Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Biomed Phys Eng ; 14(4): 357-364, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39175552

RESUMEN

Background: Some voxels may alter the tractography results due to unintentional alteration of noises and other unwanted factors. Objective: This study aimed to investigate the effect of local phase features on tractography results providing data are mixed by a Gaussian or random distribution noise. Material and Methods: In this simulation study, a mask was firstly designed based on the local phase features to decrease false-negative and -positive tractography results. The local phase features are calculated according to the local structures of images, which can be zero-dimensional, meaning just one point (equivalent to noise in tractography algorithm), a line (equivalent to a simple fiber), or an edge (equivalent to structures more complex than a simple fiber). A digital phantom evaluated the feasibility current model with the maximum complexities of configurations in fibers, including crossing fibers. In this paper, the diffusion images were mixed separately by a Gaussian or random distribution noise in 2 forms a zero-mean noise and a noise with a mean of data. Results: The local mask eliminates the pixels of unfitted values with the main structures of images, due to noise or other interferer factors. Conclusion: The local phase features of diffusion images are an innovative solution to determine principal diffusion directions.

2.
Entropy (Basel) ; 26(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39202090

RESUMEN

Equilibrium density fluctuations at the molecular level produce cavities in a liquid and can be analyzed to shed light on the statistics of the number of molecules occupying observation volumes of increasing radius. An information theory approach led to the conclusion that these probabilities should follow a Gaussian distribution. Computer simulations confirmed this prediction across various liquid models if the size of the observation volume is not large. The reversible work required to create a cavity and the chance of finding no molecules in a fixed observation volume are directly correlated. The Gaussian formula for the latter probability is scrutinized to derive the changes in enthalpy and entropy, which arise from the cavity creation. The reversible work of cavity creation has a purely entropic origin as a consequence of the solvent-excluded volume effect produced by the inaccessibility of a region of the configurational space. The consequent structural reorganization leads to a perfect compensation of enthalpy and entropy changes. Such results are coherent with those obtained from Lee in his direct statistical mechanical study.

3.
Entropy (Basel) ; 26(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38785676

RESUMEN

Addressing the challenges posed by the complexity of the structure and the multitude of sensor types installed in space application fluid loop systems, this paper proposes a fault diagnosis method based on an improved D-S evidence theory. The method first employs the Gaussian affiliation function to convert the information acquired by sensors into BPA functions. Subsequently, it utilizes a pignistic probability transformation to convert the multiple subset focal elements into single subset focal elements. Finally, it comprehensively evaluates the credibility and uncertainty factors between evidences, introducing Bray-Curtis dissimilarity and belief entropy to achieve the fusion of conflicting evidence. The proposed method is initially validated on the classic Iris dataset, demonstrating its reliability. Furthermore, when applied to fault diagnosis in space application fluid circuit loop pumps, the results indicate that the method can effectively fuse multiple sensors and accurately identify faults.

4.
Front Neurorobot ; 17: 1273251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023452

RESUMEN

Tiny objects in remote sensing images only have a few pixels, and the detection difficulty is much higher than that of regular objects. General object detectors lack effective extraction of tiny object features, and are sensitive to the Intersection-over-Union (IoU) calculation and the threshold setting in the prediction stage. Therefore, it is particularly important to design a tiny-object-specific detector that can avoid the above problems. This article proposes the network JSDNet by learning the geometric Jensen-Shannon (JS) divergence representation between Gaussian distributions. First, the Swin Transformer model is integrated into the feature extraction stage as the backbone to improve the feature extraction capability of JSDNet for tiny objects. Second, the anchor box and ground-truth are modeled as two two-dimensional (2D) Gaussian distributions, so that the tiny object is represented as a statistical distribution model. Then, in view of the sensitivity problem faced by the IoU calculation for tiny objects, the JSDM module is designed as a regression sub-network, and the geometric JS divergence between two Gaussian distributions is derived from the perspective of information geometry to guide the regression prediction of anchor boxes. Experiments on the AI-TOD and DOTA datasets show that JSDNet can achieve superior detection performance for tiny objects compared to state-of-the-art general object detectors.

5.
Sensors (Basel) ; 23(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37896492

RESUMEN

In the field of intelligent vehicle technology, there is a high dependence on images captured under challenging conditions to develop robust perception algorithms. However, acquiring these images can be both time-consuming and dangerous. To address this issue, unpaired image-to-image translation models offer a solution by synthesizing samples of the desired domain, thus eliminating the reliance on ground truth supervision. However, the current methods predominantly focus on single projections rather than multiple solutions, not to mention controlling the direction of generation, which creates a scope for enhancement. In this study, we propose a generative adversarial network (GAN)-based model, which incorporates both a style encoder and a content encoder, specifically designed to extract relevant information from an image. Further, we employ a decoder to reconstruct an image using these encoded features, while ensuring that the generated output remains within a permissible range by applying a self-regression module to constrain the style latent space. By modifying the hyperparameters, we can generate controllable outputs with specific style codes. We evaluate the performance of our model by generating snow scenes on the Cityscapes and the EuroCity Persons datasets. The results reveal the effectiveness of our proposed methodology, thereby reinforcing the benefits of our approach in the ongoing evolution of intelligent vehicle technology.

6.
Sensors (Basel) ; 23(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37837127

RESUMEN

Smart meter datasets have recently transitioned from monthly intervals to one-second granularity, yielding invaluable insights for diverse metering functions. Clustering analysis, a fundamental data mining technique, is extensively applied to discern unique energy consumption patterns. However, the advent of high-resolution smart meter data brings forth formidable challenges, including non-Gaussian data distributions, unknown cluster counts, and varying feature importance within high-dimensional spaces. This article introduces an innovative learning framework integrating the expectation-maximization algorithm with the minimum message length criterion. This unified approach enables concurrent feature and model selection, finely tuned for the proposed bounded asymmetric generalized Gaussian mixture model with feature saliency. Our experiments aim to replicate an efficient smart meter data analysis scenario by incorporating three distinct feature extraction methods. We rigorously validate the clustering efficacy of our proposed algorithm against several state-of-the-art approaches, employing diverse performance metrics across synthetic and real smart meter datasets. The clusters that we identify effectively highlight variations in residential energy consumption, furnishing utility companies with actionable insights for targeted demand reduction efforts. Moreover, we demonstrate our method's robustness and real-world applicability by harnessing Concordia's High-Performance Computing infrastructure. This facilitates efficient energy pattern characterization, particularly within smart meter environments involving edge cloud computing. Finally, we emphasize that our proposed mixture model outperforms three other models in this paper's comparative study. We achieve superior performance compared to the non-bounded variant of the proposed mixture model by an average percentage improvement of 7.828%.

7.
Materials (Basel) ; 16(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687523

RESUMEN

Cavitation damage on a mercury target vessel for a pulsed spallation neutron source is induced by a proton beam injection in mercury. Cavitation damage is one of factors affecting the allowable beam power and the life time of a mercury target vessel. The prediction method of the cavitation damage using Monte Carlo simulations was proposed taking into account the uncertainties of the core position of cavitation bubbles and impact pressure distributions. The distribution of impact pressure attributed to individual cavitation bubble collapsing was assumed to be Gaussian distribution and the probability distribution of the maximum value of impact pressures was assumed to be three kinds of distributions: the delta function and Gaussian and Weibull distributions. Two parameters in equations describing the distribution of impact pressure were estimated using Bayesian optimization by comparing the distribution of the cavitation damage obtained from the experiment with the distribution of the accumulated plastic strain obtained from the simulation. Regardless of the distribution type, the estimated maximum impact pressure was 1.2-2.9 GPa and existed in the range of values predicted by the ratio of the diameter and depth of the pit. The estimated dispersion of the impact pressure distribution was 1.0-1.7 µm and corresponded to the diameter of major pits. In the distribution of the pits described by the accumulated plastic strain, which was assumed in three cases, the delta function and Gaussian and Weibull distributions, the Weibull distribution agreed well with the experimental results, particularly including relatively large pit size. Furthermore, the Weibull distribution reproduced the depth profile, i.e., pit shape, better than that using the delta function or Gaussian distribution. It can be said that the cavitation erosion phenomenon is predictable by adopting the Weibull distribution. This prediction method is expected to be applied to predict the cavitation damage in fluid equipment such as pumps and fluid parts.

8.
Entropy (Basel) ; 25(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37509937

RESUMEN

Data-centric inverse problems are a process of inferring physical attributes from indirect measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to obtain a quantitative physical model by comparing the wave equation solution with observed data, optimizing an objective function. However, the FWI is strenuously dependent on a robust objective function, especially for dealing with cycle-skipping issues and non-Gaussian noises in the dataset. In this work, we present an objective function based on the Kaniadakis κ-Gaussian distribution and the optimal transport (OT) theory to mitigate non-Gaussian noise effects and phase ambiguity concerns that cause cycle skipping. We construct the κ-objective function using the probabilistic maximum likelihood procedure and include it within a well-posed version of the original OT formulation, known as the Kantorovich-Rubinstein metric. We represent the data in the graph space to satisfy the probability axioms required by the Kantorovich-Rubinstein framework. We call our proposal the κ-Graph-Space Optimal Transport FWI (κ-GSOT-FWI). The results suggest that the κ-GSOT-FWI is an effective procedure to circumvent the effects of non-Gaussian noise and cycle-skipping problems. They also show that the Kaniadakis κ-statistics significantly improve the FWI objective function convergence, resulting in higher-resolution models than classical techniques, especially when κ=0.6.

9.
J Appl Stat ; 50(8): 1665-1685, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260477

RESUMEN

Among the models applied to analyze survival data, a standout is the inverse Gaussian distribution, which belongs to the class of models to analyze positive asymmetric data. However, the variance of this distribution depends on two parameters, which prevents establishing a functional relation with a linear predictor when the assumption of constant variance does not hold. In this context, the aim of this paper is to re-parameterize the inverse Gaussian distribution to enable establishing an association between a linear predictor and the variance. We propose deviance residuals to verify the model assumptions. Some simulations indicate that the distribution of these residuals approaches the standard normal distribution and the mean squared errors of the estimators are small for large samples. Further, we fit the new model to hospitalization times of COVID-19 patients in Piracicaba (Brazil) which indicates that men spend more time hospitalized than women, and this pattern is more pronounced for individuals older than 60 years. The re-parameterized inverse Gaussian model proved to be a good alternative to analyze censored data with non-constant variance.

10.
Math Biosci Eng ; 20(5): 8261-8278, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37161196

RESUMEN

Evolutionary multitasking algorithms aim to solve several optimization tasks simultaneously, and they can improve the efficiency of various tasks evolution through the knowledge transfer between different optimization tasks. Evolutionary multitasking algorithms have been applied to various applications and achieved certain results. However, how to transfer knowledge between tasks is still a problem worthy of research. Aiming to improve the positive transfer between tasks and reduce the negative transfer, we propose a single-objective multitask optimization algorithm based on elite individual transfer, namely MSOET. In this paper, whether to execute knowledge transfer between tasks depends on a certain probability. Meanwhile, in order to enhance the effectiveness and the global search ability of the algorithm, the current population and the elite individual in the transfer population are further utilized as the learning sources to construct a Gaussian distribution model, and the offspring is generated by the Gaussian distribution model to achieve knowledge transfer between tasks. We compared the proposed MSOET with ten multitask optimization algorithms, and the experimental results verify the algorithm's excellent performance and strong robustness.

11.
Health Sci Rep ; 6(4): e1214, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091362

RESUMEN

Background and Aims: All fields have seen an increase in machine-learning techniques. To accurately evaluate the efficacy of novel modeling methods, it is necessary to conduct a critical evaluation of the utilized model metrics, such as sensitivity, specificity, and area under the receiver operator characteristic curve (AUROC). For commonly used model metrics, we proposed the use of analytically derived distributions (ADDs) and compared it with simulation-based approaches. Methods: A retrospective cohort study was conducted using the England National Health Services Heart Disease Prediction Cohort. Four machine learning models (XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boost) were used. The distribution of the model metrics and covariate gain statistics were empirically derived using boot-strap simulation (N = 10,000). The ADDs were created from analytic formulas from the covariates to describe the distribution of the model metrics and compared with those of bootstrap simulation. Results: XGBoost had the most optimal model having the highest AUROC and the highest aggregate score considering six other model metrics. Based on the Anderson-Darling test, the distribution of the model metrics created from bootstrap did not significantly deviate from a normal distribution. The variance created from the ADD led to smaller SDs than those derived from bootstrap simulation, whereas the rest of the distribution remained not statistically significantly different. Conclusions: ADD allows for cross study comparison of model metrics, which is usually done with bootstrapping that rely on simulations, which cannot be replicated by the reader.

12.
Front Psychol ; 14: 957160, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910747

RESUMEN

Introduction: We used images of facial expressions (FEs) of emotion in a speeded Same/Different task to examine (i) distributional characteristics of response times (RTs) in relation to inter-stimulus similarity and (ii) the impact of inversion on FE processing. Methods: Stimuli were seven emotion prototypes, posed by one male and one female, and eight intermediate morphs. Image pairs (N = 225) were presented for 500 ms, upright or inverted, in a block design, each 100 times. Results: For both upright and inverted FEs, RTs were a non-monotonic function: median values were longest for stimulus pairs of intermediate similarity, decreasing for both more-dissimilar and more-similar pairs. RTs of "Same" and "Different" judgments followed ex-Gaussian distributions. The non-monotonicity is interpreted within a dual-process decision model framework as reflecting the infrequency of identical pairs, shifting the balance between the Same and Different processes. The effect of stimulus inversion was gauged by comparing RT-based multidimensional scaling solutions for the two presentation modes. Solutions for upright and inverted FEs showed little difference, with both displaying some evidence of categorical perception. The same features appeared in hierarchical clustering solutions. Discussion: This outcome replicates and reinforces the solutions derived from accuracy of "Different" responses reported in our earlier companion paper. We attribute this lack of inversion effect to the brief exposure time, allowing low-level visual processing to dominate Same/Different decisions while elevating early featural analysis, which is insensitive to face orientation but enables initial positive/negative valence categorization of FEs.

13.
Stat Med ; 42(11): 1779-1801, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-36932460

RESUMEN

We develop a model-based boosting approach for multivariate distributional regression within the framework of generalized additive models for location, scale, and shape. Our approach enables the simultaneous modeling of all distribution parameters of an arbitrary parametric distribution of a multivariate response conditional on explanatory variables, while being applicable to potentially high-dimensional data. Moreover, the boosting algorithm incorporates data-driven variable selection, taking various different types of effects into account. As a special merit of our approach, it allows for modeling the association between multiple continuous or discrete outcomes through the relevant covariates. After a detailed simulation study investigating estimation and prediction performance, we demonstrate the full flexibility of our approach in three diverse biomedical applications. The first is based on high-dimensional genomic cohort data from the UK Biobank, considering a bivariate binary response (chronic ischemic heart disease and high cholesterol). Here, we are able to identify genetic variants that are informative for the association between cholesterol and heart disease. The second application considers the demand for health care in Australia with the number of consultations and the number of prescribed medications as a bivariate count response. The third application analyses two dimensions of childhood undernutrition in Nigeria as a bivariate response and we find that the correlation between the two undernutrition scores is considerably different depending on the child's age and the region the child lives in.


Asunto(s)
Algoritmos , Modelos Estadísticos , Niño , Humanos , Simulación por Computador , Australia , Nigeria
14.
Biomed Phys Eng Express ; 9(3)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758237

RESUMEN

The purpose of this work was to investigate by Monte Carlo method the adjustment of photon beams delivered by the medical LINear ACcelerator (LINAC) Elekta Synergy MLCi2. This study presents an optimization of the Gaussian distribution parameters of the accelerated electrons before the target simulated by two Monte Carlo codes and for three beams. The photon (x-ray) beam is produced by the interaction of accelerated electrons with the LINAC target. The electrons are accelerated by a potential difference created between the anode and the cathode of the gun and directed towards the target. In the Monte Carlo simulation, it is necessary to setup the spectrum parameters of the generated electrons to simulate the x-ray dose distribution. In this study, we modeled the LINAC geometry for photon beams 18MV and 6MV in cases Flattened (FF) and Flattening-Filter-Free (FFF). The Monte Carlo simulations are based on G4Linac_MT and GATE codes. The results of the optimized configurations determined after more than 20 tests for each beam energy show a very good agreement with the experimental measurements for different irradiation fields for the depth (PDD) and lateral (Profile) dose distribution. In all Monte Carlo calculations performed in this study, the statistical uncertainty is less than 2%. The results were also in very good agreement in terms ofγ-index analysis, for the 3%/3 mm and 2%/2 mm criteria.


Asunto(s)
Electrones , Fotones , Rayos X , Distribución Normal , Simulación por Computador
15.
ISA Trans ; 137: 544-560, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36759295

RESUMEN

For a stochastic PID feedback control system, the uncertainty of the working environment often leads to the unsatisfied performance of the system, which does not meet the profit requirements. The working environment generally includes external disturbance and measurement noise, etc. Gaussian distributed measurement noise and disturbances are widely considered while non-Gaussian distributed measurement noise and disturbances are rarely considered. In this paper, the performance degradation of Gaussian/non-Gaussian disturbances and measurement noise on a stochastic PID feedback system is considered and analyzed. An efficient method, dynamic data reconciliation (DDR) is developed to filter measurement noise and disturbances and improve the performance of the stochastic PID feedback control system. By utilizing model-based and measured information, DDR avoids time delays in output estimation. With the detailed theoretical analysis and simulation verification, the effectiveness of the proposed DDR technology on the stochastic PID feedback control system is verified. Compared with conventional exponential filters, DDR can achieve better control performance. The proposed DDR is also used for the control system of the DC-AC​ converter. The improved effect of DDR on the output quality is demonstrated by the results.

16.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679589

RESUMEN

This paper designs a texture-hidden QR code to prevent the illegal copying of a QR code due to its lack of anti-counterfeiting ability. Combining random texture patterns and a refined QR code, the code is not only capable of regular coding but also has a strong anti-copying capability. Based on the proposed code, a quality assessment algorithm (MAF) and a dual feature detection algorithm (DFDA) are also proposed. The MAF is compared with several current algorithms without reference and achieves a 95% and 96% accuracy for blur type and blur degree, respectively. The DFDA is compared with various texture and corner methods and achieves an accuracy, precision, and recall of up to 100%, and also performs well on attacked datasets with reduction and cut. Experiments on self-built datasets show that the code designed in this paper has excellent feasibility and anti-counterfeiting performance.


Asunto(s)
Algoritmos
17.
Cogn Neurodyn ; 17(1): 221-237, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36704631

RESUMEN

Reaction times (RTs) are an essential metric used for understanding the link between brain and behaviour. As research is reaffirming the tight coupling between neuronal and behavioural RTs, thorough statistical modelling of RT data is thus essential to enrich current theories and motivate novel findings. A statistical distribution is proposed herein that is able to model the complete RT's distribution, including location, scale and shape: the generalised-exponential-Gaussian (GEG) distribution. The GEG distribution enables shifting the attention from traditional means and standard deviations to the entire RT distribution. The mathematical properties of the GEG distribution are presented and investigated via simulations. Additionally, the GEG distribution is featured via four real-life data sets. Finally, we discuss how the proposed distribution can be used for regression analyses via generalised additive models for location, scale and shape (GAMLSS).

18.
Front Aging Neurosci ; 15: 1299451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38328735

RESUMEN

Linear regression is one of the most used statistical techniques in neuroscience, including the study of the neuropathology of Alzheimer's disease (AD) dementia. However, the practical utility of this approach is often limited because dependent variables are often highly skewed and fail to meet the assumption of normality. Applying linear regression analyses to highly skewed datasets can generate imprecise results, which lead to erroneous estimates derived from statistical models. Furthermore, the presence of outliers can introduce unwanted bias, which affect estimates derived from linear regression models. Although a variety of data transformations can be utilized to mitigate these problems, these approaches are also associated with various caveats. By contrast, a robust regression approach does not impose distributional assumptions on data allowing for results to be interpreted in a similar manner to that derived using a linear regression analysis. Here, we demonstrate the utility of applying robust regression to the analysis of data derived from studies of human brain neurodegeneration where the error distribution of a dependent variable does not meet the assumption of normality. We show that the application of a robust regression approach to two independent published human clinical neuropathologic data sets provides reliable estimates of associations. We also demonstrate that results from a linear regression analysis can be biased if the dependent variable is significantly skewed, further indicating robust regression as a suitable alternate approach.

19.
Polymers (Basel) ; 14(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36365513

RESUMEN

To investigate the mechanisms of the adhesion (self-bonding) strength (σ) development during the early stages of self-healing of polymer-polymer interfaces and fracture thereof, it is useful to operate not only with the average σ value but with the σ distribution as well. The latter has been shown to obey Weibull's statistics for such interfaces. However, whether it can also follow the most widely used normal (Gaussian) distribution is currently unclear. Moreover, a more complicated self-healing case, when the σ development at an initially amorphous interface is accompanied by its crystallization, has not been investigated yet in this respect. In order to address these two important issues, 10 pairs of amorphous poly(ethylene terephthalate) (PET) samples were kept in contact for various periods of time from 5 min to 15 h at a temperature (T) of 94 °C (preserving the amorphous state) or T = 150 °C (giving rise to cold crystallization), or both Ts. Thereafter, the as-formed amorphous and semi-crystalline PET-PET auto-adhesive joints were shear fractured in tension at ambient temperature. For the first time, the statistical distributions of a number of the measured σ data sets were analyzed and discussed using both Weibull's and the Gaussian model, including several normality tests.

20.
Front Integr Neurosci ; 16: 876137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339967

RESUMEN

Circadian systems are composed of multiple oscillatory elements that contain both circadian and ultradian oscillations. The relationships between these components maintain a stable temporal function in organisms. They provide a suitable phase to recurrent environmental changes and ensure a suitable temporal sequence of their own functions. Therefore, it is necessary to identify these interactions. Because a circadian rhythm of activity can be recorded in each crayfish cheliped, this paired organ system was used to address the possibility that two quasi-autonomous oscillators exhibiting both circadian and ultradian oscillations underlie these rhythms. The presence of both oscillations was found, both under entrainment and under freerunning. The following features of interactions between these circadian and ultradian oscillations were also observed: (a) circadian modal periods could be a feature of circadian oscillations under entrainment and freerunning; (b) the average period of the rhythm is a function of the proportions between the circadian and ultradian oscillations; (c) the release of both populations of oscillations of Zeitgeber effect results in the maintenance or an increase in their number and frequency under freerunning conditions. These circadian rhythms of activity can be described as mixed probability distributions containing circadian oscillations, individual ultradian oscillations, and ultradian oscillations of Gaussian components. Relationships among these elements can be structured in one of the following six probability distributions: Inverse Gaussian, gamma, Birnbaum-Saunders, Weibull, smallest extreme value, or Laplace. It should be noted that at one end of this order, the inverse Gaussian distribution most often fits the freerunning rhythm segments and at the other end, the Laplace distribution fits only the segments under entrainment. The possible relationships between the circadian and ultradian oscillations of crayfish motor activity rhythms and between the probability distributions of their periodograms are discussed. Also listed are some oscillators that could interact with cheliped rhythms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA