Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36832226

RESUMEN

Noninvasive blood pressure estimation is crucial for cardiovascular and hypertension patients. Cuffless-based blood pressure estimation has received much attention recently for continuous blood pressure monitoring. This paper proposes a new methodology that combines the Gaussian process with hybrid optimal feature decision (HOFD) in cuffless blood pressure estimation. First, we can choose one of the feature selection methods: robust neighbor component analysis (RNCA), minimum redundancy, maximum relevance (MRMR), and F-test, based on the proposed hybrid optimal feature decision. After that, a filter-based RNCA algorithm uses the training dataset to obtain weighted functions by minimizing the loss function. Next, we combine the Gaussian process (GP) algorithm as the evaluation criteria, which is used to determine the best feature subset. Hence, combining GP with HOFD leads to an effective feature selection process. The proposed combining Gaussian process with the RNCA algorithm shows that the root mean square errors (RMSEs) for the SBP (10.75 mmHg) and DBP (8.02 mmHg) are lower than those of the conventional algorithms. The experimental results represent that the proposed algorithm is very effective.

2.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36366083

RESUMEN

Accurately estimating respiratory rate (RR) has become essential for patients and the elderly. Hence, we propose a novel method that uses exact Gaussian process regression (EGPR)-assisted hybrid feature extraction and feature fusion based on photoplethysmography and electrocardiogram signals to improve the reliability of accurate RR and uncertainty estimations. First, we obtain the power spectral features and use the multi-phase feature model to compensate for insufficient input data. Then, we combine four different feature sets and choose features with high weights using a robust neighbor component analysis. The proposed EGPR algorithm provides a confidence interval representing the uncertainty. Therefore, the proposed EGPR algorithm, including hybrid feature extraction and weighted feature fusion, is an excellent model with improved reliability for accurate RR estimation. Furthermore, the proposed EGPR methodology is likely the only one currently available that provides highly stable variation and confidence intervals. The proposed EGPR-MF, 0.993 breath per minute (bpm), and EGPR-feature fusion, 1.064 (bpm), show the lowest mean absolute error compared to the other models.


Asunto(s)
Frecuencia Respiratoria , Procesamiento de Señales Asistido por Computador , Humanos , Anciano , Incertidumbre , Reproducibilidad de los Resultados , Fotopletismografía/métodos , Algoritmos , Frecuencia Cardíaca
3.
Phys Med ; 100: 18-25, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716484

RESUMEN

PURPOSE: Deep-layer learning processing may improve contrast imaging with greater precision in low-count acquisition. However, no data on noise reduction using super-resolution processing for deep-layer learning have been reported in nuclear medicine imaging. OBJECTIVES: This study was designed to evaluate the adaptability of deep denoising super-resolution convolutional neural networks (DDSRCNN) in nuclear medicine by comparing them with denoising convolutional natural networks (DnCNN), Gaussian processing, and nonlinear diffusion (NLD) processing. METHODS: In this study, 156 patients were included. Data were collected using a matrix size of 256 × 256 with a pixel size of 2.46 mm at 0.898 folds, 15% energy window at the center of the photopeak energy (140 keV), and total count of 1000 kilocounts (kct). Following the training and validation of two learning models, we created 100 images for each 20-test datum. The peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) between each image and the reference image were calculated. RESULTS: DDSRCNN showed the highest PSNR values for all total counts. Regarding SSIM, DDSRCNN had significantly higher values than the original and Gaussian. In DnCNN, false accumulation was observed as the total counts increased. Regarding PSNR and SSIM transition, the model using 100-500-kct training data was significantly higher than that using 100-kct training data. CONCLUSIONS: Edge-preserving noise reduction processing was possible, and adaptability to low-count acquisition was demonstrated using DDSRCNN. Using training data with different noise levels, DDSRCNN could learn the noise components with high accuracy and contrast improvement.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido
4.
Patterns (N Y) ; 2(4): 100238, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33982028

RESUMEN

Modern data-driven tools are transforming application-specific polymer development cycles. Surrogate models that can be trained to predict properties of polymers are becoming commonplace. Nevertheless, these models do not utilize the full breadth of the knowledge available in datasets, which are oftentimes sparse; inherent correlations between different property datasets are disregarded. Here, we demonstrate the potency of multi-task learning approaches that exploit such inherent correlations effectively. Data pertaining to 36 different properties of over 13,000 polymers are supplied to deep-learning multi-task architectures. Compared to conventional single-task learning models, the multi-task approach is accurate, efficient, scalable, and amenable to transfer learning as more data on the same or different properties become available. Moreover, these models are interpretable. Chemical rules, that explain how certain features control trends in property values, emerge from the present work, paving the way for the rational design of application specific polymers meeting desired property or performance objectives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA