renal ischemia-reperfusion (IR) injury model. Meanwhile, the transforming growth factor-ß (TGF-ß) superfamily member glial cell line-derived neurotrophic factor (GDNF) demonstrated protective effect on podocytes in vitro. Using a rat puromycin aminonucleoside nephropathy (PAN) model, this study observed the renal protective effect of HBSP and investigated its renal protective effect on podocytes and mechanism related to GDNF. METHODS: Rats nephropathy model was induced by injection of 60 mg/kg of PAN via the tail vein. Rats in the PAN + HBSP group were injected intraperitoneally with HBSP (8 nmol/kg) 4 h before the model was induced, followed by intraperitoneal injections of HBSP once every 24 h for 7 consecutive days. The 24-hour urinary protein level was measured once every other day, and blood and renal tissue samples were collected on the 7th day for the examination of renal function, complete blood count, renal pathological changes and the expression levels of GDNF. RESULTS: Compared with the control group, the PAN nephropathy rat model showed a large amount of urinary protein. The pathological manifestations were mainly extensive fusion and disappearance of foot processes, along with vacuolar degeneration of podocytes and their separation from the glomerular basement membrane. GDNF expression was upregulated. Compared with the PAN + vehicle group, the PAN + HBSP group showed decreased urinary protein (p < 0.05). Pathological examination revealed ameliorated glomerular injury and vacuolar degeneration of podocytes. The expression of GDNF in the PAN nephropathy group was increased, when compared with the control group. The greatest expression of GDNF observed in the PAN + HBSP group (p < 0.05). CONCLUSIONS: The expression of GDNF in the kidney of PAN rat model was increased. HBSP reduced urinary protein, ameliorated pathological changes in renal podocytes, increased the expression of GDNF in the PAN rat model. HBSP is likely to exert its protective effects on podocytes through upregulation of GDNF expression.


Asunto(s)
Modelos Animales de Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial , Enfermedades Renales , Podocitos , Puromicina Aminonucleósido , Ratas Sprague-Dawley , Animales , Ratas , Podocitos/efectos de los fármacos , Podocitos/patología , Podocitos/metabolismo , Masculino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Enfermedades Renales/patología , Riñón/patología , Riñón/efectos de los fármacos , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Eritropoyetina , Fragmentos de Péptidos
10.
Sci Rep ; 14(1): 17845, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090173

RESUMEN

The core of clinic treatment of Parkinson's disease (PD) is to enhance dopamine (DA) signaling within the brain. The regulation of dopamine transporter (DAT) is integral to this process. This study aims to explore the regulatory mechanism of glial cell line-derived neurotrophic factor (GDNF) on DAT, thereby gaining a profound understanding its potential value in treating PD. In this study, we investigated the effects of GDNF on both cellular and mouse models of PD, including the glycosylation and membrane transport of DAT detected by immunofluorescence and immunoblotting, DA signal measured by neurotransmitter fiber imaging technology, Golgi morphology observed by electron microscopic, as well as cognitive ability assessed by behavior tests. This study revealed that in animal trials, MPTP-induced Parkinson's Disease (PD) mice exhibited a marked decline in cognitive function. Utilizing ELISA and neurotransmitter fiber imaging techniques, we observed a decrease in dopamine levels and a significant reduction in the intensity of dopamine signal release in the Prefrontal Cortex (PFC) of PD mice induced by MPTP. Intriguingly, these alterations were reversed by Glial Cell Line-Derived Neurotrophic Factor (GDNF). In cellular experiments, following MPP + intervention, there was a decrease in Gly-DAT modification in both the cell membrane and cytoplasm, coupled with an increase in Nongly-DAT expression and aggregation of DAT within the cytoplasm. Conversely, GDNF augmented DAT glycosylation and facilitated its membrane transport in damaged dopaminergic neurons, concurrently reversing the effects of GRASP65 depletion and Golgi fragmentation, thereby reducing the accumulation of DAT in the Golgi apparatus. Furthermore, overexpression of GRASP65 enhanced DAT transport in PD cells and mice, while suppression of GRASP65 attenuated the efficacy of GDNF on DAT. Additionally, GDNF potentiated the reutilization of neurotransmitters by the PFC presynaptic membrane, boosting the effective release of dopamine following a single electrical stimulation, ultimately ameliorating the cognitive impairments in PD mice.Therefore, we propose that GDNF enhances the glycosylation and membrane trafficking of DAT by facilitating the re-aggregation of the Golgi apparatus, thereby amplifying the utilization of DA signals. This ultimately leads to the improvement of cognitive abilities in PD mouse models. Our study illuminates, from a novel angle, the beneficial role of GDNF in augmenting DA utilization and cognitive function in PD, providing fresh insights into its therapeutic potential.


Asunto(s)
Cognición , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Factor Neurotrófico Derivado de la Línea Celular Glial , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Glicosilación , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Ratones , Cognición/efectos de los fármacos , Dopamina/metabolismo , Masculino , Enfermedad de Parkinson/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Membrana Celular/metabolismo , Corteza Prefrontal/metabolismo
11.
Inflamm Res ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095656

RESUMEN

BACKGROUND AND OBJECTIVE: Neuropathic pain is a chronic condition characterized by aberrant signaling within the somatosensory system, affecting millions of people worldwide with limited treatment options. Herein, we aim at investigating the potential of a sigma-1 receptor (σ1R) antagonist in managing neuropathic pain. METHODS: A Chronic Constriction Injury (CCI) model was used to induce neuropathic pain. The potential of (+)-MR200 was evaluated following daily subcutaneous injections of the compound. Its mechanism of action was confirmed by administration of a well-known σ1R agonist, PRE084. RESULTS: (+)-MR200 demonstrated efficacy in protecting neurons from damage and alleviating pain hypersensitivity in CCI model. Our results suggest that (+)-MR200 reduced the activation of astrocytes and microglia, cells known to contribute to the neuroinflammatory process, suggesting that (+)-MR200 may not only address pain symptoms but also tackle the underlying cellular mechanism involved. Furthermore, (+)-MR200 treatment normalized levels of the gap junction (GJ)-forming protein connexin 43 (Cx43), suggesting a reduction in harmful intercellular communication that could fuel the chronicity of pain. CONCLUSIONS: This approach could offer a neuroprotective strategy for managing neuropathic pain, addressing both pain symptoms and cellular processes driving the condition. Understanding the dynamics of σ1R expression and function in neuropathic pain is crucial for clinical intervention.

12.
Glia ; 72(10): 1840-1861, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38961612

RESUMEN

The peripheral nervous system is a key regulator of cancer progression. In pancreatic ductal adenocarcinoma (PDAC), the sympathetic branch of the autonomic nervous system inhibits cancer development. This inhibition is associated with extensive sympathetic nerve sprouting in early pancreatic cancer precursor lesions. However, the underlying mechanisms behind this process remain unclear. This study aimed to investigate the roles of pancreatic Schwann cells in the structural plasticity of sympathetic neurons. We examined the changes in the number and distribution of Schwann cells in a transgenic mouse model of PDAC and in a model of metaplastic pancreatic lesions induced by chronic inflammation. Schwann cells proliferated and expanded simultaneously with new sympathetic nerve sprouts in metaplastic/neoplastic pancreatic lesions. Sparse genetic labeling showed that individual Schwann cells in these lesions had a more elongated and branched structure than those under physiological conditions. Schwann cells overexpressed neurotrophic factors, including glial cell-derived neurotrophic factor (GDNF). Sympathetic neurons upregulated the GDNF receptors and exhibited enhanced neurite growth in response to GDNF in vitro. Selective genetic deletion of Gdnf in Schwann cells completely blocked sympathetic nerve sprouting in metaplastic pancreatic lesions in vivo. This study demonstrated that pancreatic Schwann cells underwent adaptive reprogramming during early cancer development, supporting a protective antitumor neuronal response. These finding could help to develop new strategies to modulate cancer associated neural plasticity.


Asunto(s)
Ratones Transgénicos , Neoplasias Pancreáticas , Células de Schwann , Animales , Células de Schwann/metabolismo , Células de Schwann/patología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Ratones , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Reprogramación Celular/fisiología , Páncreas/patología , Páncreas/inervación , Páncreas/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Neuronas/patología , Ratones Endogámicos C57BL
13.
Neuron ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39019043

RESUMEN

Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.

14.
Cancer Sci ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992968

RESUMEN

Cancer brain metastasis has a poor prognosis, is commonly observed in clinical practice, and the number of cases is increasing as overall cancer survival improves. However, experiments in mouse models have shown that brain metastasis itself is an inefficient process. One reason for this inefficiency is the brain microenvironment, which differs significantly from that of other organs, making it difficult for cancer cells to adapt. The brain microenvironment consists of unique resident cell types such as neurons, oligodendrocytes, astrocytes, and microglia. Accumulating evidence over the past decades suggests that the interactions between cancer cells and glial cells can positively or negatively influence the development of brain metastasis. Nevertheless, elucidating the complex interactions between cancer cells and glial cells remains challenging, in part due to the limitations of existing experimental models for glial cell culture. In this review, we first provide an overview of glial cell culture methods and then examine recent discoveries regarding the interactions between brain metastatic cancer cells and the surrounding glial cells, with a special focus on astrocytes and microglia. Finally, we discuss future perspectives for understanding the multifaceted interactions between cancer cells and glial cells for the treatment of metastatic brain tumors.

15.
Cells ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38995011

RESUMEN

Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.


Asunto(s)
Axones , Factor Neurotrófico Derivado de la Línea Celular Glial , Regeneración Nerviosa , Células de Schwann , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Células de Schwann/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Axones/metabolismo , Ratas , Ratas Sprague-Dawley , Femenino , Astrocitos/metabolismo
16.
J Neuroinflammation ; 21(1): 169, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961424

RESUMEN

BACKGROUND: Understanding the mechanism behind sepsis-associated encephalopathy (SAE) remains a formidable task. This study endeavors to shed light on the complex cellular and molecular alterations that occur in the brains of a mouse model with SAE, ultimately unraveling the underlying mechanisms of this condition. METHODS: We established a murine model using intraperitoneal injection of lipopolysaccharide (LPS) in wild type and Anxa1-/- mice and collected brain tissues for analysis at 0-hour, 12-hour, 24-hour, and 72-hour post-injection. Utilizing advanced techniques such as single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq, we conducted a comprehensive characterization of the cellular responses and molecular patterns within the brain. RESULTS: Our study uncovered notable temporal differences in the response to LPS challenge between Anxa1-/- (annexin A1 knockout) and wild type mice, specifically at the 12-hour and 24-hour time points following injection. We observed a significant increase in the proportion of Astro-2 and Micro-2 cells in these mice. These cells exhibited a colocalization pattern with the vascular subtype Vas-1, forming a distinct region known as V1A2M2, where Astro-2 and Micro-2 cells surrounded Vas-1. Moreover, through further analysis, we discovered significant upregulation of ligands and receptors such as Timp1-Cd63, Timp1-Itgb1, Timp1-Lrp1, as well as Ccl2-Ackr1 and Cxcl2-Ackr1 within this region. In addition, we observed a notable increase in the expression of Cd14-Itgb1, Cd14-Tlr2, and Cd14-C3ar1 in regions enriched with Micro-2 cells. Additionally, Cxcl10-Sdc4 showed broad upregulation in brain regions containing both Micro-2 and Astro-2 cells. Notably, upon LPS challenge, there was an observed increase in Anxa1 expression in the mouse brain. Furthermore, our study revealed a noteworthy increase in mortality rates following Anxa1 knockdown. However, we did not observe substantial differences in the types, numbers, or distribution of other brain cells between Anxa1-/- and wildtype mice over time. Nevertheless, when comparing the 24-hour post LPS injection time point, we observed a significant decrease in the proportion and distribution of Micro-2 and Astro-2 cells in the vicinity of blood vessels in Anxa1-/- mice. Additionally, we noted reduced expression levels of several ligand-receptor pairs including Cd14-Tlr2, Cd14-C3ar1, Cd14-Itgb1, Cxcl10-Sdc4, Ccl2-Ackr1, and Cxcl2-Ackr1. CONCLUSIONS: By combining snRNA-seq and Stereo-seq techniques, our study successfully identified a distinctive cellular colocalization, referred to as a special pathological niche, comprising Astro-2, Micro-2, and Vas-1 cells. Furthermore, we observed an upregulation of ligand-receptor pairs within this niche. These findings suggest a potential association between this cellular arrangement and the underlying mechanisms contributing to SAE or the increased mortality observed in Anxa1 knockdown mice.


Asunto(s)
Astrocitos , Encéfalo , Modelos Animales de Enfermedad , Lipopolisacáridos , Ratones Noqueados , Microglía , Encefalopatía Asociada a la Sepsis , Animales , Ratones , Lipopolisacáridos/toxicidad , Encefalopatía Asociada a la Sepsis/patología , Encefalopatía Asociada a la Sepsis/genética , Encefalopatía Asociada a la Sepsis/metabolismo , Microglía/metabolismo , Microglía/patología , Encéfalo/patología , Encéfalo/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Análisis de Secuencia de ARN/métodos , Ratones Endogámicos C57BL , Transcriptoma , Masculino
17.
J Biol Chem ; 300(7): 107477, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879014

RESUMEN

Thyroid hormone (TH) is a critical regulator of cellular function and cell fate. The circulating TH level is relatively stable, while tissue TH action fluctuates according to cell type-specific mechanisms. Here, we focused on identifying mechanisms that regulate TH action through the type 2 deiodinase (D2) in glial cells. Dio2 mRNA has an unusually long 3'UTR where we identified multiple putative MSI1 binding sites for Musashi-1 (MSI1), a highly conserved RNA-binding cell cycle regulator. Binding to these sites was confirmed through electrophoretic mobility shift assay. In H4 glioma cells, shRNA-mediated MSI1 knockdown increased endogenous D2 activity, whereas MSI1 overexpression in HEK293T cells decreased D2 expression. This latter effect could be prevented by the deletion of a 3.6 kb region of the 3'UTR of Dio2 mRNA containing MSI1 binding sites. MSI1 immunoreactivity was observed in 2 mouse Dio2-expressing cell types, that is, cortical astrocytes and hypothalamic tanycytes, establishing the anatomical basis for a potential in vivo interaction of Dio2 mRNA and MSl1. Indeed, increased D2 expression was observed in the cortex of mice lacking MSI1 protein. Furthermore, MSI1 knockdown-induced D2 expression slowed down cell proliferation by 56% in primary cultures of mouse cortical astrocytes, establishing the functionality of the MSI1-D2-T3 pathway. In summary, Dio2 mRNA is a target of MSI1 and the MSI1-D2-T3 pathway is a novel regulatory mechanism of astrocyte proliferation with the potential to regulate the pathogenesis of human glioblastoma.


Asunto(s)
Astrocitos , Proliferación Celular , Yodotironina Deyodinasa Tipo II , Proteínas del Tejido Nervioso , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Regiones no Traducidas 3' , Astrocitos/metabolismo , Astrocitos/citología , Línea Celular Tumoral , Células HEK293 , Yoduro Peroxidasa/metabolismo , Yoduro Peroxidasa/genética , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética
18.
Environ Pollut ; 356: 124359, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38866317

RESUMEN

Aflatoxin B1 (AFB1) and T-2 toxin are commonly found in animal feed and stored grain, posing a serious threat to human and animal health. Mycotoxins can penetrate brain tissue by compromising the blood-brain barrier, triggering oxidative stress and neuroinflammation, and leading to oxidative damage and apoptosis of brain cells. The potential neurotoxic mechanisms of AFB1 and T-2 toxin were discussed by summarizing the relevant research reports from the past ten years. AFB1 and T-2 toxin cause neuronal damage in the cerebral cortex and hippocampus, leading to synaptic transmission dysfunction, ultimately impairing the nervous system function of the body. The toxic mechanism is related to excessive reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction, apoptosis, autophagy, and an exaggerated inflammatory response. After passing through the blood-brain barrier, toxins can directly affect glial cells, alter the activation state of microglia and astrocytes, thereby promoting brain inflammation, disrupting the blood-brain barrier, and influencing the synaptic transmission process. We discussed the diverse effects of various concentrations of toxins and different modes of exposure on neurotoxicity. In addition, toxins can also cross the placental barrier, causing neurotoxic symptoms in offspring, as demonstrated in various species. Our goal is to uncover the underlying mechanisms of the neurotoxicity of AFB1 and T-2 toxin and to provide insights for future research, including investigating the impact of mycotoxins on interactions between microglia and astrocytes.


Asunto(s)
Aflatoxina B1 , Barrera Hematoencefálica , Toxina T-2 , Aflatoxina B1/toxicidad , Toxina T-2/toxicidad , Humanos , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Micotoxinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo
19.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928162

RESUMEN

Polyamine (PA) spermidine (SPD) plays a crucial role in aging. Since SPD accumulates in glial cells, particularly in Müller retinal cells (MCs), the expression of the SPD-synthesizing enzyme spermidine synthase (SpdS) in Müller glia and age-dependent SpdS activity are not known. We used immunocytochemistry, Western blot (WB), and image analysis on rat retinae at postnatal days 3, 21, and 120. The anti-glutamine synthetase (GS) antibody was used to identify glial cells. In the neonatal retina (postnatal day 3 (P3)), SpdS was expressed in almost all progenitor cells in the neuroblast. However, by day 21 (P21), the SpdS label was pronouncedly expressed in multiple neurons, while GS labels were observed only in radial Müller glial cells. During early cell adulthood, at postnatal day 120 (P120), SpdS was observed solely in ganglion cells and a few other neurons. Western blot and semi-quantitative analyses of SpdS labeling showed a dramatic decrease in SpdS at P21 and P120 compared to P3. In conclusion, the redistribution of SpdS with aging indicates that SPD is first synthesized in all progenitor cells and then later in neurons, but not in glia. However, MCs take up and accumulate SPD, regardless of the age-associated decrease in SPD synthesis in neurons.


Asunto(s)
Células Ependimogliales , Retina , Espermidina Sintasa , Animales , Ratas , Espermidina Sintasa/metabolismo , Espermidina Sintasa/genética , Retina/metabolismo , Células Ependimogliales/metabolismo , Envejecimiento/metabolismo , Espermidina/metabolismo , Neuroglía/metabolismo , Animales Recién Nacidos
20.
J Autoimmun ; 147: 103256, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788538

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the loss of dopaminergic neurons and neuroinflammation. Recent studies have identified a role of T cells in the pathogenesis of PD. Additionally, these studies suggested that α-synuclein (α-Syn) is related to abnormal T-cell responses and may act as an epitope and trigger autoimmune T-cell responses. However, it is unclear whether the α-Syn-mediated autoimmune response occurs and whether it is related to neuronal cell death and glial cell activation. In this study, we investigated the autoimmune T-cell response induced by α-Syn peptides and evaluated the neurotoxic effect of the α-Syn peptide-mediated autoimmune response. The immunization of mice with α-Syn peptides resulted in enhanced autoimmune responses, such as the peptide recall response, polarization toward Th1/Th17 cells, and regulatory T cell imbalance. Furthermore, the α-Syn autoimmune response led to the death of primary neurons cocultured with splenocytes. Treatment with conditioned media from α-Syn peptide-immunized splenocytes induced microglia and toxic A1-type astrocyte activation. Taken together, our results provide evidence of the potential role of the α-Syn-initiated autoimmune response and its contribution to neuronal cell death and glial cell activation.


Asunto(s)
Autoinmunidad , Muerte Celular , Neuronas , alfa-Sinucleína , Animales , alfa-Sinucleína/inmunología , alfa-Sinucleína/metabolismo , Ratones , Muerte Celular/efectos de los fármacos , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/patología , Neuroglía/inmunología , Neuroglía/metabolismo , Neuroglía/efectos de los fármacos , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Ratones Endogámicos C57BL , Humanos , Activación de Linfocitos/inmunología , Activación de Linfocitos/efectos de los fármacos , Péptidos/inmunología , Células Cultivadas , Femenino , Linfocitos T Reguladores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA