Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 15(9): e0058024, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39092920

RESUMEN

To investigate their roles in extracellular electron transfer (EET), the porin-cytochrome (pcc) gene clusters Gmet0825-0828, Gmet0908-0910, and Gmet0911-0913 of the Gram-negative bacterium Geobacter metallireducens were deleted. Failure to delete all pcc gene clusters at the same time suggested their essential roles in extracellular reduction of Fe(III)-citrate by G. metallireducens. Deletion of Gmet0825-0828 had no impact on bacterial reduction of Fe(III)-citrate but diminished bacterial reduction of ferrihydrite and abolished anode reduction and direct interspecies electron transfer (DIET) to Methanosarcina barkeri and Geobacter sulfurreducens. Although it had no impact on the bacterial reduction of Fe(III)-citrate, deletion of Gmet0908-0910 delayed ferrihydrite reduction, abolished anode reduction, and diminished DIET. Deletion of Gmet0911-0913 had little impact on DIET but diminished bacterial reductions of Fe(III)-citrate, ferrihydrite, and anodes. Most importantly, deletions of both Gmet0825-0828 and Gmet0908-0910 restored bacterial reduction of ferrihydrite and anodes and DIET. Enhanced expression of Gmet0911-0913 in this double mutant when grown in coculture with G. sulfurreducens ΔhybLΔfdnG suggested that this cluster might compensate for impaired EET functions of deleting Gmet0825-0828 and Gmet0908-0910. Thus, these pcc gene clusters played essential, distinct, overlapping, and compensatory roles in EET of G. metallireducens that are difficult to characterize as deletion of some clusters affected expression of others. The robustness of these pcc gene clusters enabled G. metallireducens to mediate EET to different acceptors for anaerobic growth even when two of its three pcc gene clusters were inactivated by mutation. The results from this investigation provide new insights into the roles of pcc gene clusters in bacterial EET. IMPORTANCE: The Gram-negative bacterium Geobacter metallireducens is of environmental and biotechnological significance. Crucial to the unique physiology of G. metallireducens is its extracellular electron transfer (EET) capability. This investigation sheds new light on the robust roles of the three porin-cytochrome (pcc) gene clusters, which are directly involved in EET across the bacterial outer membrane, in the EET of G. metallireducens. In addition to their essential roles, these gene clusters also play distinct, overlapping, and compensatory roles in the EET of G. metallireducens. The distinct roles of the pcc gene clusters enable G. metallireducens to mediate EET to a diverse group of electron acceptors for anaerobic respirations. The overlapping and compensatory roles of the pcc gene clusters enable G. metallireducens to maintain and restore its EET capability for anaerobic growth when one or two of its three pcc gene clusters are deleted from the genome.


Asunto(s)
Citocromos , Compuestos Férricos , Eliminación de Gen , Geobacter , Familia de Multigenes , Porinas , Geobacter/genética , Geobacter/metabolismo , Transporte de Electrón , Compuestos Férricos/metabolismo , Porinas/genética , Porinas/metabolismo , Citocromos/genética , Citocromos/metabolismo , Oxidación-Reducción , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Front Microbiol ; 14: 1251346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881251

RESUMEN

Geobacter sulfurreducens mediates extracellular electron transfer (EET) reactions with different substrates, such as solid-phase Fe(III)-containing minerals, anodes and the cells of Geobacter metallireducens. To compare their roles in EET, the pilA-N, omcE, omcS, omcT and omcZ genes of G. sulfurreducens were systematically deleted. All mutants showed impaired and varied ability to form biofilms on nonconductive surface. Deletion of omcE also impaired bacterial ability to reduce ferrihydrite, but its impacts on the ability for anode reduction and the co-culture of G. metallireducens-G. sulfurreducens were minimal. The mutant without omcS showed diminished ability to reduce ferrihydrite and to form the co-culture, but was able to regain its ability to reduce anodes. Deletion of omcT, omcZ or pilA-N alone impaired bacterial ability to reduce ferrihydrite and anodes and to form the co-culture. Deletion of all tested genes abolished bacterial ability to reduce ferrihydrite and anodes. Triple-deletion of all omcS, omcT and omcZ abolished the ability of G. sulfurreducens to co-culture with G. metallireducens. However, deletion of only omcZ or pilA-N or both omcS and omcT abolished the ability of G. sulfurreducens without hydrogenase gene hybL to co-culture with G. metallireducens, which show their indispensable roles in direct electron transfer from G. metallireducens to G. sulfurreducens. Thus, the roles of pilA-N, omcE, omcS, omcT and omcZ for G. sulfurreducens in EET vary substantially, which also suggest that possession of PilA-N and multiple cytochromes of different structures enables G. sulfurreducens to mediate EET reactions efficiently with substrates of different properties.

3.
Front Microbiol ; 11: 1271, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655526

RESUMEN

There are two main strategies known how microorganisms regulate substrate utilization: specialization on one preferred substrate at high concentrations in batch cultures or simultaneous utilization of many substrates at low concentrations in chemostats. However, it remains unclear how microorganisms utilize substrates at low concentrations in the subsurface: do they focus on a single substrate and exhibit catabolite repression or do they de-repress regulation of all catabolic pathways? Here, we investigated the readiness of Geobacter metallireducens to degrade organic substrates under sessile growth in sediment columns in the presence of a mixed community as a model for aquifers. Three parallel columns were filled with sand and flushed with anoxic medium at a constant inflow (18 ml h-1) of the substrate benzoate (1 mM) with non-limiting nitrate concentrations (30 mM) as electron acceptor. Columns were inoculated with the anaerobic benzoate degrader G. metallireducens. Microbial degradation produced concentration gradients of benzoate toward the column outlet. Metagenomics and label-free metaproteomics were used to detect and quantify the protein expression of G. metallireducens. Bulk benzoate concentrations below 0.2 mM led to increased abundance of catabolic proteins involved in utilization of fermentation products and aromatic compounds including the complete upregulation of the toluene-degrading pathway although toluene was not added to the medium. We propose that under sessile conditions and low substrate concentrations G. metallireducens expresses a specific set of catabolic pathways for preferred substrates, even when these substrates are not present.

4.
J Basic Microbiol ; 60(1): 37-46, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31696958

RESUMEN

Geobacter metallireducens GS15, a model of dissimilatory iron-reducing bacteria, is the key regulator in biogeochemical iron cycling. How the emerging contaminant microplastics involved in the iron cycling are driven by microbes on the microscale remains unknown. Hence, the influences of two typical microplastics, polybutylene terephthalate-hexane acid (PBAT) and polyvinyl chloride (PVC), were explored on the activity of G. metallireducens GS15 with ferrihydrite or ferric citrate as the respective electron acceptors. The results showed that the iron (II) contents in PBAT- and PVC-treatment groups were 16.79 and 6.81 mM, respectively, at the end of the experiment. Compared with the PBAT-treatment group, scanning electron microscopy and energy dispersive spectrometery revealed that merely a small amount of iron-containing products covered the surface of PVC. Moreover, PBAT and PVC could both retard the electroactivity of G. metallireducens GS15 at the beginning of microbial fuel cell operation. On the basis of the results above, microplastic PVC might exhibit potential inhibition of the iron cycling process driven by G. metallireducens GS15 with ferrihydrite as the terminal electron acceptor. This study extended our understanding of the influence of the microplastics PBAT and PVC on microbially mediated biogeochemical iron cycling. The findings might have an important implication on the biogeochemical elements cycling in the ecosystem with the involvement of emerging contaminant microplastics.


Asunto(s)
Contaminantes Ambientales/toxicidad , Compuestos Férricos/metabolismo , Geobacter/efectos de los fármacos , Microplásticos/toxicidad , Cloruro de Polivinilo/toxicidad , Electroquímica , Geobacter/metabolismo , Oxidación-Reducción , Poliésteres/toxicidad
5.
Biomol NMR Assign ; 14(1): 31-36, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31617060

RESUMEN

The bacterium Geobacter metallireducens is capable of transferring electrons to the cell exterior, a process designated extracellular electron transfer. This mechanism allows the microorganism to reduce extracellular acceptors such as Fe(III) (hydr)oxides and water toxic and/or radioactive contaminants including Cr(VI) and U(VI). It is also capable of oxidizing waste water aromatic organic compounds being an important microorganism for bioremediation of polluted waters. Extracellular electron transfer also allows electricity harvesting from microbial fuel cells, a promising sustainable form of energy production. However, extracellular electron transfer processes in this microorganism are still poorly characterized. The triheme c-type cytochrome PpcA from G. metallireducens is abundant in the periplasm and is crucial for electron transfer between the cytoplasm and the cell's exterior. In this work, we report near complete assignment of backbone, side chain and heme resonances for PpcA in the oxidized state that will permit its structure determination and identification of interactions with physiological redox partners.


Asunto(s)
Proteínas Bacterianas/química , Citocromos/química , Geobacter/metabolismo , Hemo/química , Resonancia Magnética Nuclear Biomolecular , Isótopos de Nitrógeno , Oxidación-Reducción , Estructura Secundaria de Proteína , Espectroscopía de Protones por Resonancia Magnética
6.
Front Microbiol ; 10: 3068, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010112

RESUMEN

Conductive materials are known to promote direct interspecies electron transfer (DIET) by electrically bridging microbial cells. Previous studies have suggested that supplementation of graphene oxide (GO) based materials, including GO, and reduced GO (rGO), to anaerobic microbial communities, can promote DIET. This promotion mechanism is thought to be involved in electron transfer via rGO or biologically formed rGO. However, concrete evidence that rGO directly promotes DIET is still lacking. Furthermore, the effects of the physicochemical properties of GO-based materials on DIET efficiency have not been elucidated. In the current work, we investigated whether chemically and biologically reduced GO compounds can promote DIET in a defined model coculture system, and also examined the effects of surface properties on DIET-promoting efficiency. Supplementation of GO to a defined DIET coculture composed of an ethanol-oxidizing electron producer Geobacter metallireducens and a methane-producing electron consumer Methanosarcina barkeri promoted methane production from ethanol. X-ray photoelectron spectroscopy revealed that GO was reduced to rGO during cultivation by G. metallireducens activity. The stoichiometry of methane production from ethanol and the isotope labeling experiments clearly showed that biologically reduced GO induced DIET-mediated syntrophic methanogenesis. We also assessed the DIET-promoting efficiency of chemically reduced GO and its derivatives, including hydrophilic amine-functionalized rGO (rGO-NH2) and hydrophobic octadecylamine-functionalized rGO (rGO-ODA). While all tested rGO derivatives induced DIET, the rGO derivatives with higher hydrophilicity showed higher DIET-promoting efficiency. Optical microscope observation revealed that microbial cells, in particular, G. metallireducens, more quickly adhered to more hydrophilic GO-based materials. The superior ability to recruit microbial cells is a critical feature of the higher DIET-promoting efficiency of the hydrophilic materials. This study demonstrates that biologically and chemically reduced GO can promote DIET-mediated syntrophic methanogenesis. Our results also suggested that the surface hydrophilicity (i.e., affinity toward microbial cells) is one of the important determinants of the DIET-promoting efficiencies. These observations will provide useful guidance for the selection of conductive particles for the improvement of methanogenesis in anaerobic digesters.

7.
FEBS Open Bio ; 8(12): 1897-1910, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30524941

RESUMEN

Electrogenic bacteria, such as Geobacter, can couple the oxidation of carbon sources to the reduction of extracellular electron acceptors; such acceptors include toxic and radioactive metals, as well as electrode surfaces, making Geobacter a suitable candidate for applied use in bioremediation and bioenergy generation. Geobacter metallireducens is more promising in this regard than the better studied Geobacter sulfurreducens, as it has more efficient Fe (III) reduction rates and can convert nitrate to ammonia. The operon responsible for nitrate reductase activity in G. metallireducens includes the gene encoding the cytochrome PpcF, which was proposed to exchange electrons with nitrate reductase. In the present work, we perform a biochemical and a biophysical characterization of PpcF. Spectroscopic techniques, including circular dichroism (CD), UV-visible, and nuclear magnetic resonance (NMR), revealed that the cytochrome is very stable (T m > 85 °C), contains three low-spin hemes, and is diamagnetic (S = 0) and paramagnetic (S = 1/2) in the reduced and oxidized states, respectively. The NMR chemical shifts of the heme substituents were assigned and used to determine the heme core architecture of PpcF. Compared to the PpcA-family from G. sulfurreducens, the spatial disposition of the hemes is conserved, but the functional properties are clearly distinct. In fact, potentiometric titrations monitored by UV-visible absorption reveal that the reduction potential values of PpcF are significantly less negative (-56 and -64 mV, versus the normal hydrogen electrode at pH 7.0 and 8.0, respectively). NMR redox titrations showed that the order of oxidation of the hemes is IV-I-III, a feature not observed for G. sulfurreducens. The different redox properties displayed by PpcF, including the small redox-Bohr effect and low reduction potential value of heme IV, were structurally rationalized and attributed to the lower number of positively charged residues located in the vicinity of heme IV. Overall, the redox features of PpcF suggest that biotechnological applications of G. metallireducens may require less negative working functional redox windows than those using by G. sulfurreducens.

8.
J Hazard Mater ; 355: 197-205, 2018 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-29857224

RESUMEN

Dual chambered microbial fuel cells with Potassium dichromate (22 g/L, MFC-1) and tannery effluent waste water containing 26 mg/L (MFC-2), 5 mg/L (MFC-3) of Cr(VI) as catholyte, sweet lime waste inoculated by cowdung as anolyte and graphite electrodes were used to reduce toxic Cr(VI) to Cr(III) with simultaneous power generation. Cr (VI) in the cathode chamber reduced to Cr2O3 within 24 h. Complete reduction of Cr(VI) from tannery effluents by microbial fuel cell is noticed within 10 days. The 16 s rRNA sequencing studies demonstrated presence of Geobacter Metallireducens in mixed culture bacteria in anaerobic anode. The power density of the device is 396.7 mW/m2on day1which is 7.2 times higher than literature data of 55.5 mW/m2. The processes involved on the biofilm/electrolyte interface and graphite/electrolyte interface is studied by Electrochemical Impedance Spectroscopy. Electrochemical studies demonstrated the active growth of biofilm on anode which reduces charge transfer resistance from day 1 to day 25. The concentration of Cr(VI) reduced in the present studies are approximately 1000 times higher than those reported in the literature.


Asunto(s)
Fuentes de Energía Bioeléctrica , Dicromato de Potasio/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Bacterias/genética , Bacterias/metabolismo , Fuentes de Energía Bioeléctrica/microbiología , Biopelículas , Cromo/metabolismo , Impedancia Eléctrica , Electrodos/microbiología , Residuos Industriales , Oxidación-Reducción , ARN Ribosómico 16S/genética , Curtiembre , Aguas Residuales
9.
PeerJ ; 6: e4541, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29576990

RESUMEN

BACKGROUND: Magnetite-mediated direct interspecies electron transfer (DIET) between Geobacter and Methanosarcina species is increasingly being invoked to explain magnetite stimulation of methane production in anaerobic soils and sediments. Although magnetite-mediated DIET has been documented in defined co-cultures reducing fumarate or nitrate as the electron acceptor, the effects of magnetite have only been inferred in methanogenic systems. METHODS: Concentrations of methane and organic acid were analysed with a gas chromatograph and high-performance liquid chromatography, respectively. The concentration of HCl-extractable Fe(II) was determined by the ferrozine method. The association of the defined co-cultures of G. metallireducens and M. barkeri with magnetite was observed with transmission electron micrographs. RESULTS: Magnetite stimulated ethanol metabolism and methane production in defined co-cultures of G. metallireducens and M. barkeri; however, magnetite did not promote methane production in co-cultures initiated with a culture of G. metallireducens that could not produce electrically conductive pili (e-pili), unlike the conductive carbon materials that facilitate DIET in the absence of e-pili. Transmission electron microscopy revealed that G. metallireducens and M. barkeri were closely associated when magnetite was present, as previously observed in G. metallireducens/G. sulfurreducens co-cultures. These results show that magnetite can promote DIET between Geobacter and Methanosarcina species, but not as a substitute for e-pili, and probably functions to facilitate electron transfer from the e-pili to Methanosarcina. CONCLUSION: In summary, the e-pili are necessary for the stimulation of not only G. metallireducens/G. sulfurreducens, but also methanogenic G. metallireducens/M. barkeri co-cultures with magnetite.

10.
FEMS Microbiol Lett ; 362(20)2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26316547

RESUMEN

Two pathways for para-cresol (p-cresol) degradation by anaerobic bacteria have been elucidated; one involves fumarate addition at the methyl group of p-cresol by a hydroxylbenzylsuccinate synthase protein while the other utilizes a methylhydroxylase protein (PCMH) to catalyze hydroxylation of the methyl group of p-cresol. In Geobacter metallireducens, in vitro enzymatic assays showed that p-cresol is degraded via the methylhydroxylation pathway. However, prior to this study these results had not been confirmed by genetic analyses. In this work, the gene coding for benzylsuccinate-CoA dehydrogenase (bbsG), an enzyme required for toluene degradation by G. metallireducens that is homologous to the p-hydroxybenzylsuccinyl-CoA dehydrogenase involved in p-cresol degradation by Desulfobacula toluolica Tol2 via fumarate addition, and the gene encoding the alpha prime subunit of PCMH (pcmI), were deleted to investigate the possibility of co-existing p-cresol degradation pathways in G. metallireducens. The absence of a functional PcmI protein completely inhibited p-cresol degradation, while deletion of the bbsG gene had little impact. These results further support the observation that G. metallireducens utilizes a PCMH-initiated pathway for p-cresol degradation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cresoles/metabolismo , Geobacter/enzimología , Oxigenasas de Función Mixta/metabolismo , Periplasma/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Biodegradación Ambiental , Geobacter/genética , Geobacter/metabolismo , Redes y Vías Metabólicas , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Periplasma/genética , Periplasma/metabolismo
11.
FEBS J ; 281(22): 5120-31, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25223645

RESUMEN

Glutaryl-CoA dehydrogenases (GDHs) are FAD containing acyl-CoA dehydrogenases that usually catalyze the dehydrogenation and decarboxylation of glutaryl-CoA to crotonyl-CoA with an electron transferring flavoprotein (ETF) acting as natural electron acceptor. In anaerobic bacteria, GDHs play an important role in the benzoyl-CoA degradation pathway of monocyclic aromatic compounds. In the present study, we identified, purified and characterized the benzoate-induced BamOP as the electron accepting ETF of GDH (BamM) from the Fe(III)-respiring Geobacter metallireducens. The BamOP heterodimer contained FAD and AMP as cofactors. In the absence of an artificial electron acceptor, at pH values above 8, the BamMOP-components catalyzed the expected glutaryl-CoA oxidation to crotonyl-CoA and CO2 ; however, at pH values below 7, the redox-neutral glutaryl-CoA conversion to butyryl-CoA and CO2 became the dominant reaction. This previously unknown, strictly ETF-dependent coupled glutaryl-CoA oxidation/crotonyl-CoA reduction activity was facilitated by an unexpected two-electron transfer between FAD(BamM) and FAD(BamOP) , as well as by the similar redox potentials of the two FAD cofactors in the substrate-bound state. The strict order of electron/proton transfer and C-C-cleavage events including transient charge-transfer complexes did not allow an energetic coupling of electron transfer and decarboxylation. This explains why it was difficult to release the glutaconyl-CoA intermediate from reduced GDH. Moreover, it provides a kinetic rational for the apparent inability of BamM to catalyze the reverse reductive crotonyl-CoA carboxylation, even under thermodynamically favourable conditions. For this reason reductive crotonyl-CoA carboxylation, a key reaction in C2-assimilation via the ethylmalonyl-CoA pathway, is accomplished by a different crotonyl-CoA carboxylase/reductase via a covalent NADPH/ene-adduct.


Asunto(s)
Proteínas Bacterianas/química , Flavoproteínas Transportadoras de Electrones/química , Geobacter/enzimología , Glutaril-CoA Deshidrogenasa/química , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Biocatálisis , Flavoproteínas Transportadoras de Electrones/biosíntesis , Flavoproteínas Transportadoras de Electrones/genética , Expresión Génica , Glutaril-CoA Deshidrogenasa/biosíntesis , Glutaril-CoA Deshidrogenasa/genética , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Unión Proteica
12.
Front Microbiol ; 5: 245, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904558

RESUMEN

Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III) as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation.

13.
Syst Appl Microbiol ; 37(4): 277-86, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24731775

RESUMEN

For microorganisms that play an important role in bioremediation, the adaptation to swift changes in the availability of various substrates is a key for survival. The iron-reducing bacterium Geobacter metallireducens was hypothesized to repress utilization of less preferred substrates in the presence of high concentrations of easily degradable compounds. In our experiments, acetate and ethanol were preferred over benzoate, but benzoate was co-consumed with toluene and butyrate. To reveal overall physiological changes caused by different single substrates and a mixture of acetate plus benzoate, a nano-liquid chromatography-tandem mass spectrometry-based proteomic approach (nano-LC-MS/MS) was performed using label-free quantification. Significant differential expression during growth on different substrates was observed for 155 out of 1477 proteins. The benzoyl-CoA pathway was found to be subjected to incomplete repression during exponential growth on acetate in the presence of benzoate and on butyrate as a single substrate. Peripheral pathways of toluene, ethanol, and butyrate degradation were highly expressed only during growth on the corresponding substrates. However, low expression of these pathways was detected in all other tested conditions. Therefore, G. metallireducens seems to lack strong carbon catabolite repression under high substrate concentrations, which might be advantageous for survival in habitats rich in fatty acids and aromatic hydrocarbons.


Asunto(s)
Carbono/metabolismo , Medios de Cultivo/química , Geobacter/crecimiento & desarrollo , Geobacter/metabolismo , Acetatos/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/análisis , Benzoatos/metabolismo , Cromatografía Liquida , Redes y Vías Metabólicas , Proteoma/análisis , Espectrometría de Masas en Tándem
14.
Syst Appl Microbiol ; 37(4): 287-95, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24736031

RESUMEN

The strict anaerobe Geobacter metallireducens was cultivated in retentostats under acetate and acetate plus benzoate limitation in the presence of Fe(III) citrate in order to investigate its physiology under close to natural conditions. Growth rates below 0.003h(-1) were achieved in the course of cultivation. A nano-liquid chromatography-tandem mass spectrometry-based proteomic approach (nano-LC-MS/MS) with subsequent label-free quantification was performed on proteins extracted from cells sampled at different time points during retentostat cultivation. Proteins detected at low (0.002h(-1)) and high (0.06h(-1)) growth rates were compared between corresponding growth conditions (acetate or acetate plus benzoate). Carbon limitation significantly increased the abundances of several catabolic proteins involved in the degradation of substrates not present in the medium (ethanol, butyrate, fatty acids, and aromatic compounds). Growth rate-specific physiology was reflected in the changed abundances of energy-, chemotaxis-, oxidative stress-, and transport-related proteins. Mimicking natural conditions by extremely slow bacterial growth allowed to show how G. metallireducens optimized its physiology in order to survive in its natural habitats, since it was prepared to consume several carbon sources simultaneously and to withstand various environmental stresses.


Asunto(s)
Medios de Cultivo/química , Geobacter/crecimiento & desarrollo , Geobacter/metabolismo , Acetatos/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/análisis , Benzoatos/metabolismo , Cromatografía Liquida , Compuestos Férricos/metabolismo , Proteoma/análisis , Estrés Fisiológico , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA