Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Ann Nucl Med ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287742

RESUMEN

The gastrin-releasing peptide receptor (GRPr) has gained recognition as a promising target for both diagnostic and therapeutic applications in a variety of human cancers. This study aims to explore the primary tumor detection capabilities of [68Ga] Ga-GRPr PET imaging, specifically in newly diagnosed intra-prostatic prostate cancer lesions (PCa). Following PRISMA-DTA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy Studies) guidelines, a systematic literature search was conducted using the Medline, Embase, Scopus, and Web of Science databases. Data regarding patient characteristics and imaging procedure details-including the type of radiotracer used, administered activity, image acquisition time, scanner modality, criteria, and detection rate of index test-were extracted from the included studies. The pooled patient-and lesion-based detection rates, along with their corresponding 95% confidence intervals (CI), were calculated using a random effects model. The final analysis included 9 studies involving 291 patients and 350 intra-prostatic lesions with [68Ga] Ga-GRPr PET imaging in primary PCa. In per-patient-based analysis of [68Ga] Ga-GRPr PET imaging, the pooled detection rates of overall and patients with Gleason score ≥ 7 were 87.09% (95% CI 74.98-93.82) and 89.01% (95% CI 68.17-96.84), respectively. In per-lesion-based analysis, the pooled detection rate [68Ga] Ga-GRPr PET imaging was 78.54% (95% CI 69.8-85.29). The pooled detection rate mpMRI (multiparametric magnetic resonance imaging) in patient-based analysis was 91.85% (95% CI 80.12-96.92). The difference between the detection rates of the mpMRI and [68Ga] Ga-GRPr PET imaging was not statistically significant (OR 0.90, 95% CI 0.23-3.51). Our findings suggest that [68Ga] Ga-GRPr PET imaging has the potential as a diagnostic target for primary PCa. Future research is needed to determine the effectiveness of [68Ga] Ga-GRPr PET in delivering additional imaging data and guiding therapeutic decisions.

2.
Mol Pharm ; 21(9): 4199-4216, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39219355

RESUMEN

The high incidence and heavy disease burden of prostate cancer (PC) require accurate and comprehensive assessment for appropriate disease management. Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) cannot detect PSMA-negative lesions, despite its key role in PC disease management. The overexpression of gastrin-releasing peptide receptor (GRPR) in PC lesions reportedly performs as a complementary target for the diagnosis and therapy of PC. Radiopharmaceuticals derived from the natural ligands of GRPR have been developed. These radiopharmaceuticals enable the visualization and quantification of GRPR within the body, which can be used for disease assessment and therapeutic guidance. Recently developed radiopharmaceuticals exhibit improved pharmacokinetic parameters without deterioration in affinity. Several heterodimers targeting GRPR have been constructed as alternatives because of their potential to detect tumor lesions with a low diagnostic efficiency of single target detection. Moreover, some GRPR-targeted radiopharmaceuticals have entered clinical trials for the initial staging or biochemical recurrence detection of PC to guide disease stratification and therapy, indicating considerable potential in PC disease management. Herein, we comprehensively summarize the progress of radiopharmaceuticals targeting GRPR. In particular, we discuss the impact of ligands, chelators, and linkers on the distribution of radiopharmaceuticals. Furthermore, we summarize a potential design scheme to facilitate the advancement of radiopharmaceuticals and, thus, prompt clinical translation.


Asunto(s)
Neoplasias de la Próstata , Radiofármacos , Receptores de Bombesina , Humanos , Receptores de Bombesina/metabolismo , Receptores de Bombesina/antagonistas & inhibidores , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Radiofármacos/farmacocinética , Animales , Tomografía de Emisión de Positrones/métodos
3.
Inflamm Res ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164592

RESUMEN

OBJECTIVE: Porphyromonas gingivalis (P. gingivalis), one of the major periodontopathogens, is associated with the progression and exacerbation of atherosclerosis. In this study, we aimed to investigate whether the gastrin-releasing peptide receptor antagonist, RC-3095, could attenuate P. gingivalis LPS-induced inflammatory responses in endothelial cells and macrophages, as well as atherosclerosis in an ApoE-/- mouse model treated with P. gingivalis LPS. METHODS: The effect of RC-3095 on P. gingivalis LPS-induced endothelial inflammation was examined using HUVECs and rat aortic endothelium. THP-1 cells were polarized into M1 macrophages by exposure to P. gingivalis LPS, with or without RC-3095. The effect of RC-3095 on atherosclerosis progression was assessed in high-fat-fed male ApoE-/- mice through injections of P. gingivalis LPS, RC-3095, or a combination of both. RESULTS: RC-3095 significantly reduced P. gingivalis LPS-induced leukocyte adhesion to endothelial cells and aortic endothelium by suppressing NF-κB-dependent expressions of ICAM-1 and VCAM-1. In addition, RC-3095 inhibited the P. gingivalis LPS-induced polarization of M1 macrophages by blocking the MAPK and NF-κB signaling pathways. Moreover, RC-3095 decreased the area of atherosclerotic lesions in ApoE-/- mice, which was accelerated by P. gingivalis LPS injection, and lowered the expressions of ICAM-1 and VCAM-1 in the aortic tissue of mice with atherosclerosis. CONCLUSIONS: RC-3095 can alleviate P. gingivalis LPS-induced endothelial inflammation, macrophage polarization, and atherosclerosis progression, suggesting its potential as a therapeutic approach for periodontal pathogen-associated atherosclerosis.

4.
J Thorac Dis ; 16(7): 4440-4446, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39144330

RESUMEN

Background: Serum pro-gastrin releasing peptide (proGRP) is a well-recognized diagnostic marker for small cell lung cancer (SCLC). Pleural effusion is common in patients with advanced SCLC. The diagnostic accuracy of pleural proGRP for malignant pleural effusion (MPE) has not yet been established. This study aimed to evaluate the diagnostic accuracy of pleural proGRP for MPE. Methods: We prospectively recruited patients with undiagnosed pleural effusions from two centers (Hohhot and Changshu). An electrochemiluminescence immunoassay was used to detect pleural fluid proGRP. The diagnostic accuracy of proGRP for MPE was evaluated using a receiver operating characteristic (ROC) curve. Results: In both the Hohhot (n=153) and Changshu (n=58) cohorts, pleural proGRP in MPE patients did not significantly differ from that in patients with benign pleural effusions (BPEs) (Hohhot, P=0.91; Changshu, P=0.12). In the Hohhot and Changshu cohorts, the areas under the curves (AUCs) of proGRP were 0.51 [95% confidence interval (CI): 0.41-0.60] and 0.62 (95% CI: 0.47-0.77), respectively. However, patients with SCLC-induced MPE had significantly higher proGRP levels than those with BPE and other types of MPE (P=0.001 for both). In the pooled cohort, the AUC of proGRP for SCLC-induced MPE was 0.90 (95% CI: 0.78-1.00, P=0.001). At a threshold of 40 pg/mL, proGRP had a sensitivity of 1.00 (95% CI: 0.61-1.00) and specificity of 0.59 (95% CI: 0.52-0.66). The positive likelihood ratio was 2.61 (95% CI: 1.99-3.41), and the negative likelihood ratio was 0. Conclusions: Pleural proGRP has no diagnostic value for MPE, but has high diagnostic accuracy for SCLC-induced MPE. In patients with proGRP levels <40 pg/mL, MPE secondary to SCLC can be excluded.

5.
Nanomaterials (Basel) ; 14(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39057854

RESUMEN

We developed a novel site-specific bimodal MRI/fluorescence nanoparticle contrast agent targeting gastrin-releasing peptide receptors (GRPrs), which are overexpressed in aggressive prostate cancers. Biocompatible ultra-small superparamagnetic iron oxide (USPIO) nanoparticles were synthesized using glucose and casein coatings, followed by conjugation with a Cy7.5-K-8AOC-BBN [7-14] peptide conjugate. The resulting USPIO(Cy7.5)-BBN nanoparticles were purified by 100 kDa membrane dialysis and fully characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and magnetic resonance imaging (MRI) relaxivity, as well as evaluated for in vitro and in vivo binding specificity and imaging efficacy in PC-3 prostate cancer cells and xenografted tumor-bearing mice. The USPIO(Cy7.5)-BBN nanoparticles had a core diameter of 4.93 ± 0.31 nm and a hydrodynamic diameter of 35.56 ± 0.58 nm. The r2 relaxivity was measured to be 70.2 ± 2.5 s-1 mM-1 at 7T MRI. The Cy7.5-K-8AOC-BBN [7-14] peptide-to-nanoparticle ratio was determined to be 21:1. The in vitro GRPr inhibitory binding (IC50) value was 2.5 ± 0.7 nM, indicating a very high binding affinity of USPIO(Cy7.5)-BBN to the GRPr on PC-3 cells. In vivo MRI showed significant tumor-to-muscle contrast enhancement in the uptake group at 4 h (31.1 ± 3.4%) and 24 h (25.7 ± 2.1%) post-injection compared to the blocking group (4 h: 15.3 ± 2.0% and 24 h: -2.8 ± 6.8%; p < 0.005). In vivo and ex vivo near-infrared fluorescence (NIRF) imaging revealed significantly increased fluorescence in tumors in the uptake group compared to the blocking group. These findings demonstrate the high specificity of bimodal USPIO(Cy7.5)-BBN nanoparticles towards GRPr-expressing PC-3 cells, suggesting their potential for targeted imaging in aggressive prostate cancer.

6.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999054

RESUMEN

Gastrin-releasing peptide receptor (GRPR), overexpressed in many solid tumors, is a promising imaging marker and therapeutic target. Most reported GRPR-targeted radioligands contain a C-terminal amide. Based on the reported potent antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH, we synthesized C-terminal hydroxamate-derived [68Ga]Ga-LW02075 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH) and [68Ga]Ga-LW02050 ([68Ga]Ga-DOTA-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHOH), and compared them with the closely related and clinically validated [68Ga]Ga-SB3 ([68Ga]Ga-DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt). Binding affinities (Ki) of Ga-SB3, Ga-LW02075, and Ga-LW02050 were 1.20 ± 0.31, 1.39 ± 0.54, and 8.53 ± 1.52 nM, respectively. Both Ga-LW02075 and Ga-LW02050 were confirmed to be GRPR antagonists by calcium release assay. Imaging studies showed that PC-3 prostate cancer tumor xenografts were clearly visualized at 1 h post injection by [68Ga]Ga-SB3 and [68Ga]Ga-LW02050 in PET images, but not by [68Ga]Ga-LW02075. Ex vivo biodistribution studies conducted at 1 h post injection showed that the tumor uptake of [68Ga]Ga-LW02050 was comparable to that of [68Ga]Ga-SB3 (5.38 ± 1.00 vs. 6.98 ± 1.36 %ID/g), followed by [68Ga]Ga-LW02075 (3.97 ± 1.71 %ID/g). [68Ga]Ga-SB3 had the highest pancreas uptake (37.3 ± 6.90 %ID/g) followed by [68Ga]Ga-LW02075 (17.8 ± 5.24 %ID/g), while the pancreas uptake of [68Ga]Ga-LW02050 was only 0.53 ± 0.11 %ID/g. Our data suggest that [68Ga]Ga-LW02050 is a promising PET tracer for detecting GRPR-expressing cancer lesions.


Asunto(s)
Radioisótopos de Galio , Ácidos Hidroxámicos , Tomografía de Emisión de Positrones , Radiofármacos , Receptores de Bombesina , Receptores de Bombesina/metabolismo , Receptores de Bombesina/antagonistas & inhibidores , Radioisótopos de Galio/química , Animales , Humanos , Tomografía de Emisión de Positrones/métodos , Ratones , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacocinética , Ácidos Hidroxámicos/síntesis química , Radiofármacos/química , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Línea Celular Tumoral , Distribución Tisular , Masculino , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo
7.
Pharmaceuticals (Basel) ; 17(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38794191

RESUMEN

Gastrin-releasing peptide receptor (GRPR) is overexpressed in various cancers and is a promising target for cancer diagnosis and therapy. However, the high pancreas uptake and/or metabolic instability observed for most reported GRPR-targeted radioligands might limit their clinical applications. Our group recently reported a GRPR-targeted antagonist tracer, [68Ga]Ga-TacsBOMB2 ([68Ga]Ga-DOTA-Pip-D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13ψThz14-NH2), which showed a minimal pancreas uptake in a preclinical mouse model. In this study, we synthesized four derivatives with unnatural amino acid substitutions (Tle10-derived Ga-LW01158, NMe-His12-derived Ga-LW01160, α-Me-Trp8- and Tle10-derived Ga-LW01186, and Tle10- and N-Me-Gly11-derived Ga-LW02002) and evaluated their potential for detecting GRPR-expressing tumors with positron emission tomography (PET). The binding affinities (Ki(GRPR)) of Ga-LW01158, Ga-LW01160, Ga-LW01186, and Ga-LW02002 were 5.11 ± 0.47, 187 ± 17.8, 6.94 ± 0.95, and 11.0 ± 0.39 nM, respectively. [68Ga]Ga-LW01158, [68Ga]Ga-LW01186, and [68Ga]Ga-LW02002 enabled clear visualization of subcutaneously implanted human prostate cancer PC-3 tumor xenografts in mice in PET images. Ex vivo biodistribution studies showed that [68Ga]Ga-LW01158 had the highest tumor uptake (11.2 ± 0.65 %ID/g) and good tumor-to-background uptake ratios at 1 h post-injection. Comparable in vivo stabilities were observed for [68Ga]Ga-LW01158, [68Ga]Ga-LW01186, and [68Ga]Ga-LW02002 (76.5-80.7% remaining intact in mouse plasma at 15 min post-injection). In summary, the Tle10 substitution, either alone or combined with α-Me-Trp8 or NMe-Gly11 substitution, in Ga-TacsBOMB2 generates derivatives that retained good GRPR binding affinity and in vivo stability. With good tumor uptake and tumor-to-background imaging contrast, [68Ga]Ga-LW01158 is promising for detecting GRPR-expressing lesions with PET.

8.
PET Clin ; 19(3): 401-415, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38644111

RESUMEN

Each tumor has its own distinctive molecular identity. Treatment, therefore, should be tailored to this unique cancer phenotype. Theragnostics uses the same compound for targeted imaging and treatment, radiolabeled to an appropriate radionuclide, respectively. Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer, and radiolabeled GRPR antagonists have shown high diagnostic performance at staging and biochemical recurrence. Several GRPR-targeting theragnostic compounds have been developed preclinically. Their translation into clinics is underway with 4 clinical trials recruiting participants with GRPR-expressing tumors.


Asunto(s)
Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Radiofármacos , Receptores de Bombesina , Humanos , Masculino , Receptores de Bombesina/antagonistas & inhibidores , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Radiofármacos/uso terapéutico , Tomografía de Emisión de Positrones/métodos , Radioisótopos/uso terapéutico
9.
Ann Med ; 56(1): 2320301, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442298

RESUMEN

Aim: This comprehensive review aims to explore the potential applications of Gastrin-releasing peptide receptor (GRPR) in the diagnosis and treatment of prostate cancer. Additionally, the study investigates the role of GRPR in prognostic assessment for individuals afflicted with prostate cancer.Methods: The review encompasses a thorough examination of existing literature and research studies related to the upregulation of GRPR in various tumor types, with a specific focus on prostate. The review also evaluates the utility of GRPR as a molecular target in prostate cancer research, comparing its significance to the well-established Prostate-specific membrane antigen (PSMA). The integration of radionuclide-targeted therapy with GRPR antagonists is explored as an innovative therapeutic approach for individuals with prostate cancer.Results: Research findings suggest that GRPR serves as a promising molecular target for visualizing low-grade prostate cancer. Furthermore, it is demonstrated to complement the detection of lesions that may be negative for PSMA. The integration of radionuclide-targeted therapy with GRPR antagonists presents a novel therapeutic paradigm, offering potential benefits for individuals undergoing treatment for prostate cancer.Conclusions: In conclusion, this review highlights the emerging role of GRPR in prostate cancer diagnosis and treatment. Moreover, the integration of radionuclide-targeted therapy with GRPR antagonists introduces an innovative therapeutic approach that holds promise for improving outcomes in individuals dealing with prostate cancer. The potential prognostic value of GRPR in assessing the disease's progression adds another dimension to its clinical significance in the realm of urology.


Asunto(s)
Neoplasias de la Próstata , Receptores de Bombesina , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Biomarcadores , Regulación hacia Arriba , Radioisótopos
10.
Eur J Nucl Med Mol Imaging ; 51(7): 2023-2035, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38376806

RESUMEN

Integrin receptor αvß3 and gastrin-releasing peptide receptor (GRPR) expression of tumors could be detected using PET imaging with radiolabeled Arg-Gly-Asp (RGD) and the antagonistic bombesin analog RM26, respectively. The purpose of this study was to investigate the dual receptor-targeting property of the heterodimer RGD-RM26-03 (denoted as LNC1015), demonstrate the tumor diagnostic value of [68Ga]Ga-LNC1015 in preclinical experiments, and evaluate its preliminary clinical feasibility. METHODS: LNC1015 was designed and synthesized by linking cyclic RGD and the RM26 peptide. Preclinical pharmacokinetics were detected in a PC3 xenograft model using microPET and biodistribution studies. The clinical feasibility of [68Ga]Ga-LNC1015 PET/CT was performed in patients with breast cancer, and the results were compared with those of 18F-fluorodeoxyglucose (FDG). RESULTS: [68Ga]Ga-LNC1015 had good stability in saline for at least 2 h, and favorable binding affinity and specificity were demonstrated in vitro and in vivo. The tumor uptake and retention of [68Ga]Ga-LNC1015 during PET imaging were improved compared with its monomeric counterparts [68Ga]Ga-RGD and [68Ga]Ga-RM26 at all the time points examined. In our initial clinical studies, the tumor uptake and tumor-to-background ratio (TBR) of primary and metastatic lesions in [68Ga]Ga-LNC1015 PET/CT were significantly higher than those in [18F]FDG PET/CT, resulting in high lesion detection rate and tumor delineation. CONCLUSION: The dual targeting radiotracer [68Ga]Ga-LNC1015 showed significantly improved tumor uptake and retention, as well as lower liver uptake than [68Ga]Ga-RGD and [68Ga]Ga-RM26 monomer. The first-in-human study showed high TBRs in patients, suggesting favorable pharmacokinetics and high clinical feasibility for PET/CT imaging of cancer.


Asunto(s)
Radioisótopos de Galio , Integrina alfaVbeta3 , Oligopéptidos , Receptores de Bombesina , Receptores de Bombesina/metabolismo , Humanos , Animales , Ratones , Femenino , Integrina alfaVbeta3/metabolismo , Oligopéptidos/farmacocinética , Oligopéptidos/química , Distribución Tisular , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioquímica , Persona de Mediana Edad , Línea Celular Tumoral , Trazadores Radiactivos , Radiofármacos/farmacocinética , Radiofármacos/síntesis química , Radiofármacos/química , Técnicas de Química Sintética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo
11.
EJNMMI Radiopharm Chem ; 9(1): 8, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305955

RESUMEN

BACKGROUND: Overexpressed in various solid tumors, gastrin-releasing peptide receptor (GRPR) is a promising cancer imaging marker and therapeutic target. Although antagonists are preferable for the development of GRPR-targeted radiopharmaceuticals due to potentially fewer side effects, internalization of agonists may lead to longer tumor retention and better treatment efficacy. In this study, we systematically investigated unnatural amino acid substitutions to improve in vivo stability and tumor uptake of a previously reported GRPR-targeted agonist tracer, [68Ga]Ga-TacBOMB2 (68Ga-DOTA-Pip-D-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Leu13-Thz14-NH2). RESULTS: Unnatural amino acid substitutions were conducted for Gln7, Trp8, Ala9, Val10, Gly11 and His12, either alone or in combination. Out of 25 unnatural amino acid substitutions, tert-Leu10 (Tle10) and NMe-His12 substitutions were identified to be preferable modifications especially in combination. Compared with the previously reported [68Ga]Ga-TacBOMB2, the Tle10 and NMe-His12 derived [68Ga]Ga-LW01110 showed retained agonist characteristics and improved GRPR binding affinity (Ki = 7.62 vs 1.39 nM), in vivo stability (12.7 vs 89.0% intact tracer in mouse plasma at 15 min post-injection) and tumor uptake (5.95 vs 16.6 %ID/g at 1 h post-injection). CONCLUSIONS: Unnatural amino acid substitution is an effective strategy to improve in vivo stability and tumor uptake of peptide-based radiopharmaceuticals. With excellent tumor uptake and tumor-to-background contrast, [68Ga]Ga-LW01110 is promising for detecting GRPR-expressing cancer lesions with PET. Since agonists can lead to internalization upon binding to receptors and foreseeable long tumor retention, our optimized GRPR-targeted sequence, [Tle10,NMe-His12,Thz14]Bombesin(7-14), is a promising template for use for the design of GRPR-targeted radiotherapeutic agents.

12.
Talanta ; 270: 125644, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218005

RESUMEN

Sensitive detection of pro-gastrin-releasing peptide (Pro-GRP) is crucial because it is a highly sensitive and specific tumor marker for small cell lung cancer. Herein, we synthesized an efficient luminescent europium metal-organic framework and developed a sandwich ECL immunosensor for the sensitive detection of Pro-GRP, which used Eu3+ as the central ion and 2,4,6-tri (4-carboxyphenyl)-1,3,5-triazine (H3TATB) as the organic ligand. H3TATB acted as a strong absorbing reagent and transferred its energy to Eu3+ via the antenna effect to enhance the ECL response signal of Eu3+. As per calculations, the ECL efficiency of Eu-TATB, which was a promising ECL luminophore, was up to 130 %. The Cu2O cube worked as a substrate to assist the electron transfer and was used as a co-reaction accelerator to catalyze S2O82- to produce more SO4•- and then enhance the ECL intensity of Eu-TATB. Under optimal experimental conditions, the ECL immunosensor had a linear range of 5 fg mL-1-50 ng mL-1 for detecting Pro-GRP with a detection limit of 1.6 fg mL-1; moreover, it demonstrated excellent stability and specificity and has been successfully applied for detecting Pro-GRP in the human serum.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Estructuras Metalorgánicas , Humanos , Péptido Liberador de Gastrina , Europio , Mediciones Luminiscentes , Técnicas Electroquímicas , Inmunoensayo , Límite de Detección
13.
Anal Chim Acta ; 1289: 342201, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38245204

RESUMEN

Responsive hydrogels have received much attention for improving the detection performance of electrochemical sensors because of their special responsiveness. However, current responsive hydrogels generally suffer from long response times, ranging from tens of minutes to several hours. This situation severely limits the detection performance and practical application of electrochemical sensors. Here, an electrochemical sensing platform was constructed by employing dual-responsive polyacrylamide/zinc finger peptide/Fe-MOF hydrogel (PZFH) as the silent layer, sodium alginate-Ni2+-graphene oxide hydrogel as the signal layer. GOx@ZIF-8, as the immunoprobe, catalyzed glucose to H2O2 and gluconic acid, resulting in the cleavage of immunoprobe as the pH decreased and subsequent release of Zn2+ ions. During the process of Fe-MOF converting from Fe3+ to Fe2+, free radicals were generated and used to destroy the structure of the PZFH. Cysteine and histidine in the zinc finger peptide can specifically bind to Zn2+ to create many pores in PZFH, exposing the signal layer. These synergistic effects rapidly decreased the impedance of PZFH and increased the electrochemical signal of Ni2+. The electrochemical sensing platform was used to detect pro-gastrin-releasing peptide with response times as short as 7 min of PZFH, a wide linear range from 100 ng mL-1 to 100 fg mL-1, and an ultra-low limit of detection of 14.24 fg mL-1 (S/N = 3). This strategy will provide a paradigm for designing electrochemical sensors.


Asunto(s)
Resinas Acrílicas , Hidrogeles , Peróxido de Hidrógeno , Hidrogeles/química , Peróxido de Hidrógeno/química , Péptidos , Dedos de Zinc , Técnicas Electroquímicas/métodos
14.
Theranostics ; 14(2): 819-829, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169486

RESUMEN

Purpose: Lower-grade gliomas (LGGs) are a group of infiltrative growing glial brain tumors characterized by intricate intratumoral heterogeneity and subtle visual appearance differences from non-tumor tissue, which can lead to errors in pathologic tissue sampling. Although 5-ALA fluorescence has been an essential method for visualizing gliomas during surgery, its effectiveness is limited in the case of LGGs due to low sensitivity. Therefore, we developed a novel PET/NIR dual-modality image probe targeting gastrin-releasing peptide receptor (GRPR) in glioma cells to enhance tumor visualization and improve the accuracy of sampling. Methods: A prospective, non-randomized, single-center feasibility clinical trial (NCT03407781) was conducted in the referral center from October 21, 2016, to August 17, 2018. Consecutive enrollment included patients suspected of having LGGs and considered suitable candidates for surgical removal. Group 1 comprised ten patients who underwent preoperative 68Ga-IRDye800CW-BBN PET/MRI assessment followed by intraoperative fluorescence-guided surgery. Group 2 included 42 patients who underwent IRDye800CW-BBN fluorescence-guided surgery. The primary endpoints were the predictive value of preoperative PET imaging for intraoperative fluorescence and the sensitivity and specificity of fluorescence-guided sampling. Results: Thirty-nine patients were included in the in-depth analysis of endpoints, with 25 (64.1%) exhibiting visible fluorescence, while 14 (35.9%) did not. The preoperative positive PET uptake exhibited a greater accuracy in predicting intraoperative fluorescence compared to MRI enhancement (100% [10/10] vs. 87.2% [34/39]). A total of 125 samples were harvested during surgery. Compared with pathology, subjective fluorescence intensity showed a sensitivity of 88.6% and a specificity of 88.2% in identifying WHO grade III samples. For WHO grade II samples, the sensitivity and specificity of fluorescence were 54.7% and 88.2%, respectively. Conclusion: This study has demonstrated the feasibility of the novel dual-modality imaging technique for integrated pre- and intraoperative targeted imaging via the same molecular receptor in surgeries for LGGs. The PET/NIR dual-modality probe exhibits promise for preoperative surgical planning in fluorescence-guided surgery and provides greater accuracy in guiding tumor sampling compared to 5-ALA in patients with LGGs.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Receptores de Bombesina , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Estudios Prospectivos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Ácido Aminolevulínico , Tomografía de Emisión de Positrones/métodos
15.
Mol Imaging Biol ; 26(1): 114-123, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37640941

RESUMEN

PURPOSE: Radiolabeled NeoB is a promising gastrin-releasing peptide receptor (GRPR)-targeting radiopharmaceutical for theranostics of GRPR-expressing malignancies, e.g., prostate cancer (PCa). The aim of this study was to evaluate the effect of different doses of [177Lu]Lu-NeoB on the balance between therapeutic efficacy and safety in a preclinical PCa model. PROCEDURES: To determine the efficacy of [177Lu]Lu-NeoB, PC-3 xenografted mice received 3 sham injections (control group) or 3 injections of 30 MBq/300 pmol, 40 MBq/400 pmol, or 60 MBq/600 pmol [177Lu]Lu-NeoB (groups 1, 2, and 3, respectively) 1 week apart. To quantify tumor uptake, single-photon emission computed tomography/computed tomography (SPECT/CT) imaging was performed 4 h after the first, second, and third injection on a separate group of animals. For safety evaluations, pancreatic and renal tissues of non-tumor-bearing mice treated with the abovementioned [177Lu]Lu-NeoB doses were evaluated 12 and 24 weeks post-treatment. RESULTS: Treatment of PC-3 tumors with all three studied [177Lu]Lu-NeoB doses was effective. Median survival times were significantly (p < 0.0001) improved for treatment groups 1, 2, and 3 versus the control group (82 days, 89 days, 99 days versus 19 days, respectively). However, no significant differences were observed between treatment groups. Quantification of SPECT/CT images showed minimal differences in the average absolute radioactivity uptake, especially after the third injection. Histopathological analysis revealed no clear signs of treatment-related pancreatic toxicity. For the kidneys, atrophy and fibrosis were observed for one animal from group 1 and a chronic inflammatory response was observed for both animals from group 3 at 24 weeks post-treatment. CONCLUSIONS: Treatment with [177Lu]Lu-NeoB is effective in a preclinical PCa model. Adjusting the administered dose could positively impact the risk-benefit balance as a higher dose might not lead to an increased therapeutic effect, but it may lead to an increase in toxicological effects in healthy organs such as the kidneys.


Asunto(s)
Neoplasias de la Próstata , Radioisótopos , Humanos , Masculino , Ratones , Animales , Radioisótopos/uso terapéutico , Línea Celular Tumoral , Neoplasias de la Próstata/diagnóstico , Próstata/patología , Receptores de Bombesina
16.
Biochem Pharmacol ; 218: 115901, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084678

RESUMEN

The gastrin-releasing peptide receptor (GRPR) binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. In this study, we investigated the therapeutic effect of a novel gastrin-releasing peptide receptor antagonist RH-1402 in hyperuricemia-induced kidney fibrosis and its underlying mechanisms. We conducted enzyme linked immunosorbent assay (ELISA) and immunohistochemical analyses and found that proGRP and GRPR expression levels were significantly increased in patients with hyperuricemic nephropathy (HN) and HN mice. GRPR knockdown significantly attenuated inflammatory and fibrotic responses in adenosine-treated human proximal tubule epithelial cells. GRPR knockout or GRPR conditional knockout in renal tubular epithelial cells significantly alleviated the decline in renal function and fibrosis in HN mice in vivo. RNA-seq and String database analysis revealed that GRP/GRPR promoted HN by suppressing the ABCG2/PDZK1 and increasing TGF-ß/Smad3 levels by activating the NF-κB pathway. Overexpression of GRPR increased TGF-ß/Smad3 levels, where as it reduced ABCG2/PDZK1 levels in adenosine-treated HK2 cells, which was reversed by the NF-κB inhibitor. Furthermore, we evaluated the therapeutic effects of the novel GRPR inhibitor RH-1402 on hyperuricaemia-induced renal injury and evaluated the inflammatory and fibrosis responses in vivo and in vitro. Pre-treatment with RH-1402 attenuated hyperuricaemia-induced renal injury, restored renal function, and suppressed renal inflammation and fibrosis. Taken together, GRPR enhances hyperuricaemia-induced tubular injury, inflammation, and renal fibrosis via ABCG2-dependent mechanisms and may serve as a promising therapeutic target for HN treatment.


Asunto(s)
Hiperuricemia , Enfermedades Renales , Nefritis , Animales , Humanos , Ratones , Adenosina , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Fibrosis , Hiperuricemia/tratamiento farmacológico , Inflamación , Enfermedades Renales/etiología , Proteínas de Neoplasias/metabolismo , Nefritis/etiología , FN-kappa B/metabolismo , Receptores de Bombesina/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
17.
Cancers (Basel) ; 15(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067350

RESUMEN

Despite the tremendous development of oncology, prostate cancer remains a debilitating malignancy. One of the most promising approaches to addressing this issue is to exploit the advancements of nanomedicine in combination with well-established nuclear medicine and radiotherapy. Following this idea, we have developed a radioisotope nanocarrier platform of electron-beam-synthesized nanogels based on poly(acrylic acid). We have developed a functionalization protocol, showing the very high (>97%) efficiency of the conjugation in targeting a ligand-bombesin derivative. This engineered peptide can bind gastrin-releasing peptide receptors overexpressed in prostate cancer cells; moreover, it bears a radioisotope-chelating moiety. Our nanoplatform exhibits very promising performance in vitro; the radiolabeled nanocarriers maintained high radiochemical purity of >90% in both the labeling buffer and human serum for up to 14 days. The application of the targeted nanocarrier allowed also effective and specific uptake in PC-3 prostate cancer cells, up to almost 30% after 4 h, which is a statistically significant improvement in comparison to carrier-free radiolabeled peptides. Although our system requires further studies for more promising results in vivo, our study represents a vital advancement in radionanomedicine-one of many steps that will lead to effective therapy for castration-resistant prostate cancer.

18.
Front Mol Neurosci ; 16: 1280024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098939

RESUMEN

The prevalence of allergic conjunctivitis in itchy eyes has increased constantly worldwide owing to environmental pollution. Currently, anti-allergic and antihistaminic eye drops are used; however, there are many unknown aspects about the neural circuits that transmit itchy eyes. We focused on the gastrin-releasing peptide (GRP) and GRP receptor (GRPR), which are reportedly involved in itch transmission in the spinal somatosensory system, to determine whether the GRP system is involved in itch neurotransmission of the eyes in the trigeminal sensory system. First, the instillation of itch mediators, such as histamine (His) and non-histaminergic itch mediator chloroquine (CQ), exhibited concentration-dependent high levels of eye scratching behavior, with a significant sex differences observed in the case of His. Histological analysis revealed that His and CQ significantly increased the neural activity of GRPR-expressing neurons in the caudal part of the spinal trigeminal nucleus of the medulla oblongata in GRPR transgenic mice. We administered a GRPR antagonist or bombesin-saporin to ablate GRPR-expressing neurons, followed by His or CQ instillation, and observed a decrease in CQ-induced eye-scratching behavior in the toxin experiments. Intracisternal administration of neuromedin C (NMC), a GRPR agonist, resulted in dose-dependent excessive facial scratching behavior, despite the absence of an itch stimulus on the face. To our knowledge, this is the first study to demonstrate that non-histaminergic itchy eyes were transmitted centrally via GRPR-expressing neurons in the trigeminal sensory system, and that NMC in the medulla oblongata evoked facial itching.

19.
Mol Pharm ; 20(12): 6463-6473, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37978936

RESUMEN

The gastrin-releasing peptide receptor (GRPr) is overexpressed in various cancer types including prostate and breast carcinomas, making it an attractive target for molecular imaging and therapy. In this work, we designed a novel GRPr antagonistic probe comprising metal chelator NODIA-Me. This 1,4,7-triazacyclononane-based chelator forms positively charged metal complexes due to its neutral methylimidazole arms. Because a positive charge at the N-terminus of GRPr conjugates is responsible for high receptor affinity as exemplified by the current gold standard DOTA-RM2, we investigated if a positively charged radiometal complex can be used as a pharmacokinetic modifier to also produce high-affinity GRPr conjugates. In this respect, the bioconjugate NODIA-Me-Ahx-JMV594 was prepared by a combination of solid-phase peptide synthesis and solution-based reactions in a 94% yield. Radiolabeling provided the 68Ga-labeled conjugate in radiochemical yields of >95% and radiochemical purities of >98% with mean molar activities of Am ∼17 MBq nmol-1. The competitive GRPr affinity of the metal-free and 69/71Ga-labeled conjugate was determined to be IC50 = 0.41 ± 0.06 and 1.45 ± 0.06 nM, respectively. The metal-free GRPr antagonist DOTA-RM2 and its corresponding 69/71Ga complex had IC50 values of 1.42 ± 0.07 and 0.98 ± 0.19 nM, respectively. Small-animal PET imaging of mice bearing GRPr(+) PC-3 tumors revealed high radioactivity accumulation in the tumors and in the pancreas as an organ with high levels of GRPr expression. These findings were corroborated by the corresponding ex vivo biodistribution data, in which the tumors and the pancreas exhibited the highest radioactivity accumulation. By coinjection of an excess of NODIA-Me-Ahx-JMV594, uptake in the tumors and GRPr(+) organs was significantly reduced, confirming specific receptor-mediated uptake. The estrogen receptor-positive tumor of a female breast cancer patient was clearly visualized by PET imaging using 68Ga-labeled NODIA-Me-Ahx-JMV594. To summarize, the positive charge at the N-terminus of the conjugate induced by the Ga(NODIA-Me) complex resulted in high GRPr affinity comparable to that of the potent antagonist DOTA-RM2. The conjugate NODIA-Me-Ahx-JMV594 is a promising probe for imaging of GRPr tumors that warrants further evaluation in larger patient cohorts as well as in combination with other radiometals.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Receptores de Bombesina/metabolismo , Radioisótopos de Galio , Distribución Tisular , Línea Celular Tumoral , Neoplasias de la Próstata/metabolismo , Quelantes/química , Tomografía de Emisión de Positrones/métodos , Bombesina/farmacocinética
20.
Front Med (Lausanne) ; 10: 1250799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020178

RESUMEN

Breast Cancer (BC) is the most common cancer worldwide and, despite the advancements made toward early diagnosis and novel treatments, there is an urgent need to reduce its mortality. The Gastrin-Releasing Peptide Receptor (GRPR) is a promising target for the development of theranostic radioligands for luminal BC with positive estrogen receptor (ER) expression, because GRPR is expressed not only in primary lesions but also in lymph nodes and distant metastasis. In the last decades, several GRPR-targeting molecules have been evaluated both at preclinical and clinical level, however, most of the studies have been focused on prostate cancer (PC). Nonetheless, given the relevance of non-invasive diagnosis and potential treatment of BC through Peptide Receptor Radioligand Therapy (PRRT), this review aims at collecting the available preclinical and clinical data on GRPR-targeting radiopeptides for the imaging and therapy of BC, to better understand the current state-of-the-art and identify future perspectives and possible limitations to their clinical translation. In fact, since luminal-like tumors account for approximately 80% of all BC, many BC patients are likely to benefit from the development of GRPR-radiotheranostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA