Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21920, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300236

RESUMEN

Proso millet is an important but under-researched and underutilized crop with the potential to become a future smart crop because of its climate-resilient features and high nutrient content. Assessing diversity and marker-trait associations are essential to support the genomics-assisted improvement of proso millet. This study aimed to assess the population structure and diversity of a proso millet diversity panel and identify marker-trait associations for agronomic and grain nutrient traits. In this study, genome-wide single nucleotide polymorphisms (SNPs) were identified by mapping raw genotyping-by-sequencing (GBS) data onto the proso millet genome, resulting in 5621 quality-filtered SNPs in 160 diverse accessions. The modified Roger's Distance assessment indicated an average distance of 0.268 among accessions, with the race miliaceum exhibiting the highest diversity and ovatum the lowest. Proso millet germplasm diversity was structured according to geographic centers of origin and domestication. Genome-wide association mapping identified 40 marker-trait associations (MTAs), including 34 MTAs for agronomic traits and 6 for grain nutrients; 20 of these MTAs were located within genes. Favourable alleles and phenotypic values were estimated for all MTAs. This study provides valuable insights into the population structure and diversity of proso millet, identified marker-trait associations, and reported favourable alleles and their phenotypic values for supporting genomics-assisted improvement efforts in proso millet.


Asunto(s)
Mapeo Cromosómico , Grano Comestible , Genoma de Planta , Estudio de Asociación del Genoma Completo , Panicum , Polimorfismo de Nucleótido Simple , Panicum/genética , Grano Comestible/genética , Sitios de Carácter Cuantitativo , Fenotipo , Genotipo , Carácter Cuantitativo Heredable
2.
Mol Plant Microbe Interact ; : MPMI10230159R, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38888557

RESUMEN

Barley net form net blotch (NFNB) is a destructive foliar disease caused by Pyrenophora teres f. teres. Barley line CIho5791, which harbors the broadly effective chromosome 6H resistance gene Rpt5, displays dominant resistance to P. teres f. teres. To genetically characterize P. teres f. teres avirulence/virulence on the barley line CIho5791, we generated a P. teres f. teres mapping population using a cross between the Moroccan CIho5791-virulent isolate MorSM40-3 and the avirulent reference isolate 0-1. Full genome sequences were generated for 103 progenies. Saturated chromosome-level genetic maps were generated, and quantitative trait locus (QTL) mapping identified two major QTL associated with P. teres f. teres avirulence/virulence on CIho5791. The most significant QTL mapped to chromosome (Ch) 1, where the virulent allele was contributed by MorSM40-3. A second QTL mapped to Ch8; however, this virulent allele was contributed by the avirulent parent 0-1. The Ch1 and Ch8 loci accounted for 27 and 15% of the disease variation, respectively, and the avirulent allele at the Ch1 locus was epistatic over the virulent allele at the Ch8 locus. As a validation, we used a natural P. teres f. teres population in a genome-wide association study that identified the same Ch1 and Ch8 loci. We then generated a new reference quality genome assembly of parental isolate MorSM40-3 with annotation supported by deep transcriptome sequencing of infection time points. The annotation identified candidate genes predicted to encode small, secreted proteins, one or more of which are likely responsible for overcoming the CIho5791 resistance. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.

3.
Front Plant Sci ; 15: 1386877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919821

RESUMEN

Anthracnose, white mold, powdery mildew, and root rot caused by Colletotrichum lindemuthianum, Scletorinia sclerotiorum, Erysiphe spp., and Pythium ultimum, respectively, are among the most frequent diseases that cause significant production losses worldwide in common bean (Phaseolus vulgaris L.). Reactions against these four fungal diseases were investigated under controlled conditions using a diversity panel of 311 bean lines for snap consumption (Snap bean Panel). The genomic regions involved in these resistance responses were identified based on a genome-wide association study conducted with 16,242 SNP markers. The highest number of resistant lines was observed against the three C. lindemuthianum isolates evaluated: 156 lines were resistant to CL124 isolate, 146 lines resistant to CL18, and 109 lines were resistant to C531 isolate. Two well-known anthracnose resistance clusters were identified, the Co-2 on chromosome Pv11 for isolates CL124 and CL18, and the Co-3 on chromosome Pv04 for isolates CL124 and C531. In addition, other lesser-known regions of anthracnose resistance were identified on chromosomes Pv02, Pv06, Pv08, and Pv10. For the white mold isolate tested, 24 resistant lines were identified and the resistance was localized to three different positions on chromosome Pv08. For the powdery mildew local isolate, only 12 resistant lines were identified, and along with the two previous resistance genes on chromosomes Pv04 and Pv11, a new region on chromosome Pv06 was also identified. For root rot caused by Pythium, 31 resistant lines were identified and two main regions were located on chromosomes Pv04 and Pv05. Relevant information for snap bean breeding programs was provided in this work. A total of 20 lines showed resistant or intermediate responses against four or five isolates, which can be suitable for sustainable farm production and could be used as resistance donors. Potential genes and genomic regions to be considered for targeted improvement were provided, including new or less characterized regions that should be validated in future works. Powdery mildew disease was identified as a potential risk for snap bean production and should be considered a main goal in breeding programs.

4.
New Phytol ; 242(3): 1307-1323, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488269

RESUMEN

Community genetics seeks to understand the mechanisms by which natural genetic variation in heritable host phenotypes can encompass assemblages of organisms such as bacteria, fungi, and many animals including arthropods. Prior studies that focused on plant genotypes have been unable to identify genes controlling community composition, a necessary step to predict ecosystem structure and function as underlying genes shift within plant populations. We surveyed arthropods within an association population of Populus trichocarpa in three common gardens to discover plant genes that contributed to arthropod community composition. We analyzed our surveys with traditional single-trait genome-wide association analysis (GWAS), multitrait GWAS, and functional networks built from a diverse set of plant phenotypes. Plant genotype was influential in structuring arthropod community composition among several garden sites. Candidate genes important for higher level organization of arthropod communities had broadly applicable functions, such as terpenoid biosynthesis and production of dsRNA binding proteins and protein kinases, which may be capable of targeting multiple arthropod species. We have demonstrated the ability to detect, in an uncontrolled environment, individual genes that are associated with the community assemblage of arthropods on a host plant, further enhancing our understanding of genetic mechanisms that impact ecosystem structure.


Asunto(s)
Artrópodos , Populus , Animales , Artrópodos/genética , Ecosistema , Populus/genética , Estudio de Asociación del Genoma Completo , Genotipo , Variación Genética
5.
Mol Plant Pathol ; 25(3): e13436, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38460112

RESUMEN

While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Micosis , Estudio de Asociación del Genoma Completo , Arabidopsis/microbiología , Presión Osmótica , Estrés Fisiológico/genética , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética
6.
Front Plant Sci ; 14: 1271849, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034552

RESUMEN

Soybean (Glycine max) production is greatly affected by persistent and/or intermittent droughts in rainfed soybean-growing regions worldwide. Symbiotic N2 fixation (SNF) in soybean can also be significantly hampered even under moderate drought stress. The objective of this study was to identify genomic regions associated with shoot carbon isotope ratio (δ13C) as a surrogate measure for water use efficiency (WUE), nitrogen isotope ratio (δ15N) to assess relative SNF, N concentration ([N]), and carbon/nitrogen ratio (C/N). Genome-wide association mapping was performed with 105 genotypes and approximately 4 million single-nucleotide polymorphism markers derived from whole-genome resequencing information. A total of 11, 21, 22, and 22 genomic loci associated with δ13C, δ15N, [N], and C/N, respectively, were identified in two environments. Nine of these 76 loci were stable across environments, as they were detected in both environments. In addition to the 62 novel loci identified, 14 loci aligned with previously reported quantitative trait loci for different C and N traits related to drought, WUE, and N2 fixation in soybean. A total of 58 Glyma gene models encoding for different genes related to the four traits were identified in the vicinity of the genomic loci.

7.
Mol Biol Rep ; 50(11): 9323-9334, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37815669

RESUMEN

BACKGROUND: Grain length, width, weight, and the number of grains per panicle are crucial determinants contributing to yield in cereal crops. Understanding the genetic basis of grain-related traits has been the main research object in crop science. METHODS AND RESULTS: Kerala has a collection of different rice landraces. Characterization of these valuable genetic resources for 39 distinct agro-morphological traits was carried out in two seasons from 2017 to 2019 directly in farmers field. Most characteristics were polymorphic except ligule shape, leaf angle, and panicle axis. The results of principal component analysis implied that leaf length, plant height, culm length, flag leaf length, and grain-related traits were the principal discriminatory characteristics of rice landraces. For identifying the genetic basis of key grain traits of rice, three multi locus GWAS models were performed based on 1,47,994 SNPs in 73 rice accessions. As a result, 48 quantitative trait nucleotides (QTNs) were identified to be associated with these traits. After characterization of their function and expression, 15 significant candidate genes involved in regulating grain width, number of grains per panicle, and yield were identified. CONCLUSIONS: The detected QTNs and candidate genes in this study could be further used for marker-assisted high-quality breeding of rice.


Asunto(s)
Grano Comestible , Oryza , Grano Comestible/genética , Sitios de Carácter Cuantitativo/genética , Oryza/genética , Oryza/anatomía & histología , Fenómica , Fitomejoramiento
8.
Front Plant Sci ; 14: 1196486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575932

RESUMEN

The rust diseases, including leaf rust caused by Puccinia triticina (Pt), stem rust caused by P. graminis f. sp. tritici (Pgt), and stripe rust caused by P. striiformis f. sp. tritici (Pst), are major limiting factors in wheat production worldwide. Identification of novel sources of rust resistance genes is key to developing cultivars resistant to rapidly evolving pathogen populations. Aegilops longissima is a diploid wild grass native to the Levant and closely related to the modern bread wheat D subgenome. To explore resistance genes in the species, we evaluated a large panel of Ae. longissima for resistance to several races of Pt, Pgt, and Pst, and conducted a genome-wide association study (GWAS) to map rust resistance loci in the species. A panel of 404 Ae. longissima accessions, mostly collected from Israel, were screened for seedling-stage resistance to four races of Pt, four races of Pgt, and three races of Pst. Out of the 404 accessions screened, two were found that were resistant to all 11 races of the three rust pathogens screened. The percentage of all accessions screened that were resistant to a given rust pathogen race ranged from 18.5% to 99.7%. Genotyping-by-sequencing (GBS) was performed on 381 accessions of the Ae. longissima panel, wherein 125,343 single nucleotide polymorphisms (SNPs) were obtained after alignment to the Ae. longissima reference genome assembly and quality control filtering. Genetic diversity analysis revealed the presence of two distinct subpopulations, which followed a geographic pattern of a northern and a southern subpopulation. Association mapping was performed in the genotyped portion of the collection (n = 381) and in each subpopulation (n = 204 and 174) independently via a single-locus mixed-linear model, and two multi-locus models, FarmCPU, and BLINK. A large number (195) of markers were significantly associated with resistance to at least one of 10 rust pathogen races evaluated, nine of which are key candidate markers for further investigation due to their detection via multiple models and/or their association with resistance to more than one pathogen race. The novel resistance loci identified will provide additional diversity available for use in wheat breeding.

10.
J Exp Bot ; 74(17): 5341-5362, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37306093

RESUMEN

Plant growth is a complex process affected by a multitude of genetic and environmental factors and their interactions. To identify genetic factors influencing plant performance under different environmental conditions, vegetative growth was assessed in Arabidopsis thaliana cultivated under constant or fluctuating light intensities, using high-throughput phenotyping and genome-wide association studies. Daily automated non-invasive phenotyping of a collection of 382 Arabidopsis accessions provided growth data during developmental progression under different light regimes at high temporal resolution. Quantitative trait loci (QTL) for projected leaf area, relative growth rate, and PSII operating efficiency detected under the two light regimes were predominantly condition-specific and displayed distinct temporal activity patterns, with active phases ranging from 2 d to 9 d. Eighteen protein-coding genes and one miRNA gene were identified as potential candidate genes at 10 QTL regions consistently found under both light regimes. Expression patterns of three candidate genes affecting projected leaf area were analysed in time-series experiments in accessions with contrasting vegetative leaf growth. These observations highlight the importance of considering both environmental and temporal patterns of QTL/allele actions and emphasize the need for detailed time-resolved analyses under diverse well-defined environmental conditions to effectively unravel the complex and stage-specific contributions of genes affecting plant growth processes.


Asunto(s)
Arabidopsis , Sitios de Carácter Cuantitativo , Sitios de Carácter Cuantitativo/genética , Arabidopsis/genética , Estudio de Asociación del Genoma Completo , Hojas de la Planta/genética
11.
J Exp Bot ; 74(10): 2987-3002, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-36808470

RESUMEN

Soybean is a major plant protein source for both human food and animal feed, but to meet global demands as well as a trend towards regional production, soybean cultivation needs to be expanded to higher latitudes. In this study, we developed a large diversity panel consisting of 1503 early-maturing soybean lines and used genome-wide association mapping to dissect the genetic architecture underlying two crucial adaptation traits, flowering time and maturity. This revealed several known maturity loci, E1, E2, E3, and E4, and the growth habit locus Dt2 as causal candidate loci, and also a novel putative causal locus, GmFRL1, encoding a homolog of the vernalization pathway gene FRIGIDA-like 1. In addition, the scan for quantitative trait locus (QTL)-by-environment interactions identified GmAPETALA1d as a candidate gene for a QTL with environment-dependent reversed allelic effects. The polymorphisms of these candidate genes were identified using whole-genome resequencing data of 338 soybeans, which also revealed a novel E4 variant, e4-par, carried by 11 lines, with nine of them originating from Central Europe. Collectively, our results illustrate how combinations of QTL and their interactions with the environment facilitate the photothermal adaptation of soybean to regions far beyond its center of origin.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Humanos , Glycine max/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Adaptación Fisiológica/genética , Flores
12.
New Phytol ; 238(5): 2175-2193, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36808608

RESUMEN

Understanding the genetic and molecular function of nitrate sensing and acquisition across crop species will accelerate breeding of cultivars with improved nitrogen use efficiency (NUE). Here, we performed a genome-wide scan using wheat and barley accessions characterized under low and high N inputs that uncovered the NPF2.12 gene, encoding a homolog of the Arabidopsis nitrate transceptor NRT1.6 and other low-affinity nitrate transporters that belong to the MAJOR FACILITATOR SUPERFAMILY. Next, it is shown that variations in the NPF2.12 promoter correlated with altered NPF2.12 transcript levels where decreased gene expression was measured under low nitrate availability. Multiple field trials revealed a significantly enhanced N content in leaves and grains and NUE in the presence of the elite allele TaNPF2.12TT grown under low N conditions. Furthermore, the nitrate reductase encoding gene NIA1 was up-regulated in npf2.12 mutant upon low nitrate concentrations, thereby resulting in elevated levels of nitric oxide (NO) production. This increase in NO correlated with the higher root growth, nitrate uptake, and N translocation observed in the mutant when compared to wild-type. The presented data indicate that the elite haplotype alleles of NPF2.12 are convergently selected in wheat and barley that by inactivation indirectly contribute to root growth and NUE by activating NO signaling under low nitrate conditions.


Asunto(s)
Arabidopsis , Hordeum , Nitratos/metabolismo , Triticum/genética , Triticum/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Arabidopsis/genética , Óxido Nítrico/metabolismo
13.
BMC Biol ; 20(1): 224, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209159

RESUMEN

BACKGROUND: Fungi produce a wide range of specialized metabolites (SMs) involved in biotic interactions. Pathways for the production of SMs are often encoded in clusters of tightly arranged genes identified as biosynthetic gene clusters. Such gene clusters can undergo horizontal gene transfers between species and rapid evolutionary change within species. The acquisition, rearrangement, and deletion of gene clusters can generate significant metabolome diversity. However, the genetic basis underlying variation in SM production remains poorly understood. RESULTS: Here, we analyzed the metabolite production of a large population of the fungal pathogen of wheat, Zymoseptoria tritici. The pathogen causes major yield losses and shows variation in gene clusters. We performed untargeted ultra-high performance liquid chromatography-high resolution mass spectrometry to profile the metabolite diversity among 102 isolates of the same species. We found substantial variation in the abundance of the detected metabolites among isolates. Integrating whole-genome sequencing data, we performed metabolite genome-wide association mapping to identify loci underlying variation in metabolite production (i.e., metabolite-GWAS). We found that significantly associated SNPs reside mostly in coding and gene regulatory regions. Associated genes encode mainly transport and catalytic activities. The metabolite-GWAS identified also a polymorphism in the 3'UTR region of a virulence gene related to metabolite production and showing expression variation. CONCLUSIONS: Taken together, our study provides a significant resource to unravel polymorphism underlying metabolome diversity within a species. Integrating metabolome screens should be feasible for a range of different plant pathogens and help prioritize molecular studies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Metaboloma , Regiones no Traducidas 3' , Mapeo Cromosómico , Metaboloma/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
14.
Chemosphere ; 308(Pt 2): 136380, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36088976

RESUMEN

Despite the growing concerns about arsenic toxicity, information on tolerance and responsible genetic factors in wheat remains elusive. To address that, the present study aimed to screen the wheat varieties against arsenic based on growth parameters, yield, grain accumulation, and associated genes. A total of 110 wheat varieties were grown in arsenic-contaminated regions to record physio-morphological traits. The wheat 90K Infinium iSelect SNP array was used for the genome-wide association model to identify genomic regions. Wheat varieties such as Punjab-81, AARI-11, and Daman showed arsenic concentrations >45 µg/kg in similar conditions as well as the impact on grain yield, chlorophyll, Thousand Kernel Weight, and plant height. Contrastingly, varieties like Kohistan-97, As-2002, Barani-70, and Pari-73 showed grain concentrations <5 µg/kg grown under highly contaminated conditions. Three significant loci associated with arsenic accumulation in grain were identified on chromosomes 6A (qASG1-6A) and 6B (qASG3-6B and qASG4-6B). Annotation at these loci identified 39 wheat genes among which several were important for growth and tolerance against stress. The candidate gene (TraesCS6B02G429400) responsible for Glutathione-S-transferase was identified in the present study and must be investigated further using a transcriptomic approach. The present study provided background information for breeding prospects to improve wheat yield and tolerance against arsenic.


Asunto(s)
Arsénico , Triticum , Arsénico/toxicidad , Clorofila , Grano Comestible , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Glutatión , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Transferasas/genética , Triticum/genética
15.
Plant Sci ; 325: 111452, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36087884

RESUMEN

Starch is a major component of cereal grains such as wheat. Physicochemical and functional properties of starch affect end-use food quality and nutrients. To improve cultivars that preserve superior starch quality, the genetic foundation of the wheat starch and amylose-lipid complex (ALc, Resistant starch type 5) gelatinization are needed. This genome-wide association (GWA) mapping used 192 wheat genotypes (previously reported) to generate SNPs using an enhanced version of sequencing termed ddRAD on the Illumina Hi-seq X platform and 3696 high-quality influential SNPs were filtered out. The heterozygosity and Fst ranges in five subpopulations were 0.31-0.40 and 0.18-0.30 respectively. Nucleotide diversity and PIC ranged from 0.21 (6A) to 0.32 (2A) and 0.29 (6A) to 0.39 (4D) respectively. The Shannon waiver index was 1.7 and the whole-genome LD decay was 22 Mb at r2 = 0.38. Following FDR, 23 and 8 SNPs showed association with starch properties in the year 2017 and 2018, respectively while 93 and 20 SNPs were associated with ALc gelatinization in the year 2017 and 2018 respectively. The identified potential new genes (GSK3-alpha, RING-type domain-containing protein, Tetratricopeptide repeat, Hexosyltransferase, GLP, SNF1, and WRKY transcription factor) within LD range (∼16 Kb to ∼15 Mb), BLUP value, and cis and trans-position of SNPs network provide valuable information for the future wheat breeding strategy for the improvement of the starch quality trait.


Asunto(s)
Amilosa , Triticum , Amilosa/metabolismo , Triticum/metabolismo , Almidón/metabolismo , Pan , Almidón Resistente , Glucógeno Sintasa Quinasa 3/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Lípidos
16.
Proc Natl Acad Sci U S A ; 119(33): e2205305119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35947617

RESUMEN

Water-use efficiency (WUE) is the ratio of biomass produced per unit of water consumed; thus, it can be altered by genetic factors that affect either side of the ratio. In the present study, we exploited natural variation for WUE to discover loci affecting either biomass accumulation or water use as factors affecting WUE. Genome-wide association studies (GWAS) using integrated WUE measured through carbon isotope discrimination (δ13C) of Arabidopsis thaliana accessions identified genomic regions associated with WUE. Reverse genetic analysis of 70 candidate genes selected based on the GWAS results and transcriptome data identified 25 genes affecting WUE as measured by gravimetric and δ13C analyses. Mutants of four genes had higher WUE than wild type, while mutants of the other 21 genes had lower WUE. The differences in WUE were caused by either altered biomass or water consumption (or both). Stomatal density (SD) was not a primary cause of altered WUE in these mutants. Leaf surface temperatures indicated that transpiration differed for mutants of 16 genes, but generally biomass accumulation had a greater effect on WUE. The genes we identified are involved in diverse cellular processes, including hormone and calcium signaling, meristematic activity, photosynthesis, flowering time, leaf/vasculature development, and cell wall composition; however, none of them had been previously linked to WUE. Thus, our study successfully identified effectors of WUE that can be used to understand the genetic basis of WUE and improve crop productivity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Agua , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Producción de Cultivos , Estudio de Asociación del Genoma Completo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Agua/metabolismo
17.
Front Plant Sci ; 13: 906912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812967

RESUMEN

Flag leaf angle (FLA) is an important outcrossing trait affecting the hybrid seed production in rice (Oryza sativa L.). Natural variation of FLA has been reported in rice, but the molecular basis for this variation is largely unknown. In this study, we investigated the phenotypic values of FLA in 353 rice natural accessions in six environments, which indicated that there was abundant phenotypic variation. We performed a genome-wide association study on FLA using 1.3 million single nucleotide polymorphisms (SNPs). A total of six quantitative trait loci (QTLs) were identified significantly associated with FLA, of which five were located in previously reported QTLs/genes and one was novel. We identified two causal gene loci for FLA, namely, OsFLA6 and OsFLA2; OsFLA6 was co-localized with the gene OsLIC. In addition, the accessions with large and small FLA values have corresponding high and low OsFLA6 expressions. OsFLA2TT allele could increase significantly the seed setting percentage in hybrid F1 seed production by field experiment. We also confirmed that the allele OsFLA2 TT increased the FLA compared with that of the isogenic line carrying allele OsFLA2 CC by transgenic complementation experiment. The allele frequencies of OsFLA6 GG and OsFLA2 TT decreased gradually with an increase in latitude in the Northern Hemisphere. Our results should facilitate the improvement of FLA of parents of hybrid rice.

18.
Theor Appl Genet ; 135(9): 3103-3115, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35896689

RESUMEN

KEY MESSAGE: Association mapping and phenotypic analysis of a diversity panel of 238 bread wheat accessions highlights differences in resistance against common vs. dwarf bunt and identifies genotypes valuable for bi-parental crosses. Common bunt caused by Tilletia caries and T. laevis was successfully controlled by seed dressings with systemic fungicides for decades, but has become a renewed threat to wheat yield and quality in organic agriculture where such treatments are forbidden. As the most efficient way to address this problem is the use of resistant cultivars, this study aims to broaden the spectrum of resistance sources available for breeders by identifying resistance loci against common bunt in bread wheat accessions of the USDA National Small Grains Collection. We conducted three years of artificially inoculated field trials to assess common bunt infection levels in a diversity panel comprising 238 wheat accessions for which data on resistance against the closely related pathogen Tilletia controversa causing dwarf bunt was already available. Resistance levels against common bunt were higher compared to dwarf bunt with 99 accessions showing [Formula: see text] 1% incidence. Genome-wide association mapping identified six markers significantly associated with common bunt incidence in regions already known to confer resistance on chromosomes 1A and 1B and novel loci on 2B and 7A. Our results show that resistance against common and dwarf bunt is not necessarily controlled by the same loci but we identified twenty accessions with high resistance against both diseases. These represent valuable new resources for research and breeding programs since several bunt races have already been reported to overcome known resistance genes.


Asunto(s)
Basidiomycota , Fungicidas Industriales , Pan , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Estados Unidos , United States Department of Agriculture
19.
Rice (N Y) ; 15(1): 31, 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35716230

RESUMEN

BACKGROUND: Sheath blight (ShB) disease caused by Rhizoctonia solani Kühn, is one of the most economically damaging rice (Oryza sativa L.) diseases worldwide. There are no known major resistance genes, leaving only partial resistance from small-effect QTL to deploy for cultivar improvement. Many ShB-QTL are associated with plant architectural traits detrimental to yield, including tall plants, late maturity, or open canopy from few or procumbent tillers, which confound detection of physiological resistance. RESULTS: To identify QTL for ShB resistance, 417 accessions from the Rice Diversity Panel 1 (RDP1), developed for association mapping studies, were evaluated for ShB resistance, plant height and days to heading in inoculated field plots in Arkansas, USA (AR) and Nanning, China (NC). Inoculated greenhouse-grown plants were used to evaluate ShB using a seedling-stage method to eliminate effects from height or maturity, and tiller (TN) and panicle number (PN) per plant. Potted plants were used to evaluate the RDP1 for TN and PN. Genome-wide association (GWA) mapping with over 3.4 million SNPs identified 21 targeted SNP markers associated with ShB which tagged 18 ShB-QTL not associated with undesirable plant architecture traits. Ten SNPs were associated with ShB among accessions of the Indica subspecies, ten among Japonica subspecies accessions, and one among all RDP1 accessions. Across the 18 ShB QTL, only qShB4-1 was not previously reported in biparental mapping studies and qShB9 was not reported in the GWA ShB studies. All 14 PN QTL overlapped with TN QTL, with 15 total TN QTL identified. Allele effects at the five TN QTL co-located with ShB QTL indicated that increased TN does not inevitably increase disease development; in fact, for four ShB QTL that overlapped TN QTL, the alleles increasing resistance were associated with increased TN and PN, suggesting a desirable coupling of alleles at linked genes. CONCLUSIONS: Nineteen accessions identified as containing the most SNP alleles associated with ShB resistance for each subpopulation were resistant in both AR and NC field trials. Rice breeders can utilize these accessions and SNPs to develop cultivars with enhanced ShB resistance along with increased TN and PN for improved yield potential.

20.
Front Plant Sci ; 13: 836723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300015

RESUMEN

Genetic pathogen control is an economical and sustainable alternative to the use of chemicals. In order to breed resistant varieties, information about potentially unused genetic resistance mechanisms is of high value. We phenotyped 8,316 genotypes of the winter wheat collection of the German Federal ex situ gene bank for Agricultural and Horticultural Crops, Germany, for resistance to powdery mildew (PM), Blumeria graminis f. sp. tritici, one of the most important biotrophic pathogens in wheat. To achieve this, we used a semi-automatic phenotyping facility to perform high-throughput detached leaf assays. This data set, combined with genotyping-by-sequencing (GBS) marker data, was used to perform a genome-wide association study (GWAS). Alleles of significantly associated markers were compared with SNP profiles of 171 widely grown wheat varieties in Germany to identify currently unexploited resistance conferring genes. We also used the Chinese Spring reference genome annotation and various domain prediction algorithms to perform a domain enrichment analysis and produced a list of candidate genes for further investigation. We identified 51 significantly associated regions. In most of these, the susceptible allele was fixed in the tested commonly grown wheat varieties. Eleven of these were located on chromosomes for which no resistance conferring genes have been previously reported. In addition to enrichment of leucine-rich repeats (LRR), we saw enrichment of several domain types so far not reported as relevant to PM resistance, thus, indicating potentially novel candidate genes for the disease resistance research and prebreeding in wheat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA