Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Mol Ecol ; : e17530, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282691

RESUMEN

Gene drives have great potential for suppression of pest populations and removal of exotic invasive species. CRISPR homing suppression drive is a powerful but unconfined drive, posing risks of uncontrolled spread. Thus, developing methods for confining a gene drive is of great significance. Tethered drive combines a confined system such as Toxin-Antidote Recessive Embryo drive with a strong drive such as a homing suppression drive. It can prevent the homing drive from spreading beyond the confined drive and can be constructed readily, giving it good prospects for future development. However, we have found that care must be taken when deploying tethered drive systems in some scenarios. Simulations of tethered drive in a panmictic population model reveal that successful deployment requires a proper release ratio between the two components, tailored to prevent the suppression drive from eliminating the confined system before it has the chance to spread. Spatial models where the population moves over a one-dimensional landscape display a more serious phenomenon of drive wave interference between the two tethered drive components. If the faster suppression drive wave catches up to the confined drive wave, success is still possible, but it is dependent on drive performance and ecological parameters. Two-dimensional simulations further restrict the parameter range for drive success. Thus, careful consideration must be given to drive performance and ecological conditions, as well as specific release proposals for potential application of tethered drive systems.

2.
Genes (Basel) ; 15(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39202374

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have revolutionized genome editing, significantly advancing the improvement of cultivated crop species. This review provides an overview of genome-edited crops that have either reached the market or received the necessary approvals but are not yet available to consumers. We analyze various genome-editing studies to understand the distribution of different genome-editing systems, the types of site-directed nucleases employed, and the geographical spread of these studies, with a specific focus on global and European contexts. Additionally, we examine the target crops involved. The review also outlines the multiple steps required for the legal acceptance of genome-edited crops within European jurisdictions. We conclude with suggestions for the future prospects of genome-editing research in Europe, aiming to streamline the approval process and enhance the development and adoption of genome-edited crops.


Asunto(s)
Sistemas CRISPR-Cas , Productos Agrícolas , Edición Génica , Plantas Modificadas Genéticamente , Edición Génica/métodos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Europa (Continente) , Plantas Modificadas Genéticamente/genética , Genoma de Planta , Humanos
3.
GM Crops Food ; 15(1): 212-221, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38963885

RESUMEN

The Kingdom of Eswatini is a Party to the Convention on Biological Diversity and to the Cartagena Protocol on Biosafety. As Party, Eswatini has domesticated these agreements by passing the Biosafety Act, of 2012 to provide for the safe handling, transfer, and use of living modified organisms (LMOs) in the country. The Act regulates living modified organisms to be used for confined field trials, commercial release, import, export, and transit, and for food, feed, and processing. Guidance is provided for prospective applicants before any application is made to the Competent Authority. This framework also provides for the regulation of emerging technologies such as synthetic biology and genome editing. The regulatory framework for living modified organisms aims to provide an enabling environment for the precautionary use of modern biotechnology and its products in the country in order to safeguard biological diversity and human health.


Asunto(s)
Organismos Modificados Genéticamente , Humanos , Biotecnología/legislación & jurisprudencia , Edición Génica/legislación & jurisprudencia , Edición Génica/métodos , Biología Sintética/legislación & jurisprudencia , Biología Sintética/métodos , Alimentos Modificados Genéticamente/normas , Plantas Modificadas Genéticamente/genética , Inocuidad de los Alimentos
4.
Agric Human Values ; 41(2): 583-597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756988

RESUMEN

Scholarly debate over the transformative potential of neoliberal, market-based, food movement strategies historically contrasts those who value their potential to reform the food-system from the inside against those who argue that their use concedes the primacy of the market, creates citizen-consumers, and undermines overall movement goals. While narrow case studies have provided important amendments, the legacy of such strategies requires impacts to be evaluated both contextually and more broadly than the specific activism. This study thus conceptualizes the 'case' of U.S. biotechnology market activism expansively, drawing on interviews with 25 activists from diverse organizations to investigate the legacy of two food-labeling movement strategies (one public and mandatory, one private and voluntary). The results support that the legacy of market strategies extends more broadly than the immediate initiative. They also confirm that the consequences of such neoliberalized strategies are most productively assessed contextually and applied, rather than categorically-as most clearly illustrated by the counterintuitive results of the failed mandatory labeling effort. Of the two market strategies, voluntary labeling demonstrated the most problematic relationship to broader movement goals of food system transformation, in part because of the greater potential for overlapping credence claims and in part due to the risks of niche market logic.

5.
Food Chem (Oxf) ; 8: 100201, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38577346

RESUMEN

The objective of this study was to develop a DNA-based method for the identification and tracking of edible oils, which is important for health management. Three different DNA extraction methods (CTAB, MBST kit, and manual hexane-based method) were used to obtain high-purity DNA from crude and refined soybean, maize, and canola oils. PCR was then conducted using specific primers to identify the presence of genes related to each oil type and to assess transgenicity. The results showed that DNA was present in crude and refined oils, but in very low amounts. However, using method 3 for DNA extraction provided sufficient quantity and quality of DNA for successful PCR amplification. The study concluded that the main challenge in DNA extraction from oils is the presence of PCR inhibitors, which can be overcome using the manual hexane-based method. Also, the examination of protein presence in the oils using SDS-PAGE did not indicate any protein bands.

6.
J Biotechnol ; 389: 68-77, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38663518

RESUMEN

Sustainable farming on ever-shrinking agricultural land and declining water resources for the growing human population is one of the greatest environmental and food security challenges of the 21st century. Conventional, age-old organic farming practices alone, and foods based on costly cellular agriculture, do not have the potential to be upscaled to meet the food supply challenges for feeding large populations. Additionally, agricultural practices relying on chemical inputs have a well-documented detrimental impact on human health and the environment. As the available farming methods have reached their productivity limits, new approaches to agriculture, combining friendly, age-old farming practices with modern technologies that exclude chemical interventions, are necessary to address the food production challenges. Growing genetically modified (GM) crops without chemical inputs can allow agricultural intensification with reduced adverse health and environmental impacts. Additionally, integrating high-value pleiotropic genes in their genetic improvement coupled with the use of modern agricultural technologies, like robotics and artificial intelligence (AI), will further improve productivity. Such 'organic-GM' crops will offer consumers healthy, agrochemical-free GM produce. We believe these agricultural practices will lead to the beginning of a potentially new chemical-free GM agricultural revolution in the era of Agriculture 4.0 and help meet the targets of the United Nations Sustainable Development Goals (SDGs). Furthermore, given the advancement in the genome editing (GE) toolbox, we ought to develop a new category of 'trait-reversible GM crops' to avert the fears of those who believe in ecological damage by GM crops. Thus, in this article, we advocate farming with no or minimal chemical use by combining chemical-free organic farming with the existing biofortified and multiple stress tolerant GM crops, while focusing on the development of novel 'biofertilizer-responsive GE crops' and 'trait-reversible GE crops' for the future.


Asunto(s)
Productos Agrícolas , Edición Génica , Plantas Modificadas Genéticamente , Desarrollo Sostenible , Naciones Unidas , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Edición Génica/métodos , Humanos , Agricultura/métodos
7.
EFSA J ; 22(4): e8744, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634010

RESUMEN

As part of the risk assessment (RA) requirements for genetically modified (GM) plants, according to Regulation (EU) No 503/2013 and the EFSA guidance on the RA of food and feed from GM plants (EFSA GMO Panel 2011), applicants need to perform a molecular characterisation of the DNA sequences inserted in the GM plant genome. This Technical Note to the applicants puts together requirements and recommendations for the quality assessment of the methodology, analysis and reporting when DNA sequencing is used for the molecular characterisation of GM plants. In particular, it applies to the use of Sanger sequencing and next-generation sequencing for the characterisation of the inserted genetic material and its flanking regions at each insertion site, the determination of the copy number of all detectable inserts and the analysis of the genetic stability of the inserts. This updated document replaces the EFSA 2018 Technical Note and reflects the current knowledge in scientific-technical methods for generating and verifying, in a standardised manner, DNA sequencing data in the context of RA of GM plants. It does not take into consideration the verification and validation of the detection method which remains under the remit of the Joint Research Centre (JRC).

8.
Front Bioeng Biotechnol ; 12: 1373473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38600947

RESUMEN

This study analyzes Paraguay's biotechnology regulatory framework and its alignment with international standards amid biotechnological advancements. It also identifies areas of improvement for enhancing framework effectiveness. Through this work, we aim to provide a resource for policymakers, stakeholders, and researchers navigating Paraguay's biotechnology regulation.

9.
Foods ; 13(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338508

RESUMEN

The EU's regulatory framework for genetically modified organisms (GMOs) was developed for "classical" transgenic GMOs, yet advancements in so-called "new genomic techniques (NGTs)" have led to implementation challenges regarding detection and identification. As traceability can complement detection and identification strategies, improvements to the existing traceability strategy for GMOs are investigated in this study. Our results are based on a comprehensive analysis of existing traceability systems for globally traded agricultural products, with a focus on soy. Alternative traceability strategies in other sectors were also analysed. One focus was on traceability strategies for products with characteristics for which there are no analytical verification methods. Examples include imports of "conflict minerals" into the EU. The so-called EU Conflict Minerals Regulation requires importers of certain raw materials to carry out due diligence in the supply chain. Due diligence regulations, such as the EU's Conflict Minerals Regulation, can legally oblige companies to take responsibility for certain risks in their supply chains. They can also require the importer to prove the regional origin of imported goods. The insights from those alternative traceability systems are transferred to products that might contain GMOs. When applied to the issue of GMOs, we propose reversing the burden of proof: All companies importing agricultural commodities must endeavour to identify risks of unauthorised GMOs (including NGTs) in their supply chain and, where appropriate, take measures to minimise the risk to raw material imports. The publication concludes that traceability is a means to an end and serves as a prerequisite for due diligence in order to minimise the risk of GMO contamination in supply chains. The exemplary transfer of due diligence to a company in the food industry illustrates the potential benefits of mandatory due diligence, particularly for stakeholders actively managing non-GMO supply chains.

10.
GM Crops Food ; 15(1): 51-66, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38402595

RESUMEN

Labels are influential signals in the marketplace intended to inform and to eliminate buyer confusion. Despite this, food labels continue to be the subject of debate. None more so than non-GMO (genetically modified organisms) labels. This manuscript provides a timeline of the evolution of GMO labels beginning with the early history of the anti-GMO movement to the current National Bioengineered Food Disclosure Standard in the United States. Using media and market intelligence data collected through Buzzsumo™ and Mintel™, public discourse of GMOs is analyzed in relation to sociopolitical events and the number of new food products with anti-GMO labels, respectively. Policy document and publication data is collected with Overton™ to illustrate the policy landscape for the GMO topic and how it has changed over time. Analysis of the collective data illustrates that while social media and policy engagement around the topic of GMOs has diminished over time, the number of new products with a GMO-free designation continues to grow. While discourse peaked at one point, and has since declined, our results suggest that the legacy of an anti-GMO narrative remains firmly embedded in the social psyche, evidenced by the continuing rise of products with GMO-free designation. Campaigns for GMO food labels to satisfy consumers' right to know were successful and the perceived need for this information now appears to be self-sustaining.


Asunto(s)
Alimentos Modificados Genéticamente , Humanos , Estados Unidos , Plantas Modificadas Genéticamente , Etiquetado de Alimentos , Política
11.
Viruses ; 15(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38005856

RESUMEN

Viral disinfection is important for medical facilities, the food industry, and the veterinary field, especially in terms of controlling virus outbreaks. Therefore, standardized methods and activity levels are available for these areas. Usually, disinfectants used in these areas are characterized by their activity against test organisms (i.e., viruses, bacteria, and/or yeasts). This activity is usually determined using a suspension test in which the test organism is incubated with the respective disinfectant in solution to assess its bactericidal, yeasticidal, or virucidal activity. In addition, carrier methods that more closely reflect real-world applications have been developed, in which microorganisms are applied to the surface of a carrier (e.g., stainless steel frosted glass, or polyvinyl chloride (PVC)) and then dried. However, to date, no standardized methods have become available for addressing genetically modified vectors or disinfection-resistant oncolytic viruses such as the H1-parvovirus. Particularly, such non-enveloped viruses, which are highly resistant to disinfectants, are not taken into account in European standards. This article proposes a new activity claim known as "virucidal activity PLUS", summarizes the available methods for evaluating the virucidal activity of chemical disinfectants against genetically modified organisms (GMOs) using current European standards, including the activity against highly resistant parvoviridae such as the adeno-associated virus (AAV), and provides guidance on the selection of disinfectants for pharmaceutical manufacturers, laboratories, and clinical users.


Asunto(s)
Desinfectantes , Infecciones por Parvoviridae , Parvovirus , Virus , Humanos , Desinfectantes/farmacología , Desinfección/métodos , Virus/genética
12.
Foods ; 12(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38002213

RESUMEN

The proliferation of genetically modified organisms (GMOs) presents challenges to GMO testing laboratories and policymakers. Traditional methods, like quantitative real-time PCR (qPCR), face limitations in quantifying the increasing number of GMOs in a single sample. Digital PCR (dPCR), specifically multiplexing, offers a solution by enabling simultaneous quantification of multiple GMO targets. This study explores the use of the Naica six-color Crystal dPCR platform for quantifying five GM soybean lines within a single six-plex assay. Two four-color assays were also developed for added flexibility. These assays demonstrated high specificity, sensitivity (limit of detection or LOD < 25 copies per reaction) and precision (bias to an estimated copy number concentration <15%). Additionally, two approaches for the optimization of data analysis were implemented. By applying a limit-of-blank (LOB) correction, the limit of quantification (LOQ) and LOD could be more precisely determined. Pooling of reactions additionally lowered the LOD, with a two- to eight-fold increase in sensitivity. Real-life samples from routine testing were used to confirm the assays' applicability for quantifying GM soybean lines in complex samples. This study showcases the potential of the six-color Crystal dPCR platform to revolutionize GMO testing, facilitating comprehensive analysis of GMOs in complex samples.

13.
Am J Bioeth ; : 1-11, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695806

RESUMEN

Many writers in bioethics, science, and medicine contend that embryo selection is a morally better way of avoiding genetic disorders then gene editing, as the latter has risks that the former does not. We argue that one reason to use gene editing is that in many cases it would be better for the person who would develop from the edited embryo, so that not to have done it would have been worse for that person. By contrast, embryo selection is never better for the person who develops from the selected embryo. This reason to use gene editing has, however, been challenged on two grounds: first, that it makes no difference, morally, whether a bad effect is worse for someone, or a good effect better for someone; and, second, that beneficent gene editing would not be unequivocally better for the person who would develop from the edited embryo. We argue that both of these objections can be satisfactorily answered and thus that there is indeed a significant moral reason, at least in some cases, to use gene editing rather than embryo selection.

14.
Mol Ecol ; 32(20): 5673-5694, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37694511

RESUMEN

With their ability to rapidly increase in frequency, gene drives can be used to modify or suppress target populations after an initial release of drive individuals. Recent advances have revealed many possibilities for different types of drives, and several of these have been realized in experiments. These drives have advantages and disadvantages related to their ease of construction, confinement and capacity to be used for modification or suppression. Though characteristics of these drives have been explored in modelling studies, assessment in continuous space environments has been limited, often focusing on outcomes rather than fundamental properties. Here, we conduct a comparative analysis of many different gene drive types that have the capacity to form a wave of advance in continuous space using individual-based simulations in continuous space. We evaluate the drive wave speed as a function of drive performance and ecological parameters, which reveals substantial differences between drive performance in panmictic versus spatial environments. In particular, we find that suppression drive waves are uniquely vulnerable to fitness costs and undesired CRISPR cleavage activity in embryos by maternal deposition. Some drives, however, retain robust performance even with widely varying efficiency parameters. To gain a better understanding of drive waves, we compare their panmictic performance and find that the rate of wild-type allele removal is correlated with drive wave speed, though this is also affected by other factors. Overall, our results provide a useful resource for understanding the performance of drives in spatially continuous environments, which may be most representative of potential drive deployment in many relevant scenarios.


Asunto(s)
Tecnología de Genética Dirigida , Humanos , Tecnología de Genética Dirigida/métodos , Sistemas CRISPR-Cas
15.
Front Vet Sci ; 10: 1180621, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601766

RESUMEN

Gene editing tools have become an indispensable part of research into the fundamental aspects of cell biology. With a vast body of literature having been generated based on next generation sequencing technologies, keeping track of this ever-growing body of information remains challenging. This necessitates the translation of genomic data into tangible applications. In order to address this objective, the generated Next Generation Sequencing (NGS) data forms the basis for targeted genome editing strategies, employing known enzymes of various cellular machinery, in generating organisms with specifically selected phenotypes. This review focuses primarily on CRISPR/Cas9 technology in the context of its advantages over Zinc finger proteins (ZNF) and Transcription activator-like effector nucleases (TALEN) and meganucleases mutagenesis strategies, for use in agricultural and veterinary applications. This review will describe the application of CRISPR/Cas9 in creating modified organisms with custom-made properties, without the undesired non-targeted effects associated with virus vector vaccines and bioactive molecules produced in bacterial systems. Examples of the successful and unsuccessful applications of this technology to plants, animals and microorganisms are provided, as well as an in-depth look into possible future trends and applications in vaccine development, disease resistance and enhanced phenotypic traits will be discussed.

16.
Foods ; 12(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37297375

RESUMEN

People who received a more personally relevant message were motivated to pay closer attention to the information and actively process it, which ultimately may stimulate behavioral changes. Therefore, preferred information content has been used in many disciplines to promote effective communication. However, no study has explored the impact of preferred information formats (e.g., word, infographic, and video) concerning food production. With the increasing application of biotechnology to food production, a complex topic to communicate, and evidence that consumers were willing to pay less for bioengineered foods, efficient communication was important to impact consumer preferences. The results of this study showed that consumers mostly preferred information format is writing. Providing information in video format did improve consumers' trust in information about food biotechnology. However, receiving information in consumers' preferred formats did not significantly change consumers' WTP for genetically engineered orange juice.

17.
Mol Biol Rep ; 50(6): 4813-4822, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37031325

RESUMEN

BACKGROUND: Reliable and efficient methods for detecting genetically modified organisms (GMOs) in unprocessed and processed food will be essential for establishing an effective system for traceability all along the supply chain. It is important to understand the detection of GMOs following microwave treatment, which is a common processing method used in various food products such as flours. Therefore, this study aimed to detect the presence of Cauliflower mosaic virus (CaMV) 35S promoter (P-35S), Figwort mosaic virus (FMV) promoter (P-FMV), and T-NOS (nopaline synthase terminator) genetic elements in DNA samples from untreated and microwave-treated genetically modified (GM) cereal flour samples using the qualitative polymerase chain reaction (PCR) based screening method. METHODS AND RESULTS: DNA was extracted from all samples, and the efficiency of the qualitative PCR screening technique was tested by the verification studies. We performed an inhibition study with plant-specific actin (ACT) gene to the effectiveness of confirming the DNA extraction method. Then, we made the confirming of the qualitative PCR system by method performance testing criteria. The high quality and quantity of the DNA extracts from untreated and microwave-treated flour samples indicated the applicability of qualitative PCR screening assays. The results showed that microwave radiation does not significantly impact the genetic element screening in flour materials. CONCLUSION: Untreated and microwave-treated flour samples had amplifiable DNA for the simultaneous screening of three genetic elements. The qualitative screening tests conducted in this study produced dependable outcomes, thus, can be successfully used for monitoring in control laboratories.


Asunto(s)
Caulimovirus , Grano Comestible , Caulimovirus/genética , Plantas Modificadas Genéticamente/genética , Grano Comestible/genética , Microondas , Harina , ADN
18.
Microbiol Res ; 271: 127360, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36931127

RESUMEN

Environmental pollutants seriously threaten the ecosystem and health of various life forms, particularly with the rapid industrialization and emerging population. Conventionally physical and chemical strategies are being opted for the removal of these pollutants. Bioremediation, through several advancements, has been a boon to combat the existing threat faced today. Microbes with enzymes degrade various pollutants and utilize them as a carbon and energy source. With the existing demand and through several research explorations, Genetically Engineered Microorganisms (GEMs) have paved to be a successful approach to abate pollution through bioremediation. The genome of the microbe determines its biodegradative nature. Thus, methods including pure culture techniques and metagenomics are used for analyzing the genome of microbes, which provides information about catabolic genes. The information obtained along with the aid of biotechnology helps to construct GEMs that are cost-effective and safer thereby exhibiting higher degradation of pollutants. The present review focuses on the role of microbes in the degradation of environmental pollutants, role of evolution in habitat and adaptation of microbes, microbial degenerative genes, their pathways, and the efficacy of recombinant DNA (rDNA) technology for creating GEMs for bioremediation. The present review also provides a gist of existing GEMs for bioremediation and their limitations, thereby providing a future scope of implementation of these GEMs for a sustainable environment.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Ingeniería Genética , Biodegradación Ambiental , Genoma Microbiano
19.
Mol Genet Genomics ; 298(3): 507-520, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840794

RESUMEN

Genome editing through the alteration of nucleotide sequence has already revolutionized the field of site-directed mutagenesis for a decade. However, research in terms of precision and efficacy in targeting the loci and reduction in off-target mutation has always been a priority when DNA is involved. Therefore, recent research interest lies in utilizing the same precision technology but results in non-transgenic. In this review article, different technological advancements have been explained, which may provide a holistic concept of and need for transgene-free genome editing. The advantage and lacunas of each technology have been critically discussed to deliver a transparent view to the readers. A systematic analysis and evaluation of published research articles implied that researchers across the globe are putting continuous efforts in this direction to eliminate the hindrance of transgenic regulation. Nevertheless, this approach has severe implications legitimate for mitigating the conflict of acceptance, reliability, and generosity of gene-editing technology and sustainably retorting to the expanding global population feeding challenges.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Reproducibilidad de los Resultados , Plantas/genética , ADN , Genoma de Planta/genética , Plantas Modificadas Genéticamente/genética
20.
Foods ; 12(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36766007

RESUMEN

Nowadays, with the rapid development of biotechnology, the CRISPR/Cas technology in particular has produced many new traits and products. Therefore, rapid and high-resolution detection methods for biotechnology products are urgently needed, which is extremely important for safety regulation. Recently, in addition to being gene editing tools, CRISPR/Cas systems have also been used in detection of various targets. CRISPR/Cas systems can be successfully used to detect nucleic acids, proteins, metal ions and others in combination with a variety of technologies, with great application prospects in the future. However, there are still some challenges need to be addressed. In this review, we will list some detection methods of genetically modified (GM) crops, gene-edited crops and single-nucleotide polymorphisms (SNPs) based on CRISPR/Cas systems, hoping to bring some inspiration or ideas to readers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA