Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1425103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239193

RESUMEN

Existing seed germination detection technologies based on deep learning are typically optimized for hydroponic breeding environments, leading to a decrease in recognition accuracy in complex soil cultivation environments. On the other hand, traditional manual germination detection methods are associated with high labor costs, long processing times, and high error rates, with these issues becoming more pronounced in complex soil-based environments. To address these issues in the germination process of new cucumber varieties, this paper utilized a Seed Germination Phenotyping System to construct a cucumber germination soil-based experimental environment that is more closely aligned with actual production. This system captures images of cucumber germination under salt stress in a soil-based environment, constructs a cucumber germination dataset, and designs a lightweight real-time cucumber germination detection model based on Real-Time DEtection TRansformer (RT-DETR). By introducing online image enhancement, incorporating the Adown downsampling operator, replacing the backbone convolutional block with Generalized Efficient Lightweight Network, introducing the Online Convolutional Re-parameterization mechanism, and adding the Normalized Gaussian Wasserstein Distance loss function, the training effectiveness of the model is enhanced. This enhances the model's capability to capture profound semantic details, achieves significant lightweighting, and enhances the model's capability to capture embryonic root targets, ultimately completing the construction of the RT-DETR-SoilCuc model. The results show that, compared to the RT-DETR-R18 model, the RT-DETR-SoilCuc model exhibits a 61.2% reduction in Params, 61% reduction in FLOP, and 56.5% reduction in weight size. Its mAP@0.5, precision, and recall rates are 98.2%, 97.4%, and 96.9%, respectively, demonstrating certain advantages over the You Only Look Once series models of similar size. Germination tests of cucumbers under different concentrations of salt stress in a soil-based environment were conducted, validating the high accuracy of the RT-DETR-SoilCuc model for embryonic root target detection in the presence of soil background interference. This research reduces the manual workload in the monitoring of cucumber germination and provides a method for the selection and breeding of new cucumber varieties.

2.
Free Radic Biol Med ; 222: 371-385, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901500

RESUMEN

Increasing the seed germination potential and seedling growth rates play a pivotal role in increasing overall crop productivity. Seed germination and early vegetative (seedling) growth are critical developmental stages in plants. High-power microwave (HPM) technology has facilitated both the emergence of novel applications and improvements to existing in agriculture. The implications of pulsed HPM on agriculture remain unexplored. In this study, we have investigated the effects of pulsed HPM exposure on barley germination and seedling growth, elucidating the plausible underlying mechanisms. Barley seeds underwent direct HPM irradiation, with 60 pulses by 2.04 mJ/pulse, across three distinct irradiation settings: dry, submerged in deionized (DI) water, and submerged in DI water one day before exposure. Seed germination significantly increased in all HPM-treated groups, where the HPM-dry group exhibited a notable increase, with a 2.48-fold rise at day 2 and a 1.9-fold increment at day 3. Similarly, all HPM-treated groups displayed significant enhancements in water uptake, and seedling growth (weight and length), as well as elevated levels of chlorophyll, carotenoids, and total soluble protein content. The obtained results indicate that when comparing three irradiation setting, HPM-dry showed the most promising effects. Condition HPM seed treatment increases the level of reactive species within the barley seedlings, thereby modulating plant biochemistry, physiology, and different cellular signaling cascades via induced enzymatic activities. Notably, the markers associated with plant growth are upregulated and growth inhibitory markers are downregulated post-HPM exposure. Under optimal HPM-dry treatment, auxin (IAA) levels increased threefold, while ABA levels decreased by up to 65 %. These molecular findings illuminate the intricate regulatory mechanisms governing phenotypic changes in barley seedlings subjected to HPM treatment. The results of this study might play a key role to understand molecular mechanisms after pulsed-HPM irradiation of seeds, contributing significantly to address the global need of sustainable crop yield.


Asunto(s)
Germinación , Homeostasis , Hordeum , Microondas , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas , Plantones , Semillas , Hordeum/crecimiento & desarrollo , Hordeum/efectos de la radiación , Hordeum/metabolismo , Hordeum/genética , Germinación/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Plantones/metabolismo , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Semillas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Homeostasis/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Clorofila/metabolismo
3.
Plant J ; 119(2): 814-827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38739690

RESUMEN

Several dwarf and semi-dwarf genes have been identified in barley. However, only a limited number have been effectively utilized in breeding programs to cultivate lodging resistant varieties. This is due to the common association of dwarf and semi-dwarf traits with negative effects on malt quality. In this study, we employed gene editing to generate three new haplotypes of sdw1/denso candidate gene gibberellin (GA) 20-oxidase2 (GA20ox2). These haplotypes induced a dwarfing phenotype and enhancing yield potential, and promoting seed dormancy, thereby reducing pre-harvest sprouting. Moreover, ß-amylase activity in the grains of the mutant lines was significantly increased, which is beneficial for malt quality. The haplotype analysis revealed significant genetic divergence of this gene during barley domestication and selection. A novel allele (sdw1.ZU9), containing a 96-bp fragment in the promoter region of HvGA20ox2, was discovered and primarily observed in East Asian and Russian barley varieties. The 96-bp fragment was associated with lower gene expression, leading to lower plant height but higher germination rate. In conclusion, HvGA20ox2 can be potentially used to develop semi-dwarf barley cultivars with high yield and improved malt quality.

4.
Plant Signal Behav ; 19(1): 2328891, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38506438

RESUMEN

Sophora davidii, a vital forage species, predominantly thrives in the subtropical karst mountains of Southwest China. Its resilience to poor soil conditions and arid environments renders it an ideal pioneer species for ecological restoration in these regions. This study investigates the influence of acidic, aluminum-rich local soil on the germination and seedling growth physiology of S. davidii. Experiments were conducted under varying degrees of acidity and aluminum stress, employing three pH levels (3.5 to 5.5) and four aluminum concentrations (0.5 to 2.0 mmol·L-1). The results showed that germination rate, germination index, and vigor index of S. davidii seeds were decreased but not significantly under slightly acidic conditions (pH 4.5-5.5), while strong acid (pH = 3.5) significantly inhibited the germination rate, germination index, and vigor index of white spurge seeds compared with the control group. Aluminum stress (≥0.5 mmol·L-1) significantly inhibited the germination rate, germination index, and vigor index of S. davidii seed. Moreover, the seedlings' root systems were sensitive to the changes of aluminum concentration, evident from significant root growth inhibition, characterized by root shortening and color deepening. Notably, under aluminum stress (pH = 4.3), the levels of malondialdehyde and proline in S. davidii escalated with increasing aluminum concentration, while antioxidant enzyme activities demonstrated an initial increase followed by a decline. The study underscores the pivotal role of cellular osmoregulatory substances and protective enzymes in combating aluminum toxicity in S. davidii, a key factor exacerbating growth inhibition in acidic environments. These findings offer preliminary theoretical insights for the practical agricultural utilization of S. davidii in challenging soil conditions.


Asunto(s)
Plantones , Sophora , Germinación , Aluminio/toxicidad , Semillas , Antioxidantes/farmacología , Suelo/química , Estrés Fisiológico
5.
PeerJ ; 11: e16256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152345

RESUMEN

Salinity stress poses a major challenge to agricultural productivity worldwide, and understanding their responses at the early growth stage is vital for devising strategies to cope with this stress. Therefore, to improve triticale productivity, this study investigated the salinity stress tolerance of different salt-tolerant triticale genotypes aiming to cultivate them on saline soils. To this end, salinity stress impacts on nine triticale genotypes, i.e., Zhongsi 1084, Gannong No. 2, Gannong No. 4, Shida No. 1, C6, C16, C23, C25 and C36 at germination and early seedling stages was evaluated. Each genotype was subjected to six treatments inducing control, 40, 80, 120, 160, and 200 mM NaCl treatments to study their effect on seedling and termination traits of the nine genotypes. Compared to the overall mean seedling vigor index, the seedling vigor index was higher in the genotypes Zhongsi 1084 and C6 (39% and 18.1%, respectively) and lower in Gannong No.2 (41%). Increasing NaCl concentrations negatively affected germination and seedling traits. Compared to other genotypes, Zhongsi 1084 had the highest mean germination rate, germination vigor index, germination percentage, mean daily germination and germination energy. It also showed the lowest relative salt injury. The relative salt injury was higher in the genotype Shida No. 1 than those in Gannong No. 2, Gannong No. 4, Shida No. 1, C16, and C36 genotypes. All genotypes exhibited desirable mean germination time except for line C6. High significant positive correlations were observed among germination rate, germination vigor index, germination percentage, mean daily germination, seedling vigor index, and root length. Principal component analysis (PCA) grouped the most desirable genotypes into two clusters. Our study determined salt stress tolerance of nine triticale genotypes at germination and early seedling stages. to select salt-tolerant genotypes that can be cultivated on saline soil or after salt irrigation.


Asunto(s)
Plantones , Triticale , Plantones/genética , Germinación/genética , Cloruro de Sodio/farmacología , Suelo , Genotipo
6.
Curr Res Food Sci ; 7: 100625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021259

RESUMEN

Postharvest management plays a key role in determining the end-use quality of rice; therefore, a practical approach to inhibit quality deterioration is necessary. In this study, the effects of postharvest management-drying delay time (DDT) and moisture content after drying (DM) immediately after harvesting, and storage temperatures (ST) and periods (SP) of dried paddy rice-on the physicochemical, quality, and sensory properties of rice were comprehensively analyzed. Germination rate, seed viability, fat acidity, and sensory quality tended to significantly deteriorate with increasing DDT, DM, ST, and SP. The highest correlation (r = 0.8289) was observed between germination rate and sensory quality, indicating that germination rate can reliably predict sensory quality. Degradation of germination rate and overall sensory quality were analyzed: sensory quality exhibited a more gradual change than germination rate. Lastly, the effects of the postharvest conditions on overall sensory quality were predicted using a regression equation model. DDT, DM, and ST exhibited different patterns of change, which can be used to predict the sensory quality during storage. Germination rate was successfully applied as an influencing factor for the development of a rice-palatability prediction model. The results of this study are useful for maintaining fresh-rice palatability by preventing aging during postharvest storage.

7.
Environ Res ; 239(Pt 2): 117423, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37858687

RESUMEN

Lead (Pb) accumulation can lead to serious threats to surrounding environments and damage to the liver and kidneys. In the past few years, microbial-induced carbonate precipitation (MICP) technology has been widely applied to achieve Pb immobilization due to its environmentally friendly nature. However, harsh pH conditions can cause the instability of the carbonate precipitation to degrade or dissolve, increasing the potential of Pb2+ migration into nearby environments. In this study, microcapsule-based self-healing microbial-induced calcium carbonate (MICC) materials were applied to prevent Pb migration. The highest sporulation rate of 95.8% was attained at 7 g/L yeast extract, 10 g/L NH4Cl, and 3.6 g/L Mn2+. In the germination phase, the microcapsule not only prevented the bacterial spores from being threatened by the acid treatment but secured their growth and reproduction. Micro analysis also revealed that cerussite, calcite, and aragonite minerals were present, while extracellular polymeric substances (EPSs) were identified via Fourier transform infrared spectroscopy (FTIR). These results confirm their involvement in combining Pb2+ and Ca2+. The immobilization efficiency of above 90% applied to MICC materials was attained, while it of below 5% applied to no MICC use was attained. The findings explore the potential of applying microcapsule-based self-healing MICC materials to prevent Pb ion migration when the calcium carbonate degrades under harsh pH conditions.


Asunto(s)
Carbonato de Calcio , Plomo , Carbonato de Calcio/química , Carbonato de Calcio/metabolismo , Cápsulas , Carbonatos , Minerales
8.
Front Plant Sci ; 14: 1254365, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719213

RESUMEN

Seed vigor (SV) is a crucial trait determining the quality of crop seeds. Currently, over 80% of China's cotton-planting area is in Xinjiang Province, where a fully mechanized planting model is adopted, accounting for more than 90% of the total fiber production. Therefore, identifying SV-related loci and genes is crucial for improving cotton yield in Xinjiang. In this study, three seed vigor-related traits, including germination potential, germination rate, and germination index, were investigated across three environments in a panel of 355 diverse accessions based on 2,261,854 high-quality single-nucleotide polymorphisms (SNPs). A total of 26 significant SNPs were detected and divided into six quantitative trait locus regions, including 121 predicted candidate genes. By combining gene expression, gene annotation, and haplotype analysis, two novel candidate genes (Ghir_A09G002730 and Ghir_D03G009280) within qGR-A09-1 and qGI/GP/GR-D03-3 were associated with vigor-related traits, and Ghir_A09G002730 was found to be involved in artificial selection during cotton breeding by population genetic analysis. Thus, understanding the genetic mechanisms underlying seed vigor-related traits in cotton could help increase the efficiency of direct seeding by molecular marker-assisted selection breeding.

9.
Ecol Evol ; 13(7): e10199, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37408632

RESUMEN

The coastal heathlands of Northwest Europe are highly valued cultural landscapes, that are critically endangered due to land use and climatic changes, such as increased frequency and severity of drought events. Our study is the first to assess how the germination and early seedling growth of Calluna vulgaris respond to drought. In a factorial design field experiment, we exposed maternal plants to three in-situ drought treatments (control, 60%, 90% roof coverage), across three successional stages after fire (pioneer, building, mature), and two regions (60°N, 65°N). Seeds from 540 plants within the experiment were, weighed, and exposed to five water potentials, ranging from -0.25 to -1.7 MPa, in a growth chamber experiment. We recorded germination (percentage, rate), seedling growth (above- vs. belowground allocation), and seedling functional traits (specific leaf area [SLA], specific root length [SRL]). Overall variation in germination between regions, successional stages, and maternal drought treatments was largely mediated by variation in seed mass. Plants from the northernmost region had higher seed mass and germination percentages. This is indicative of higher investment in seeds, likely linked to the populations' absence of vegetative root sprouting. Seeds from the mature successional stage germinated to lower final percentages than those from earlier successional stages, especially when the maternal plants had been exposed to drought (60% and 90% roof coverage). Exposure to reduced water availability decreased germination percentage and increased the time to 50% germination. Seedlings fully developed in the range -0.25 to -0.7 MPa, with increased root:shoot and lower SRL during reduced water availability, suggesting a resource-conservative response to drought during the early stages of development. Our results thus suggest a sensitivity to drought during the germination and seedling life-history stages that may reduce Calluna's ability to re-establish from seeds as the incidence and severity of droughts are projected to increase under future climates.

10.
Chemosphere ; 339: 139634, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37516319

RESUMEN

Optimization of iron zeolitic imidazole framework-8 (FeZIF-8) nanoparticles, as heterogeneous catalysts, were synthesized and evaluated by the Fenton-like reaction for to degrade tartrazine (Tar) in aqueous environment. To achieve this, ZIF-8 nanoparticles were modified with different iron species (Fe2+ or Fe3O4), and subsequently assessed through the Fenton-like oxidation. The effect of different parameters such as the concentration of hydrogen peroxide, the mass of catalyst and the contact time of reaction on the degradation of Tar by Fenton-like oxidation was studied by using the Box-Behnken design (BBD). The BBD model indicated that the optimum catalytic conditions for Fenton-like reaction with an initial pollutant concentration of 30 ppm at pH 3.0 were T = 40 °C and 12 mM of H2O2, 2 g/L of catalyst and 4 h of reaction. The maximum Tar conversion value achieved with the best catalyst, Fe1ZIF-8, was 66.5% with high mineralization (in terms of decrease of total organic carbon - TOC), 44.2%. To assess phytotoxicity, the germination success of corn kernels was used as an indicator in the laboratory. The results show that the catalytic oxidation by Fenton-like reaction using heterogeneous iron ZIF-8 catalysts is a viable alternative for treating contaminated effluents with organic pollutants and highlighted the importance of the validation of the optimized experimental conditions by mathematical models.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Hierro , Tartrazina , Agua , Peróxido de Hidrógeno , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Catálisis
11.
Genes (Basel) ; 14(4)2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37107660

RESUMEN

Seed vigor is the key performance parameter of good quality seed. A panel was prepared by shortlisting genotypes from all the phenotypic groups representing seedling growth parameters from a total of 278 germplasm lines. A wide variation was observed for the traits in the population. The panel was classified into four genetic structure groups. Fixation indices indicated the existence of linkage disequilibrium in the population. A moderate to high level of diversity parameters was assessed using 143 SSR markers. Principal component, coordinate, neighbor-joining tree and cluster analyses showed subpopulations with a fair degree of correspondence with the growth parameters. Marker-trait association analysis detected eight novel QTLs, namely qAGR4.1, qAGR6.1, qAGR6.2 and qAGR8.1 for absolute growth rate (AGR); qRSG6.1, qRSG7.1 and qRSG8.1 for relative shoot growth (RSG); and qRGR11.1 for relative growth rate (RGR), as analyzed by GLM and MLM. The reported QTL for germination rate (GR), qGR4-1, was validated in this population. Additionally, QTLs present on chromosome 6 controlling RSG and AGR at 221 cM and RSG and AGR on chromosome 8 at 27 cM were detected as genetic hotspots for the parameters. The QTLs identified in the study will be useful for improvement of the seed vigor trait in rice.


Asunto(s)
Oryza , Plantones , Plantones/genética , Germinación/genética , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Genómica
12.
Saudi J Biol Sci ; 30(3): 103574, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36816729

RESUMEN

Date palm (Phœnix dactylifera L.) like other crop species in the arid Mediterranean region is being threatened by genetic erosion and climate change. Therefore, the understanding and assessment of the diversity extent of this species is a primary requisite for preserving these crop resources. This study was designed to quantify the potential of Tunisian male date palms using a set of agro-morphological characteristics i.e. flowering traits, inflorescence morphology and pollen quality. The flowering time traits exhibited a trend of precocious phenotype at emergence spathe trait and the dominance of the full-season phenotype at the opening date. At inflorescence morphology, all observed traits expressed wide ranges which reflected the broad variability of the evaluated male genotypes. Significant difference was recorded for the majority of the examined traits with a high significant variation in the tree quantitative traits: Spathe Total Length, Spathe Maximum Width and Length to the brunched part. Pollen viability ranged from 51.10% to 98.75% while the germination rate was between 0.90% and 70.50%. Our phenotypic investigation has allowed the identification of males with desirable agronomic traits which have been genotyped using 18 nuclear SSR markers and a chloroplast minisatellite for preservation and effective utilization purposes.

13.
Plants (Basel) ; 12(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771523

RESUMEN

There are currently knowledge gaps in the environmental context related to successful seed germination of Ephedra major. Therefore, we herein explore the influence of soil quality and water availability on the germination performance through a garden experiment that mimics natural site conditions. One hundred seeds were extracted from fifty ripe strobili collected randomly from the ramets of a single female plant. Ten seeds per pot were sown in ten pots, which were equally split by receiving different watering treatments (watered versus control) and soil types (S0-shallow and stony; S1-like S0 but slightly deeper; S2-like S0 but even deeper and rich in woodland humus; S3-clay-layered alluvial; S4-anthropogenic). No significant interaction effect was detected between the two manipulated factors. Watering only had a marginal effect on the germination rate, but the latter was significantly higher in S2 when compared to the other soil types. These outcomes suggest that soil quality is more important than moisture for the germination success. Its rate is expected to be higher under the open canopy of woodlands compared to open rupicolous habitats, since seeds can benefit from higher humus availability and reduced evapotranspiration.

14.
J Sci Food Agric ; 103(4): 1912-1924, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36335532

RESUMEN

BACKGROUND: Rice is an important food crop plant in the world and is also a model plant for genetics and breeding research. The germination rate is an important indicator that measures the performance of rice seeds. Currently, solutions involving image processing techniques have substantial challenges in the identification of seed germination. The detection of rice seed germination without human intervention involves challenges because the rice seeds are small and densely distributed. RESULTS: In this article, we develop a convolutional neural network (YOLO-r) that can detect the germination status of rice seeds and automatically evaluate the total number of germinations. Image partition, the Transformer encoder, a small target detection layer, and CDIoU loss are exploited in YOLO-r to improve the detection accuracy. A total of 21 429 seeds were collected, which have different phenotypic characteristics in length, shape, and color. The results show that the mean average precision of YOLO-r is 0.9539, which is higher than the compared models. Moreover, the average detection time per image of YOLO-r was 0.011 s, which meets the real-time requirements. The experimental results demonstrate that YOLO-r is robust to complex situations such as water stains, impurities, awns, adhesion, and so on. The results also show that the mean absolute error of the predicted germination rate mainly exists within 0.1. CONCLUSIONS: Numerous experimental studies have demonstrated that YOLO-r can predict rice germination rate in a fast, easy, and accurate manner. © 2022 Society of Chemical Industry.


Asunto(s)
Aprendizaje Profundo , Oryza , Humanos , Germinación , Semillas/genética , Oryza/genética , Fitomejoramiento
15.
Microb Ecol ; 86(1): 240-252, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35857039

RESUMEN

Foliar fungal endophytes are ubiquitous and hyperdiverse, and tend to be host-specific among dominant forest tree species. The fungal genus Tubakia sensu lato is comprised of foliar pathogens and endophytes that exhibit host preference for Quercus and other Fagaceae species. To clarify interspecific differences in ecological characteristics among Tubakia species, we examined the endophyte communities of seven evergreen Quercus spp. at three sites in eastern Japan during summer and winter. Host tree species was the most significant factor affecting endophyte community composition. Tubakia species found at the study sites were divided into five specialists and three generalists according to their relative abundance in each host species and their host ranges. Specialists were dominant on their own host in summer, and their abundance declined in winter. To test the hypothesis that generalists are more widely adapted to their environment than specialists, we compared their spore germination rates at different temperatures. Spores of generalist Tubakia species were more tolerant of colder temperatures than were spores of specialist Tubakia species, supporting our hypothesis. Seasonal and site variations among Tubakia species were also consistent with our hypothesis. Host identity and ecology were significantly associated with endophyte community structure.


Asunto(s)
Ascomicetos , Quercus , Quercus/microbiología , Estaciones del Año , Especificidad del Huésped , Japón , Endófitos
16.
Plants (Basel) ; 11(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36501232

RESUMEN

Kobresia is a subfamily of Cyperaceae, a perennial herbaceous plant that stores a large amount of organic carbon and nutrients (nitrogen, phosphorus, etc.) in the soil. This type of grass is soft and appreciated by all kinds of farm animals. It is one of the predominantly excellent fodder on the Qinghai-Tibet Plateau. Its good growth plays an important role in developing the local economy and maintaining ecological balance on the Qinghai-Tibet Plateau as well. The main objectives of this review are to systematically present and analyze the factors responsible for the low germination rate of Kobresia and to analyze the physical and chemical methods that are used in order to alleviate dormancy and to improve the germination rate of Kobresia seeds. This is performed in order to lay the foundation for future research in this field. At the same time, we have analyzed the research deficiencies and formulated recommendations for the future. This review will provide comprehensive information in order to reduce the cost of planting Kobresia, as well as to provide theoretical support and technical guidance for the purposes of ecosystem restoration and livestock development.

17.
Ultrason Sonochem ; 91: 106239, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36435087

RESUMEN

This study investigated the effects of ultrasonication treatment on the germination rate of brown rice. Brown rice grains were subjected to ultrasound (40 kHz/30 min) and then incubated for 36 h at 37 °C to germinate the seeds. Ultrasonic treatment increased the germination rate of brown rice by up to ∼28 % at 30 h. Transcriptomic and metabolomic analyses were performed to explore the mechanisms underlying the effect of ultrasonic treatment on the brown rice germination rate. Comparing the treated and control check samples, 867 differentially expressed genes (DEGs) were identified, including 638 upregulated and 229 downregulated), as well as 498 differentially accumulated metabolites (DAMs), including 422 up accumulated and 76 down accumulated. Multi-omics analysis revealed that the germination rate of brown rice was promoted by increased concentrations of low-molecular metabolites (carbohydrates and carbohydrate conjugates, fatty acids, amino acids, peptides, and analogues), and transcription factors (ARR-B, NAC, bHLH and AP2/EREBP families) as well as increased carbon metabolism. These findings provide new insights into the mechanisms of action of ultrasound in improving the brown rice germination rate and candidate DEGs and DAMs responsible for germination have been identified.


Asunto(s)
Oryza , Humanos , Oryza/genética , Multiómica
18.
Front Plant Sci ; 13: 920522, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845709

RESUMEN

Preserving viable pollen is of great interest to breeders to maintain desirable germplasm for future inbreeding. Ultra-low temperature preservation of pollen is an effective and safe way for long-term storage of plant germplasm resources. In this study, we improved methods for the preservation of soybean pollen at ultra-low temperature. Soybean flowers at the initially-open stage were collected at 6-10 a.m. during the fully-bloom stage of soybean plants and were dehydrated for 10 h and then frozen and stored at -196 or -80°C. In vitro culture experiments showed that the viability of preserved pollen remained as high as about 90%. The off-season (local site Heihe) and off-site (Beijing, after long-distance express delivery from Heihe) hybridization verification was conducted, and no significant difference in true hybrid rate was founded between the preserved pollen and the fresh pollen. The ultra-low temperature preservation technology for soybean pollen could break the spatiotemporal limit of soybean hybridization and facilitate the development of engineered soybean breeding.

19.
Zhongguo Zhong Yao Za Zhi ; 47(11): 2909-2914, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35718511

RESUMEN

The seeds of Tripterygium wilfordii are characterized by dormancy and a long germination cycle under natural sowing conditions. In this study, we developed a method for rapid germination of T. wilfordii seeds by analyzing the size, morphology, thousand-grain weight, viability, moisture content, physicochemical properties, and seed germination rates under different germination conditions. The seeds of T. wilfordii were fine columnar with a thick and hard outer seed coat. They had the length of 6.69 mm, the width of 2.14 mm, the thickness of 1.68 mm, the thousand-grain weight of 8.99 g, the moisture content of 8.86%, the soluble sugar content of 21.3 mg·g~(-1), the starch content of 28.9 mg·g~(-1), the soluble protein content of 44.2 mg·g~(-1), and the seed viability of only 54.0%. The seeds were respectively treated with distilled water, ultrasonication, low-temperature storage, 50 ℃ water, 100 mg·L~(-1) 6-BA, 0.6% KMnO_4, 1% KNO_3, 50 mg·L~(-1) NAA, and 100 mg·L~(-1) GA_3 solution. The results showed that soaking the seeds in 100 mg·L~(-1) GA_3 solution significantly promoted the germination. Further, the seeds were soaked in 50, 100, 250, 500, and 1 000 mg·L~(-1) GA_3 solutions, which demonstrated that high concentration(500 mg·L~(-1), 1 000 mg·L~(-1)) of GA_3 solutions increased the germination rate and speed and shortened the germination cycle from more than 3 months to less than 15 days. The findings of this study are of great significance to the breeding of T. wilfordii and lay a foundation for the large-scale propagation of T. wilfordii seeds and the excavation of T. wilfordii germplasm resources.


Asunto(s)
Germinación , Tripterygium , Fitomejoramiento , Semillas/química , Agua/análisis
20.
Food Chem ; 388: 133060, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35483295

RESUMEN

This study aimed to decipher the association among the physicochemical properties, sensory quality, and germination rate of rice samples stored at different storage conditions and for different durations (stored at 10, 20, and 30 °C for 8 months). The germination rate of the samples varied from 0.3 to 98.7%. A reduced germination rate increased the lipid oxidation, hardness, and most pasting properties of rice, whereas seed viability, moisture content, and adhesiveness were reduced. Amylose and protein contents were not influenced by the changes in germination rate. However, with a decrease in germination rate, the surface endosperm cells were aggregated, whereas the sizes of inner endosperm cells in cooked rice were reduced. Several metabolites involved in rice sensory quality were also altered, and a related pathway was proposed. Collectively, these results suggest that germination rate could serve as a potential indicator to track the changes in rice quality.


Asunto(s)
Oryza , Amilosa/metabolismo , Culinaria/métodos , Endospermo , Germinación , Oryza/química , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA