Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542099

RESUMEN

Bacteriophages associated with thermophiles are gaining increased attention due to their pivotal roles in various biogeochemical and ecological processes, as well as their applications in biotechnology and bionanotechnology. Although thermophages are not suitable for controlling bacterial infections in humans or animals, their individual components, such as enzymes and capsid proteins, can be employed in molecular biology and significantly contribute to the enhancement of human and animal health. Despite their significance, thermophages still remain underrepresented in the known prokaryotic virosphere, primarily due to limited in-depth investigations. However, due to their unique properties, thermophages are currently attracting increasing interest, as evidenced by several newly discovered phages belonging to this group. This review offers an updated compilation of thermophages characterized to date, focusing on species infecting the thermophilic bacilli. Moreover, it presents experimental findings, including novel proteomic data (39 proteins) concerning the model TP-84 bacteriophage, along with the first announcement of 6 recently discovered thermophages infecting Geobacillus thermodenitrificans: PK5.2, PK2.1, NIIg10.1, NIIg2.1, NIIg2.2, and NIIg2.3. This review serves as an update to our previous publication in 2021.


Asunto(s)
Bacillus , Bacteriófagos , Bacillus/virología , Bacteriófagos/genética , Proteómica
2.
J Environ Manage ; 354: 120416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38408391

RESUMEN

Hydrogen sulfide (H2S) is a toxic gas massively released during chicken manure composting. Diminishing its release requires efficient and low cost methods. In recent years, heterotrophic bacteria capable of rapid H2S oxidation have been discovered but their applications in environmental improvement are rarely reported. Herein, we investigated H2S oxidation activity of a heterotrophic thermophilic bacterium Geobacillus thermodenitrificans DSM465, which contains a H2S oxidation pathway composed by sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO). This strain rapidly oxidized H2S to sulfane sulfur and thiosulfate. The oxidation rate reached 5.73 µmol min-1·g-1 of cell dry weight. We used G. thermodenitrificans DSM465 to restrict H2S release during chicken manure composting. The H2S emission during composting process reduced by 27.5% and sulfate content in the final compost increased by 34.4%. In addition, this strain prolonged the high temperature phase by 7 days. Thus, using G. thermodenitrificans DSM465 to control H2S release was an efficient and economic method. This study provided a new strategy for making waste composting environmental friendly and shed light on perspective applications of heterotrophic H2S oxidation bacteria in environmental improvements.


Asunto(s)
Compostaje , Geobacillus , Sulfuro de Hidrógeno , Animales , Pollos , Estiércol , Proteínas Bacterianas/metabolismo , Sulfuros/metabolismo , Geobacillus/metabolismo , Oxidación-Reducción
3.
Carbohydr Res ; 532: 108901, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37487384

RESUMEN

Hemicelluloses are the second most abundant polysaccharide in plant biomass, in which xylan is the main constituent. Aiming at the total degradation of xylan and the obtention of fermentable sugars, several enzymes acting synergistically are required, especially ß-xylosidases. In this study, ß-xylosidase from Geobacillus thermodenitrificans (GtXyl) was expressed in E. coli BL21 and characterized. The enzyme GtXyl has been grouped within the family of glycoside hydrolases 43 (GH43). Results showed that GtXyl obtained the highest activity at pH 5.0 and temperature of 60 °C. In the additive's tests, the enzyme remained stable in the presence of metal ions and EDTA, and showed high tolerance to xylose, with a relative activity of 55.4% at 400 mM. The enzyme also presented bifunctional activity of ß-xylosidase and α-l-arabinofuranosidase, with the highest activity on the substrate p-nitrophenyl-ß-d-xylopyranoside. The specific activity on p-nitrophenyl-ß-d-xylopyranoside was 18.33 U mg-1 and catalytic efficiency of 20.21 mM-1 s-1, which is comparable to other ß-xylosidases reported in the literature. Putting together, the GtXyl enzyme presented interesting biochemical characteristics that are desirable for the application in the enzymatic hydrolysis of plant biomass, such as activity at higher temperatures, high thermostability and stability to metal ions.


Asunto(s)
Xilosa , Xilosidasas , Xilosa/química , Xilanos/metabolismo , Escherichia coli/metabolismo , Xilosidasas/metabolismo , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Especificidad por Sustrato
4.
Arch Microbiol ; 205(3): 100, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862208

RESUMEN

Chicken feather meal has had a significant biofertilizer approach in recent years. The current study aims to assess feather biodegradation to promote plant and fish growth. The Geobacillus thermodenitrificans PS41 strain was more efficient in feather degradation. Feather residues were separated after degradation and evaluated under a scanning electron microscope (SEM) to detect bacterial colonization on feather degradation. It was observed that the rachi and barbules were entirely degraded. The complete degradation by PS41 suggests a relatively more efficient feather degradation strain. According to Fourier-transform infrared spectroscopy (FT-IR) studies, PS41 biodegraded feathers contain the functional groups of aromatic, amine, and nitro compounds. The present study suggested that biologically degraded feather meal improved plant growth. The feather meal combined with nitrogen-fixing bacterial strain showed the highest efficiency. The biologically degraded feather meal and Rhizobium combination induced physical and chemical changes in the soil. It is directly involved in soil amelioration, plant growth substance, and soil fertility, enhancing a healthy crop environment. The feather meal 4 and 5% was used as a feed diet of common carp (Cyprinus carpio) to increase growth performances and feed utilization parameters. In hematological and histological studies of formulated diets, significantly no toxic effects occurred in fish blood, gut, or fimbriae.


Asunto(s)
Carpas , Vigna , Animales , Plumas , Pollos , Espectroscopía Infrarroja por Transformada de Fourier
5.
EFSA J ; 21(2): e07834, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36846388

RESUMEN

The food enzyme 1,4-α-glucan branching enzyme ((1-4)-α-d-glucan:(1-4)-α-d-glucan 6-α-d-[(1-4)-α-d-glucano]-transferase; EC 2.4.1.18) is produced with the non-genetically modified Geobacillus thermodenitrificans strain TRBE14 by Nagase (Europa) GmbH. The production strain has been shown to qualify for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in cereal-based processes, baking processes as well as meat and fish processing. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.29 mg TOS/kg body weight (bw) per day in European populations. Toxicological studies were not considered necessary given the QPS status of the production strain and the nature of the manufacturing process. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel noted that the food enzyme contains lysozyme, a known allergen. Therefore, allergenicity cannot be excluded. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

6.
EFSA J ; 21(1): e07746, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36704192

RESUMEN

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, new information was found leading to the withdrawal of the qualification 'absence of aminoglycoside production ability' for Bacillus velezensis. The qualification for Bacillus paralicheniformis was changed to 'absence of bacitracin production ability'. For the other TUs, no new information was found that would change the status of previously recommended QPS TUs. Of 52 microorganisms notified to EFSA between April and September 2022 (inclusive), 48 were not evaluated because: 7 were filamentous fungi, 3 were Enterococcus faecium, 2 were Escherichia coli, 1 was Streptomyces spp., and 35 were taxonomic units (TUs) that already have a QPS status. The other four TUs notified within this period, and one notified previously as a different species, which was recently reclassified, were evaluated for the first time for a possible QPS status: Xanthobacter spp. could not be assessed because it was not identified to the species level; Geobacillus thermodenitrificans is recommended for QPS status with the qualification 'absence of toxigenic activity'. Streptoccus oralis is not recommended for QPS status. Ogataea polymorpha is proposed for QPS status with the qualification 'for production purposes only'. Lactiplantibacillus argentoratensis (new species) is included in the QPS list.

7.
Environ Sci Pollut Res Int ; 30(15): 42596-42607, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35670947

RESUMEN

The microbial interactions with plant hosts were known to establish plant growth and beneficial productivity. Some bacteria, fungi, actinomycetes, yeast, and algae have proven as potential effective microbes in agricultural field. In this study, the insecticidal effect of Geobacillus thermodenitrificans PS41 secondary metabolites was tested against third instar larvae of Spodoptera litura, with mortality rate 60.26 ± 1.5% which might influence the agropest management. The test bacterial metabolites were subjected to GC-MS analysis. Totally, 17 different compounds were identified from the ethyl acetate extract metabolites of PS41 strain. The highest peak was obtained with behenic alcohol compound followed by 1-octadecene and penta erythrityl tetrachloride. The Geobacillus thermodenitrificans PS41 secondary metabolites showed potential antifungal activity against plant pathogenic fungi. The highest inhibit was attained against Cladosporium sp., (25 mm) followed by Rhizoctonia solani and Alternaria brassicola (23 mm). However, no toxic effect was exerted upon earthworm (Perionyx excavatus) when treated with PS41 bacterial metabolites. The potential PS41 strain was also found supporting the plant growth. The potential bacterial strain PS41 did not show antagonistic activity against soil bacteria such as Rhizobium sp., Azotobacter sp., Azospirullum brasilense, Pseudomonas fluorescens and Bacillus megaterium. The potential test organism, Geobacillus thermodenitrificans PS41, possessing biopesticide and biofertilizer properties can be a suitable ecofriendly organic applicant in agricultural field for enhancing crop production.


Asunto(s)
Fungicidas Industriales , Geobacillus , Fungicidas Industriales/farmacología , Antifúngicos/farmacología , Desarrollo de la Planta , Hongos
8.
Arch Microbiol ; 204(9): 565, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982264

RESUMEN

The aim of this present work was to explore the potential feather-degrading bacterial isolates were isolated from poultry farm soil. Isolation and screening of keratinase-producing bacterial isolates were performed in keratin agar medium. The potential keratinase-producing bacterial isolates were identified using morphological, biochemical and molecular characterization. Degradation of chicken feather was optimized using different nutrient or physical factors in feather meal broth medium. Soluble peptide, amino acid and free thiol group liberation during feather degradation were estimated too. The isolated bacterial isolates were found significantly degrading the chicken feathers with keratinase enzyme production. The present study revealed a significantly novel feather-degrading Geobacillus thermodenitrificans PS41 bacterial isolate, isolated from poultry farm soil.


Asunto(s)
Plumas , Aves de Corral , Animales , Pollos , Medios de Cultivo/metabolismo , Granjas , Plumas/química , Plumas/metabolismo , Plumas/microbiología , Geobacillus , Concentración de Iones de Hidrógeno , Péptido Hidrolasas/metabolismo , Aves de Corral/microbiología , Suelo
9.
Front Microbiol ; 11: 281, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174898

RESUMEN

The composting ecosystem provides a potential resource for finding new microorganisms with the capability for cellulose degradation. In the present study, Congo red method was used for the isolating of thermostable lignocellulose-degrading bacteria from chicken manure compost. A thermophilic strain named as Geobacillus thermodenitrificans Y7 with acid-resident property was successfully isolated and employed to degrade raw switchgrass at 60°C for 5 days, which resulted in the final degradation rates of cellulose, xylan, and acid-insoluble lignin as 18.64, 12.96, and 17.21%, respectively. In addition, GC-MS analysis about aromatic degradation affirm the degradation of lignin by G. thermodenitrificans Y7. Moreover, an endocellulase gene belong to M42 family was successfully cloned from G. thermodenitrificans Y7 and expressed in Escherichia coli BL21. Recombinant enzyme Cel-9 was purified by Ni-NTA column based the His-tag, and the molecular weight determined as 40.4 kDa by SDA-PAGE. The characterization of the enzyme Cel-9 indicated that the maximum enzyme activity was realized at 50°C and pH 8.6 and, Mn2+ could greatly improve the CMCase enzyme activity of Cel-9 at 10 mM, which was followed by Fe2+ and Co2+. Besides, it also found that the ß-1,3-1,4, ß-1,3, ß-1,4, and ß-1,6 glucan linkages all could be hydrolyzed by enzyme Cel-9. Finally, during the application of enzyme Cel-9 to switchgrass, the saccharification rates achieved to 1.81 ± 0.04% and 2.65 ± 0.03% for 50 and 100% crude enzyme, respectively. All these results indicated that both the strain G. thermodenitrificans Y7 and the recombinant endocellulase Cel-9 have the potential to be applied to the biomass industry.

10.
Appl Biochem Biotechnol ; 191(1): 112-124, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31956956

RESUMEN

Esterases are widely used in the food industry. Here, a new thermophilic bacterium, Geobacillus thermodenitrificans PS01, was isolated and the esterase-encoding gene est1 was cloned, sequenced, and recombinant expressed in Escherichia coli Tuner (DE3). The highest activity of recombinant Est1 was detected at pH 8.0, and 40 °C and the extreme stability was observed at pH 6-9 over 30 days at 4 °C. In particular, Est1 can hydrolyze short- to medium-chain (C2-C10) triglycerides and p-nitrophenyl esters (C2-C12) and was not inhibited by most metal ions. Kinetic parameters of p-nitrophenyl butyrate hydrolysis under optimal conditions were determined: Km, 22.76 µM; kcat, 10,415 s-1; and kcat/Km, 457.53 µM-1 s-1. The outstanding specification of Est1 indicates its potential for use in industrial applications.


Asunto(s)
Proteínas Bacterianas , Esterasas , Geobacillus/enzimología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Esterasas/biosíntesis , Esterasas/química , Esterasas/genética , Esterasas/aislamiento & purificación , Geobacillus/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
11.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31771094

RESUMEN

The toxin-antitoxin (TA) systems have been attracting attention due to their role in regulating stress responses in prokaryotes and their biotechnological potential. Much recognition has been given to type II TA system of mesophiles, while thermophiles have received merely limited attention. Here, we are presenting the putative type II TA families encoded on the genomes of four Geobacillus strains. We employed the TA finder tool to mine for TA-coding genes and manually curated the results using protein domain analysis tools. We also used the NCBI BLAST, Operon Mapper, ProOpDB, and sequence alignment tools to reveal the geobacilli TA features. We identified 28 putative TA pairs, distributed over eight TA families. Among the identified TAs, 15 represent putative novel toxins and antitoxins, belonging to the MazEF, MNT-HEPN, ParDE, RelBE, and XRE-COG2856 TA families. We also identified a potentially new TA composite, AbrB-ParE. Furthermore, we are suggesting the Geobacillus acetyltransferase TA (GacTA) family, which potentially represents one of the unique TA families with a reverse gene order. Moreover, we are proposing a hypothesis on the xre-cog2856 gene expression regulation, which seems to involve the c-di-AMP. This study aims for highlighting the significance of studying TAs in Geobacillus and facilitating future experimental research.


Asunto(s)
Evolución Molecular , Regulación Bacteriana de la Expresión Génica/fisiología , Geobacillus , Familia de Multigenes/fisiología , Sistemas Toxina-Antitoxina/fisiología , Geobacillus/genética , Geobacillus/metabolismo
12.
Electron. j. biotechnol ; 35: 18-24, sept. 2018. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1047727

RESUMEN

Background: Lactate dehydrogenase (LDH) is an enzyme of glycolytic pathway, ubiquitously found in living organisms. Increased glycolysis and LDH activity are associated with many pathologic conditions including inflammation and cancer, thereby making the enzyme a suitable drug target. Studies on conserved structural and functional domains of LDH from various species reveal novel inhibitory molecules. Our study describes Escherichia coli production and characterization of a moderately thermostable LDH (LDH-GT) from Geobacillus thermodenitrificans DSM-465. An in silico 3D model of recombinant enzyme and molecular docking with a set of potential inhibitors are also described. Results: The recombinant enzyme was overexpressed in E. coli and purified to electrophoretic homogeneity. The molecular weight of the enzyme determined by MALDI-TOF was 34,798.96 Da. It exhibited maximum activity at 65°C and pH 7.5 with a KM value for pyruvate as 45 µM. LDH-GT and human LDH-A have only 35.6% identity in the amino acid sequence. On the contrary, comparison by in silico structural alignment reveals that LDH-GT monomer has approximately 80% identity to that of truncated LDH-A. The amino acids "GEHGD" as well as His179 and His193 in the active site are conserved. Docking studies have shown the binding free energy changes of potential inhibitors with LDH-A and LDH-GT ranging from −407.11 to −127.31 kJ mol−1 . Conclusions: By highlighting the conserved structural and functional domains of LDH from two entirely different species, this study has graded potential inhibitory molecules on the basis of their binding affinities so that they can be applied for in vivo anticancer studies


Asunto(s)
Geobacillus/enzimología , L-Lactato Deshidrogenasa/metabolismo , Simulación por Computador , Estabilidad de Enzimas , Reacción en Cadena de la Polimerasa , Clonación Molecular , Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Glucólisis , L-Lactato Deshidrogenasa/genética
13.
Appl Microbiol Biotechnol ; 102(11): 4901-4913, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29619505

RESUMEN

Seaweeds are a nonlignocellulosic biomass, but they are often abundant in unique polysaccharides that common microbes can hardly utilize; therefore, polysaccharide degradation is key for the full utilization of seaweed biomass. Here, we isolated 13 thermophiles from seaweed homogenates that had been incubated at high temperature. All of the isolates were Gram-positive and preferentially grew at 60-70 °C. Most formed endospores and were tolerant to seawater salinity. Despite different sources, all isolates were identical regarding 16S rRNA gene sequences and were categorized as Geobacillus thermodenitrificans. Their growth occurred on seaweed polysaccharides with different profiles but required amino acids and/or vitamins, implying that they existed as proliferative cells by utilizing nutrients on seaweed viscous surfaces. Among 13 isolates, strain OS27 was further characterized to show that it can utilize a diverse range of seaweed polysaccharides and hemicelluloses. Notably, strain OS27 degraded raw seaweeds while releasing soluble saccharides. The degradation seemed to depend on enzymes that were extracellularly produced in an inducible manner. The strain could be genetically modified to produce heterologous endoglucanase, providing a transformant that degrades more diverse seaweeds with higher efficiency. The draft sequences of the OS27 genome contained 3766 coding sequences, which included intact genes for 28 glycoside hydrolases and many hypothetical proteins unusual among G. thermodenitrificans. These results suggest that G. thermodenitrificans OS27 serves as a genetic resource for thermostable enzymes to degrade seaweeds and potentially as a microbial platform for high temperature seaweed biorefinery via genetic modification.


Asunto(s)
Organismos Acuáticos/genética , Genoma Bacteriano , Geobacillus/genética , ARN Ribosómico 16S/genética , Algas Marinas/metabolismo
14.
Enzyme Microb Technol ; 111: 38-47, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29421035

RESUMEN

Enzymes activity and stability at extreme temperature can be intensified by regularly applying protein engineering. In the present study, two amino acids were perceived to mark the temperature dependability of xylanase from Geobacillus thermodenitrificans C5. Six mutants of G. thermodenitrificans C5 were built through site-directed mutagenesis by interchanging the residue with proline and glutamic acid (R81P, H82E, W185P, D186E, double mutant W185P/D186E and triple mutant H82E/W185P/D186E). Both mutant and wild type enzymes were quantified in host E. coli BL21. In comparison to wild type, the temperature was enhanced by 4 °C, 5 °C and 11 °C in H82E, W185P/D186E and H82E/W185P/D186E mutant models, respectively. The mutant H82E and the combined substitutions (H82E/W185P/D186E) showed the most pronounced shifts in their half-lives for thermal inactivation. Half-life was increased 13 times at 60 °C, 15 times at 65 °C, 9 times at 70 °C and 5 times at 75 °C by H82E/W185P/D186E mutant. Mutations in xylanase enzyme causes rigidification of essential chain and filling of groove that leads to stabilization of mutants and finally resulted into enhancement in their thermostability.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Geobacillus/enzimología , Geobacillus/genética , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Dominio Catalítico/genética , Endo-1,4-beta Xilanasas/química , Estabilidad de Enzimas/genética , Semivida , Calor , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Appl Microbiol Biotechnol ; 101(15): 6023-6037, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28616644

RESUMEN

Lignocellulosic biomass from various types of wood has become a renewable resource for production of biofuels and biobased chemicals. Because xylan is the major component of wood hemicelluloses, highly efficient enzymes to enhance xylan hydrolysis can improve the use of lignocellulosic biomass. In this study, a xylanolytic gene cluster was identified from the crude oil-degrading thermophilic strain Geobacillus thermodenitrificans NG80-2. The enzymes involved in xylan hydrolysis, which include two xylanases (XynA1, XynA2), three ß-xylosidases (XynB1, XynB2, XynB3), and one α-L-arabinofuranosidase (AbfA), have many unique features, such as high pH tolerance, high thermostability, and a broad substrate range. The three ß-xylosidases were highly resistant to inhibition by product (xylose) accumulation. Moreover, the combination of xylanase, ß-xylosidase, and α-L-arabinofuranosidase exhibited the largest synergistic action on xylan degradation (XynA2, XynB1, and AbfA on oat spelt or beechwood xylan; XynA2, XynB3, and AbfA on birchwood xylan). We have demonstrated that the proposed enzymatic cocktail almost completely converts complex xylan to xylose and arabinofuranose and has great potential for use in the conversion of plant biomass into biofuels and biochemicals.


Asunto(s)
Endo-1,4-beta Xilanasas/metabolismo , Geobacillus/enzimología , Geobacillus/metabolismo , Glicósido Hidrolasas/metabolismo , Xilanos/metabolismo , Xilosidasas/metabolismo , Arabinosa/análogos & derivados , Arabinosa/metabolismo , Endo-1,4-beta Xilanasas/genética , Glicósido Hidrolasas/genética , Concentración de Iones de Hidrógeno , Hidrólisis , Xilosa/metabolismo , Xilosidasas/genética
16.
J Agric Food Chem ; 64(43): 8146-8153, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27734668

RESUMEN

The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Galactosa/metabolismo , Geobacillus/enzimología , Hexosas/biosíntesis , Biotecnología/métodos , Células Inmovilizadas , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Medios de Cultivo/química , Geobacillus/genética , Semivida , Concentración de Iones de Hidrógeno , Octoxinol/química , Permeabilidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Edulcorantes/metabolismo , Temperatura
17.
Indian J Microbiol ; 56(2): 228-231, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27570317

RESUMEN

Eight thermophilic bacterial strains were isolated from Tattapani Hot spring and screened for various hydrolytic enzymes including cellulases. The isolated bacterial strains were identified as Geobacillus thermodenitrificans IP_WH1(KP842609), Bacillus licheniformis IP_WH2(KP842610), B. aerius IP_WH3(KP842611), B. licheniformis IP_WH4(KP842612), B. licheniformis IP_60Y(KP842613), G. thermodenitrificans IP_60A1(KP842614), Geobacillus sp. IP_60A2(KP842615) and Geobacillus sp. IP_80TP(KP842616) after 16S ribotying. Out of the eight isolates Geobacillus sp. IP_80TP grew best at 80 °C whereas rest of the isolates showed optimal growth at 60 °C. G. thermodenitrificans IP_WH1 produced a thermotolerant cellulase with maximum activity at 60 °C.

18.
Springerplus ; 5: 241, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27026935

RESUMEN

The superoxide dismutase from the archaeon Sulfolobus solfataricus (SOD Ss ) is a well-studied hyperthermophilic SOD with crystal structure and possible thermostability factors characterized. Previously, we discovered an N-terminal domain (NTD) in a thermophilic SOD from Geobacillus thermodenitrificans NG80-2 which confers heat resistance on homologous mesophilic SODs. The present study therefore aimed to further improve the thermostability and stress tolerance of SOD Ss via fusion with this NTD. The recombinant protein, rSOD Ss , exhibited improved thermophilicity, higher working temperature, improved thermostability, broader pH stability, and enhanced tolerance to inhibitors and organic media than SOD Ss without any alterations in its oligomerization state. These results suggest that the NTD is an excellent candidate for improving stability of both mesophilic and thermophilic SOD from either bacteria or archaea via simple genetic manipulation. Therefore, this study provides a general, feasible and highly useful strategy for generating extremely thermostable SODs for industrial applications.

19.
Biotechnol Appl Biochem ; 63(3): 391-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25908562

RESUMEN

Arginase (l-arginine amidinohydrolase, EC 3.5.3.1) can efficiently catalyze conversion of arginine to ornithine. Therefore, this enzyme can be used to produce l-ornithine from l-arginine. In this article, the l-arginase gene encoding the Geobacillus thermodenitrificans NG80-2 was cloned and overexpressed in Escherichia coli. The specific activity of the purified enzyme was 138.3 U/mg. The molecular mass of the l-arginase was approximately 33.0 kDa as estimated by SDS-PAGE and 192.0 kDa as determined by gel-filtration chromatography. Manganese ions were the optimum metal cofactor for activity, whereas the enzyme was slightly inhibited by Mg(2+) , Cu(2+) , Ba(2+) , Ca(2+) , and Zn(2+) . Activity was optimal at pH 9.0 and 80 °C, and the protein was stable at 40 and 50 °C. The recombinant enzyme was a uricotelic arginase. Using arginine as the substrate, the Michaelis-Menten constant (Km ) and catalytic efficiency (kcat /Km ) were measured to be 171.9 mM and 3.8 mM(-1)  s(-1) , respectively. Trp and His residues were directly involved in the l-arginase activity evaluated by inactivation agents. The biosynthesis yield of l-ornithine by the purified enzyme was 36.9 g/L, and the molar yield was 97.2%.


Asunto(s)
Arginasa/genética , Arginasa/metabolismo , Geobacillus/enzimología , Ornitina/biosíntesis , Temperatura , Secuencia de Aminoácidos , Arginasa/química , Arginasa/aislamiento & purificación , Activación Enzimática , Estabilidad de Enzimas , Estudios de Factibilidad , Expresión Génica , Geobacillus/genética , Concentración de Iones de Hidrógeno , Cinética , Metales/farmacología , Peso Molecular , Análisis de Secuencia de ADN
20.
Bioresour Technol ; 170: 462-469, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25164338

RESUMEN

The ß-xylosidase encoding gene (XsidB) of the extremely thermophilic bacterium Geobacillus thermodenitrificans has been cloned and expressed in Escherichia coli. The homotrimeric recombinant XsidB is of 204.0kDa, which is optimally active at 60°C and pH 7.0 with T1/2 of 58min at 70°C. The ß-xylosidase remains unaffected in the presence of most metal ions and organic solvents. The Km [p-nitrophenyl ß-xyloside (pNPX)], Vmax and kcat values of the enzyme are 2×10(-3)M, 1250µmolesmg(-1)min(-1) and 13.20×10(5)min(-1), respectively. The enzyme catalyzes transxylosylation reactions in the presence of alcohols as acceptors. The pharmaceutically important ß-methyl-d-xylosides could be produced using pNPX as the donor and methanol as acceptor. The products of transxylosylation were identified by TLC and HPLC, and the structure was confirmed by (1)H NMR analysis. The enzyme is also useful in synthesizing transxylosylation products from the wheat bran hydrolysate.


Asunto(s)
Reactores Biológicos , Geobacillus/enzimología , Glicósidos/biosíntesis , Proteínas Recombinantes/metabolismo , Xilosidasas/metabolismo , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Clonación Molecular , Biología Computacional , Cartilla de ADN/genética , Escherichia coli , Geobacillus/genética , Concentración de Iones de Hidrógeno , Hidrólisis , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Proteínas Recombinantes/genética , Análisis de Secuencia de ADN , Temperatura , Xilosidasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA