Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.345
Filtrar
1.
Integr Zool ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267349

RESUMEN

Pancreatic ribonuclease (RNase1), a digestive enzyme produced by the pancreas, is associated with the functional adaptation of dietary habits and is regarded as an attractive model system for studies of molecular evolution. In this study, we identified 218 functional genes and 48 pseudogenes from 114 species that span all four Cetartiodactyla lineages: two herbivorous lineages (Ruminantia and Tylopoda) and two non-herbivorous lineages (Cetancodonta and Suoidea). Multiple RNase1 genes were detected in all species of the two herbivorous lineages, and phylogenetic and genomic location analyses demonstrated that independent gene duplication events occurred in Ruminantia and Tylopoda. In Ruminantia, the gene duplication events occurred in the ancestral branches of the lineage in the Middle Eocene, a time of increasing climatic seasonality during which Ruminantia rapidly radiated. In contrast, only a single RNase1 gene was observed in the species of the two non-herbivorous lineages (Cetancodonta and Suoidea), suggesting that the previous Cetacea-specific loss hypothesis should be rejected. Moreover, the duplicated genes of RNase1 in the two herbivorous lineages (Ruminantia and Tylopoda) may have undergone functional divergence. In combination with the temporal coincidence between gene replication and the enhanced climatic seasonality during the Middle Eocene, this functional divergence suggests that RNase1 gene duplication was beneficial for Ruminantia to use the limited quantities of sparse fibrous vegetation and adapt to seasonal changes in climate. In summary, the findings indicate a complex and intriguing evolutionary pattern of RNase1 in Cetartiodactyla and demonstrate the molecular mechanisms by which organisms adapt to the environment.

2.
J Biochem ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283706

RESUMEN

During the fertilization of fish eggs, the hardening of the egg envelope is mediated by transglutaminase (hTGase). After fertilization, TGase undergoes processing. We isolated hTGase from extracts of unfertilized and water-activated rainbow trout eggs. Rainbow trout hTGase (Rt-hTGase) appeared as an 80 kDa protein, and its processed form was 55 kDa. Their N-terminal amino acid sequences were nearly identical, suggesting processing in the C-terminal region. The specific activities were not significantly different, indicating that C-terminal processing does not activate the enzyme itself. We cloned the cDNA by reverse transcription polymerase chain reaction (RT-PCR) using degenerate primers followed by RACE-PCR. The deduced amino acid sequence of the cDNA was similar to that of factor XIII subunit A (FXIIIA). Molecular phylogenetic and gene syntenic analyses clearly showed that hTGase was produced by duplication of FXIIIA during the evolution to Teleostei. The 55 kDa processed form of Rt-hTGase is predominantly composed of an enzyme domain predicted from the amino acid sequence of the cDNA. It is hypothesized that the C-terminal domain of Rt-hTGase binds to egg envelope proteins, and that processing allows the enzyme to move freely within the egg envelope, increasing substrate-enzyme interaction and thereby accelerating hardening.

3.
aBIOTECH ; 5(3): 375-380, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39279860

RESUMEN

Rice (Oryza sativa) produces numerous diterpenoid phytoalexins that are important in defense against pathogens. Surprisingly, despite extensive previous investigations, a major group of such phytoalexins, the abietoryzins, were only recently reported. These aromatic abietanes are presumably derived from ent-miltiradiene, but such biosynthetic capacity has not yet been reported in O. sativa. While wild rice has been reported to contain such an enzyme, specifically ent-kaurene synthase-like 10 (KSL10), the only characterized ortholog from O. sativa (OsKSL10), specifically from the well-studied cultivar (cv.) Nipponbare, instead has been shown to make ent-sandaracopimaradiene, precursor to the oryzalexins. Notably, in many other cultivars, OsKSL10 is accompanied by a tandem duplicate, termed here OsKSL14. Biochemical characterization of OsKLS14 from cv. Kitaake demonstrates that this produces the expected abietoryzin precursor ent-miltiradiene. Strikingly, phylogenetic analysis of OsKSL10 across the rice pan-genome reveals that from cv. Nipponbare is an outlier, whereas the alleles from most other cultivars group with those from wild rice, suggesting that these also might produce ent-miltiradiene. Indeed, OsKSL10 from cv. Kitaake exhibits such activity as well, consistent with its production of abietoryzins but not oryzalexins. Similarly consistent with these results is the lack of abietoryzin production by cv. Nipponbare. Although their equivalent product outcome might suggest redundancy, OsKSL10 and OsKSL14 were observed to exhibit distinct expression patterns, indicating such differences may underlie retention of these duplicated genes. Regardless, the results reported here clarify abietoryzin biosynthesis and provide insight into the evolution of rice diterpenoid phytoalexins. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00167-3.

4.
Mar Biotechnol (NY) ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259315

RESUMEN

The excessive use of antibiotics in aquaculture favors the natural selection of multidrug-resistant bacteria, and antimicrobial peptides (AMPs) could be a promising alternative to this problem. The most studied AMPs in teleost fish are piscidins, hepcidins, and ß-defensins. In this work, we have found a new gene (defb2) encoding a type 2 ß-defensin in the genome of gilthead seabream, a species chosen for its economic interest in aquaculture. Its open reading frame (192 bp) encodes a protein (71 amino acids) that undergoes proteolytic cleavage to obtain the functional mature peptide (42 amino acids). The genetic structure in three exons and two introns and the six characteristic cysteines are conserved as the main signature of this protein family. In the evolutionary analysis, synteny shows a preservation of chromosomal localization and the phylogenetic tree constructed exposes the differences between both types of ß-defensin as well as the similarities between seabream and European seabass. In relation to its basal expression, ß-defensin 2 is mostly expressed in the intestine, thymus, skin, and gonads of the gilthead seabream (Sparus aurata). In head kidney leucoytes (HKLs), the expression was very low and did not change significantly when stimulated with various immunocompetent agents. However, the expression was significantly down-regulated in the liver, head-kidney, and blood 4 h post-injection with the fish pathogen Vibrio harveyi. When infected with nodavirus, the expression was downregulated in brain at 7 days post-infection. These results denote a possible complementarity between the expression patterns of ß-defensins and hepcidins. Further studies are needed to analyze gene duplications and expression patterns of ß-defensins and describe their mechanism of action in seabream and other teleost fish.

5.
BMC Biol ; 22(1): 170, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135200

RESUMEN

BACKGROUND: Tubulins are major components of the eukaryotic cytoskeletons that are crucial in many cellular processes. Ciliated protists comprise one of the oldest eukaryotic lineages possessing cilia over their cell surface and assembling many diverse microtubular structures. As such, ciliates are excellent model organisms to clarify the origin and evolution of tubulins in the early stages of eukaryote evolution. Nonetheless, the evolutionary history of the tubulin subfamilies within and among ciliate classes is unclear. RESULTS: We analyzed the evolutionary pattern of ciliate tubulin gene family based on genomes/transcriptomes of 60 species covering 10 ciliate classes. Results showed: (1) Six tubulin subfamilies (α_Tub, ß_Tub, γ_Tub, δ_Tub, ε_Tub, and ζ_Tub) originated from the last eukaryotic common ancestor (LECA) were observed within ciliates. Among them, α_Tub, ß_Tub, and γ_Tub were present in all ciliate species, while δ_Tub, ε_Tub, and ζ_Tub might be independently lost in some species. (2) The evolutionary history of the tubulin subfamilies varied. Evolutionary history of ciliate γ_Tub, δ_Tub, ε_Tub, and ζ_Tub showed a certain degree of consistency with the phylogeny of species after the divergence of ciliate classes, while the evolutionary history of ciliate α_Tub and ß_Tub varied among different classes. (3) Ciliate α- and ß-tubulin isoforms could be classified into an "ancestral group" present in LECA and a "divergent group" containing only ciliate sequences. Alveolata-specific expansion events probably occurred within the "ancestral group" of α_Tub and ß_Tub. The "divergent group" might be important for ciliate morphological differentiation and wide environmental adaptability. (4) Expansion events of the tubulin gene family appeared to be consistent with whole genome duplication (WGD) events in some degree. More Paramecium-specific tubulin expansions were detected than Tetrahymena-specific ones. Compared to other Paramecium species, the Paramecium aurelia complex underwent a more recent WGD which might have experienced more tubulin expansion events. CONCLUSIONS: Evolutionary history among different tubulin gene subfamilies seemed to vary within ciliated protists. And the complex evolutionary patterns of tubulins among different ciliate classes might drive functional diversification. Our investigation provided meaningful information for understanding the evolution of tubulin gene family in the early stages of eukaryote evolution.


Asunto(s)
Cilióforos , Evolución Molecular , Filogenia , Tubulina (Proteína) , Tubulina (Proteína)/genética , Cilióforos/genética , Cilióforos/clasificación , Familia de Multigenes , Microtúbulos
6.
bioRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39091816

RESUMEN

Functional innovation at the protein level is a key source of evolutionary novelties. The constraints on functional innovations are likely to be highly specific in different proteins, which are shaped by their unique histories and the extent of global epistasis that arises from their structures and biochemistries. These contextual nuances in the sequence-function relationship have implications both for a basic understanding of the evolutionary process and for engineering proteins with desirable properties. Here, we have investigated the molecular basis of novel function in a model member of an ancient, conserved, and biotechnologically relevant protein family. These Major Facilitator Superfamily sugar porters are a functionally diverse group of proteins that are thought to be highly plastic and evolvable. By dissecting a recent evolutionary innovation in an α-glucoside transporter from the yeast Saccharomyces eubayanus, we show that the ability to transport a novel substrate requires high-order interactions between many protein regions and numerous specific residues proximal to the transport channel. To reconcile the functional diversity of this family with the constrained evolution of this model protein, we generated new, state-of-the-art genome annotations for 332 Saccharomycotina yeast species spanning approximately 400 million years of evolution. By integrating phylogenetic and phenotypic analyses across these species, we show that the model yeast α-glucoside transporters likely evolved from a multifunctional ancestor and became subfunctionalized. The accumulation of additive and epistatic substitutions likely entrenched this subfunction, which made the simultaneous acquisition of multiple interacting substitutions the only reasonably accessible path to novelty.

7.
Plant Cell ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158598

RESUMEN

Duplicated genes are thought to follow one of three evolutionary trajectories that resolve their redundancy: neofunctionalization, subfunctionalization or pseudogenization. Differences in expression patterns have been documented for many duplicated gene pairs and interpreted as evidence of subfunctionalization and a loss of redundancy. However, little is known about the functional impact of such differences and about their molecular basis. Here, we investigate the genetic and molecular basis for the partial loss of redundancy between the two BLADE-ON-PETIOLE genes BOP1 and BOP2 in Red Shepherd's Purse (Capsella rubella) compared to Arabidopsis (Arabidopsis thaliana). While both genes remain almost fully redundant in A. thaliana, BOP1 in C. rubella can no longer ensure wild-type floral organ numbers and suppress bract formation, due to an altered expression pattern in the region of the cryptic bract primordium. We use two complementary approaches, transgenic rescue of A. thaliana atbop1 atbop2 double mutants and deletions in the endogenous AtBOP1 promoter, to demonstrate that several BOP1 promoter regions containing conserved non-coding sequences interact in a non-additive manner to control BOP1 expression in the bract primordium, and that changes in these interactions underlie the evolutionary divergence between C. rubella and A. thaliana BOP1 expression and activity. Similarly, altered interactions between cis-regulatory regions underlie the divergence in functional promoter architecture related to the control of floral organ abscission by BOP1. These findings highlight the complexity of promoter architecture in plants and suggest that changes in the interactions between cis-regulatory elements are key drivers for evolutionary divergence in gene expression and the loss of redundancy.

8.
Stress Biol ; 4(1): 35, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136853

RESUMEN

Cytokinin oxidase/dehydrogenase (CKX) is the key enzyme that has been observed to catalyze irreversible inactivation of cytokinins and thus modulate cytokinin levels in plants. CKX gene family is known to have few members which are, expanded in the genome mainly due to duplication events. A total of nine MiCKXs were identified in Morus indica cv K2 with almost similar gene structures and conserved motifs and domains. The cis-elements along with expression analysis of these MiCKXs revealed their contrasting and specific role in plant development across different developmental stages. The localization of these enzymes in ER and Golgi bodies signifies their functional specification and property of getting modified post-translationally to carry out their activities. The overexpression of MiCKX4, an ortholog of AtCKX4, displayed longer primary root and higher number of lateral roots. Under ABA stress also the transgenic lines showed higher number of lateral roots and tolerance against drought stress as compared to wild-type plants. In this study, the CKX gene family members were analyzed bioinformatically for their roles under abiotic stresses.

9.
bioRxiv ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39091803

RESUMEN

Many proteins form paralogous multimers - molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), a α2ß2 heterotetramer that evolved from a homodimeric ancestor after a gene duplication. We show that the mechanisms for this evolutionary transition was simple. One hydrophobic substitution in subunit ß after the gene duplication was sufficient to cause the ancestral dimer to homotetramerize with high affinity across a new interface. During this same interval, a single-residue deletion in subunit α at the older interface conferred specificity for the heterotetrameric form and the trans-orientation of subunits within it. These sudden transitions in stoichiometry and specificity were possible because the interfaces in Hb are isologous - involving the same surface patch on interacting subunits, rotated 180° relative to each other - but the symmetry is slightly imperfect. This architecture amplifies the impacts of individual mutations on stoichiometry and specificity, especially in higher-order complexes, and allows single substitutions to differentially affect heteromeric vs homomeric interactions. Many multimers are isologous, and symmetry in proteins is always imperfect; our findings therefore suggest that elaborate and specific molecular complexes may often evolve via simple genetic and physical mechanisms.

10.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125724

RESUMEN

Auxin Response Factors (ARFs) make up a plant-specific transcription factor family that mainly couples perception of the phytohormone, auxin, and gene expression programs and plays an important and multi-faceted role during plant growth and development. Lemongrass (Cymbopogon flexuosus) is a representative Cymbopogon species widely used in gardening, beverages, fragrances, traditional medicine, and heavy metal phytoremediation. Biomass yield is an important trait for several agro-economic purposes of lemongrass, such as landscaping, essential oil production, and phytoremediation. Therefore, we performed gene mining of CfARFs and identified 26 and 27 CfARF-encoding genes in each of the haplotype genomes of lemongrass, respectively. Phylogenetic and domain architecture analyses showed that CfARFs can be divided into four groups, among which groups 1, 2, and 3 correspond to activator, repressor, and ETTN-like ARFs, respectively. To identify the CfARFs that may play major roles during the growth of lemongrass plants, RNA-seq was performed on three tissues (leaf, stem, and root) and four developmental stages (3-leaf, 4-leaf, 5-leaf. and mature stages). The expression profiling of CfARFs identified several highly expressed activator and repressor CfARFs and three CfARFs (CfARF3, 18, and 35) with gradually increased levels during leaf growth. Haplotype-resolved transcriptome analysis revealed that biallelic expression dominance is frequent among CfARFs and contributes to their gene expression patterns. In addition, co-expression network analysis identified the modules enriched with CfARFs. By establishing orthologous relationships among CfARFs, sorghum ARFs, and maize ARFs, we showed that CfARFs were mainly expanded by whole-genome duplications, and that the duplicated CfARFs might have been divergent due to differential expression and variations in domains and motifs. Our work provides a detailed catalog of CfARFs in lemongrass, representing a first step toward characterizing CfARF functions, and may be useful in molecular breeding to enhance lemongrass plant growth.


Asunto(s)
Cymbopogon , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Filogenia , Proteínas de Plantas , Cymbopogon/genética , Cymbopogon/metabolismo , Cymbopogon/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Haplotipos
11.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39136558

RESUMEN

Sex chromosomes display remarkable diversity and variability among vertebrates. Compared with research on the X/Y and Z/W chromosomes, which have long evolutionary histories in mammals and birds, studies on the sex chromosomes at early evolutionary stages are limited. Here, we precisely assembled the genomes of homozygous XX female and YY male Lanzhou catfish (Silurus lanzhouensis) derived from an artificial gynogenetic family and a self-fertilized family, respectively. Chromosome 24 (Chr24) was identified as the sex chromosome based on resequencing data. Comparative analysis of the X and Y chromosomes showed an approximate 320 kb Y-specific region with a Y-specific duplicate of anti-Mullerian hormone type II receptor (amhr2y), which is consistent with findings in 2 other Silurus species but on different chromosomes (Chr24 of Silurus meridionalis and Chr5 of Silurus asotus). Deficiency of amhr2y resulted in male-to-female sex reversal, indicating that amhr2y plays a male-determining role in S. lanzhouensis. Phylogenetic analysis and comparative genomics revealed that the common sex-determining gene amhr2y was initially translocated to Chr24 of the Silurus ancestor along with the expansion of transposable elements. Chr24 was maintained as the sex chromosome in S. meridionalis and S. lanzhouensis, whereas a sex-determining region transition triggered sex chromosome turnover from Chr24 to Chr5 in S. asotus. Additionally, gene duplication, translocation, and degeneration were observed in the Y-specific regions of Silurus species. These findings present a clear case for the early evolutionary trajectory of sex chromosomes, including sex-determining gene origin, repeat sequence expansion, gene gathering and degeneration in sex-determining region, and sex chromosome turnover.


Asunto(s)
Bagres , Procesos de Determinación del Sexo , Animales , Masculino , Femenino , Bagres/genética , Evolución Molecular , Filogenia , Cromosomas Sexuales/genética , Cromosoma Y/genética , Genoma , Cromosoma X/genética , Receptores de Péptidos , Receptores de Factores de Crecimiento Transformadores beta
12.
bioRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39091791

RESUMEN

Many remarkable innovations have repeatedly occurred across vast evolutionary distances. When convergent traits emerge on the tree of life, they are sometimes driven by the same underlying gene families, while other times many different gene families are involved. Conversely, a gene family may be repeatedly recruited for a single trait or many different traits. To understand the general rules governing convergence at both genomic and phenotypic levels, we systematically tested associations between 56 binary metabolic traits and gene count in 14,710 gene families from 993 species of Saccharomycotina yeasts. Using a recently developed phylogenetic approach that reduces spurious correlations, we discovered that gene family expansion and contraction was significantly linked to trait gain and loss in 45/56 (80%) of traits. While 601/746 (81%) of significant gene families were associated with only one trait, we also identified several 'keystone' gene families that were significantly associated with up to 13/56 (23%) of all traits. These results indicate that metabolic innovations in yeasts are governed by a narrow set of major genetic elements and mechanisms.

13.
BMC Genomics ; 25(1): 755, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095713

RESUMEN

BACKGROUND: China is the hotspot of global freshwater crab diversity, but their wild populations are facing severe pressures associated with anthropogenic factors, necessitating the need to map their taxonomic and genetic diversity and design conservation policies. RESULTS: Herein, we sequenced the mitochondrial genome of a Chinese freshwater crab species Bottapotamon fukienense, and found that it is fragmented into two chromosomes. We confirmed that fragmentation was not limited to a single specimen or population. Chromosome 1 comprised 15,111 base pairs (bp) and there were 26 genes and one pseudogene (pseudo-nad1) encoded on it. Chromosome 2 comprised 8,173 bp and there were 12 genes and two pseudogenes (pseudo-trnL2 and pseudo-rrnL) encoded on it. Combined, they comprise the largest mitogenome (23,284 bp) among the Potamidae. Bottapotamon was the only genus in the Potamidae dataset exhibiting rearrangements of protein-coding genes. Bottapotamon fukienense exhibited average rates of sequence evolution in the dataset and did not differ in selection pressures from the remaining Potamidae. CONCLUSIONS: This is the first experimentally confirmed fragmentation of a mitogenome in crustaceans. While the mitogenome of B. fukienense exhibited multiple signs of elevated mitogenomic architecture evolution rates, including the exceptionally large size, duplicated genes, pseudogenisation, rearrangements of protein-coding genes, and fragmentation, there is no evidence that this is matched by elevated sequence evolutionary rates or changes in selection pressures.


Asunto(s)
Genoma Mitocondrial , Animales , Cromosomas/genética , Filogenia , Evolución Molecular , Braquiuros/genética , Braquiuros/clasificación , Seudogenes
15.
J Comput Biol ; 31(9): 815-833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39088355

RESUMEN

Gene duplication has a central role in evolution; still, little is known on the fates of the duplicated copies, their relative frequency, and on how environmental conditions affect them. Moreover, the lack of rigorous definitions concerning the fate of duplicated genes hinders the development of a global vision of this process. In this paper, we present a new framework aiming at characterizing and formally differentiating the fate of duplicated genes. Our framework has been tested via simulations, where the evolution of populations has been simulated using aevol, an in silico experimental evolution platform. Our results show several patterns that confirm some of the conclusions from previous studies, while also exhibiting new tendencies; this may open up new avenues to better understand the role of duplications as a driver of evolution.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Modelos Genéticos , Simulación por Computador , Humanos
16.
Front Plant Sci ; 15: 1447749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211844

RESUMEN

Introduction: The WRKY transcription factor (TF) family is one of the largest TF families in plants and is widely involved in responses to both biotic and abiotic stresses. Methods: To clarify the function of the WRKY family in blueberries, this study identified the WRKY genes within the blueberry genome and systematically analyzed gene characteristics, phylogenetic evolution, promoter cis-elements, expression patterns, and subcellular localization of the encoded products. Results: In this study, 57 VcWRKY genes were identified, and all encoding products had a complete WRKY heptapeptide structure and zinc-finger motif. The VcWRKY genes were divided into three subgroups (I-III) by phylogenetic analysis. Group II was divided into five subgroups: IIa, IIb, IIc, IId, and IIe. 57 VcWRKY genes were distributed unevenly across 32 chromosomes. The amino acids ranged from 172 to 841, and molecular weights varied from 19.75 to 92.28 kD. Intra-group syntenic analysis identified 12 pairs of duplicate segments. Furthermore, 34 cis-element recognition sites were identified in the promoter regions of VcWRKY genes, primarily comprising phytohormone-responsive and light-responsive elements. Comparative syntenic maps were generated to investigate the evolutionary relationships of VcWRKY genes, revealing the closest homology to dicotyledonous WRKY gene families. VcWRKY genes were predominantly expressed in the fruit flesh and roots of blueberries. Gene expression analysis showed that the responses of VcWRKY genes to stress treatments were more strongly in leaves than in roots. Notably, VcWRKY13 and VcWRKY25 exhibited significant upregulation under salt stress, alkali stress, and saline-alkali stress, and VcWRKY1 and VcWRKY13 showed notable induction under drought stress. Subcellular localization analysis confirmed that VcWRKY13 and VcWRKY25 function within the nucleus. Conclusion: These findings establish a foundation for further investigation into the functions and regulatory mechanisms of VcWRKY genes and provide guidance for selecting stress-tolerant genes in the development of blueberry cultivars.

17.
Ecol Evol ; 14(7): e11652, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952658

RESUMEN

Marine sponges are predicted to be winners in the future ocean due to their exemplary adaptive capacity. However, while many sponge groups exhibit tolerance to a wide range of environmental insults, calcifying sponges may be more susceptible to thermo-acidic stress. To describe the gene regulatory networks that govern the stress response of the calcareous sponge, Leucetta chagosensis (class Calcarea, order Clathrinida), individuals were subjected to warming and acidification conditions based on the climate models for 2100. Transcriptome analysis and gene co-expression network reconstruction revealed that the unfolded protein response (UPR) was activated under thermo-acidic stress. Among the upregulated genes were two lineage-specific homologs of X-box binding protein 1 (XBP1), a transcription factor that activates the UPR. Alternative dimerization between these XBP1 gene products suggests a clathrinid-specific mechanism to reversibly sequester the transcription factor into an inactive form, enabling the rapid regulation of pathways linked to the UPR in clathrinid calcareous sponges. Our findings support the idea that transcription factor duplication events may refine evolutionarily conserved molecular pathways and contribute to ecological success.

18.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38985750

RESUMEN

The photopigment-encoding visual opsin genes that mediate color perception show great variation in copy number and adaptive function across vertebrates. An open question is how this variation has been shaped by the interaction of lineage-specific structural genomic architecture and ecological selection pressures. We contribute to this issue by investigating the expansion dynamics and expression of the duplicated Short-Wavelength-Sensitive-1 opsin (SWS1) in sea snakes (Elapidae). We generated one new genome, 45 resequencing datasets, 10 retinal transcriptomes, and 81 SWS1 exon sequences for sea snakes, and analyzed these alongside 16 existing genomes for sea snakes and their terrestrial relatives. Our analyses revealed multiple independent transitions in SWS1 copy number in the marine Hydrophis clade, with at least three lineages having multiple intact SWS1 genes: the previously studied Hydrophis cyanocinctus and at least two close relatives of this species; Hydrophis atriceps and Hydrophis fasciatus; and an individual Hydrophis curtus. In each lineage, gene copy divergence at a key spectral tuning site resulted in distinct UV and Violet/Blue-sensitive SWS1 subtypes. Both spectral variants were simultaneously expressed in the retinae of H. cyanocinctus and H. atriceps, providing the first evidence that these SWS1 expansions confer novel phenotypes. Finally, chromosome annotation for nine species revealed shared structural features in proximity to SWS1 regardless of copy number. If these features are associated with SWS1 duplication, expanded opsin complements could be more common in snakes than is currently recognized. Alternatively, selection pressures specific to aquatic environments could favor improved chromatic distinction in just some lineages.


Asunto(s)
Evolución Molecular , Filogenia , Opsinas de Bastones , Animales , Opsinas de Bastones/genética , Retina/metabolismo , Hydrophiidae/genética , Hydrophiidae/metabolismo , Duplicación de Gen
19.
Dev Genes Evol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079985

RESUMEN

The zebrafish is an invaluable model organism for genetic, developmental, and disease research. Although its high conservation with humans is often cited as justification for its use, the zebrafish harbors oft-ignored genetic characteristics that may provide unique insights into gene structure and function. Zebrafish, along with other teleost fish, underwent an additional round of whole genome duplication after their split from tetrapods-resulting in an abundance of duplicated genes when compared to other vertebrates. These duplicated genes have evolved in distinct ways over the ensuing 350 million years. Thus, each gene within a duplicated gene pair has nuanced differences that create a unique identity. By investigating both members of the gene pair together, we can elucidate the mechanisms that underly protein structure and function and drive the complex interplay within biological systems, such as signal transduction cascades, genetic regulatory networks, and evolution of tissue and organ function. It is crucial to leverage such studies to explore these molecular dynamics, which could have far-reaching implications for both basic science and therapeutic development. Here, we will review the role of gene duplications and the existing models for gene divergence and retention following these events. We will also highlight examples within each of these models where studies comparing duplicated genes in the zebrafish have yielded key insights into protein structure, function, and regulation.

20.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38989909

RESUMEN

Many adhesion proteins, evolutionarily related through gene duplication, exhibit distinct and precise interaction preferences and affinities crucial for cell patterning. Yet, the evolutionary paths by which these proteins acquire new specificities and prevent cross-interactions within their family members remain unknown. To bridge this gap, this study focuses on Drosophila Down syndrome cell adhesion molecule-1 (Dscam1) proteins, which are cell adhesion proteins that have undergone extensive gene duplication. Dscam1 evolved under strong selective pressure to achieve strict homophilic recognition, essential for neuronal self-avoidance and patterning. Through a combination of phylogenetic analyses, ancestral sequence reconstruction, and cell aggregation assays, we studied the evolutionary trajectory of Dscam1 exon 4 across various insect lineages. We demonstrated that recent Dscam1 duplications in the mosquito lineage bind with strict homophilic specificities without any cross-interactions. We found that ancestral and intermediate Dscam1 isoforms maintained their homophilic binding capabilities, with some intermediate isoforms also engaging in promiscuous interactions with other paralogs. Our results highlight the robust selective pressure for homophilic specificity integral to the Dscam1 function within the process of neuronal self-avoidance. Importantly, our study suggests that the path to achieving such selective specificity does not introduce disruptive mutations that prevent self-binding but includes evolutionary intermediates that demonstrate promiscuous heterophilic interactions. Overall, these results offer insights into evolutionary strategies that underlie adhesion protein interaction specificities.


Asunto(s)
Moléculas de Adhesión Celular , Proteínas de Drosophila , Evolución Molecular , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Filogenia , Duplicación de Gen , Drosophila/genética , Culicidae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA