Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 474: 134786, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38824778

RESUMEN

Volatile organic compounds (VOCs) as environmental pollutants were associated with respiratory diseases. Pulmonary fibrosis (PF) was characterized by an increase of extracellular matrix, leading to deterioration of lung function. The adverse effects on lung and the potential mechanism underlying VOCs induced PF had not been elucidated clearly. In this study, the indoor VOCs exposure mouse model along with an ex vivo biosensor assay was established. Based on scRNA-seq analysis, the adverse effects on lung and potential molecular mechanism were studied. Herein, the results showed that VOCs exposure from indoor decoration contributed to decreased lung function and facilitated pulmonary fibrosis in mice. Then, the whole lung cell atlas after VOCs exposure and the heterogeneity of fibroblasts were revealed. We explored the molecular interactions among various pulmonary cells, suggesting that endothelial cells contributed to fibroblasts activation in response to VOCs exposure. Mechanistically, pulmonary microvascular endothelial cells (MPVECs) secreted Gas6 after VOCs-induced PANoptosis phenotype, bound to the Axl in fibroblasts, and then activated fibroblasts. Moreover, Atf3 as the key gene negatively regulated PANoptosis phenotype to ameliorate fibrosis induced by VOCs exposure. These novel findings provided a new perspective about MPVECs could serve as the initiating factor of PF induced by VOCs exposure.


Asunto(s)
Células Endoteliales , Fibroblastos , Pulmón , Fibrosis Pulmonar , Compuestos Orgánicos Volátiles , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Compuestos Orgánicos Volátiles/toxicidad , Pulmón/efectos de los fármacos , Pulmón/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Tirosina Quinasa del Receptor Axl , Ratones Endogámicos C57BL , Contaminación del Aire Interior/efectos adversos , Masculino , Transducción de Señal/efectos de los fármacos
2.
J Cell Physiol ; 239(2): e31162, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994152

RESUMEN

The developmental fate of ovarian follicles is primarily determined by the survival status (proliferation or apoptosis) of granulosa cells (GCs). Owing to the avascular environment within follicles, GCs are believed to live in a hypoxic niche. Follicle-stimulating hormone (FSH) has been reported to improve GCs survival by governing hypoxia-inducible factor-1α (HIF-1α)-dependent hypoxia response, but the underlying mechanisms remain poorly understood. Growth arrest-specific gene 6 (GAS6) is a secreted ligand of tyrosine kinase receptors, and has been documented to facilitate tumor growth. Here, we showed that the level of GAS6 was markedly increased in mouse ovarian GCs after the injection of FSH. Specifically, FSH-induced GAS6 expression was accompanied by HIF-1α accumulation under conditions of hypoxia both in vivo and in vitro, whereas inhibition of HIF-1α with small interfering RNAs/antagonist repressed both expression and secretion of GAS6. As such, Luciferase reporter assay and chromatin immunoprecipitation assay showed that HIF-1α directly bound to a hypoxia response element site within the Gas6 promoter and contributed to the regulation of GAS6 expression in response to FSH. Notably, blockage of GAS6 and/or its receptor Axl abrogated the pro-survival effects of FSH under hypoxia. Moreover, phosphorylation of Axl by GAS6 is required for FSH-mediated Akt activation and the resultant pro-survival phenotypes. Finally, the in vitro findings were verified in vivo, which showed that FSH-induced proliferative and antiapoptotic effects in ovarian GCs were diminished after blocking GAS6/Axl using HIF-1α antagonist. These findings highlight a novel function of FSH in preserving GCs viability against hypoxic stress by activating the HIF-1a-GAS6-Axl-Akt pathway.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Femenino , Ratones , Hormona Folículo Estimulante/farmacología , Células de la Granulosa/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Endogámicos ICR
3.
Curr Oncol Rep ; 25(5): 521-529, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36920638

RESUMEN

PURPOSE OF REVIEW: The AXL signaling pathway is associated with tumor growth as well as poor prognosis in cancer. Here, we highlight recent strategies for targeting AXL in the treatment of solid and hematological malignancies. RECENT FINDINGS: AXL is a key player in survival, metastasis, and therapeutic resistance in many cancers. A range of AXL-targeted therapies, including tyrosine kinase inhibitors, monoclonal antibodies, antibody-drug conjugates, and soluble receptors, have entered clinical development. Notably, AXL inhibitors in combination with immune checkpoint inhibitors demonstrate early promise; however, further understanding of predictive biomarkers and treatment sequencing is necessary. Based on its role in tumor growth and drug resistance, AXL represents a promising therapeutic target in oncology. Results from ongoing clinical trials will provide valuable insights into the role of AXL inhibitors, both as single agents and in combination with other therapies.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Neoplasias , Humanos , Proteínas Tirosina Quinasas Receptoras , Proteínas Proto-Oncogénicas/uso terapéutico , Transducción de Señal , Neoplasias/tratamiento farmacológico
4.
Transl Stroke Res ; 14(6): 955-969, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36324028

RESUMEN

Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is characterized by rapid development of neuron apoptosis and dysregulated inflammatory response. Microglia efferocytosis plays a critical role in the clearance of apoptotic cells, attenuation of inflammation, and minimizing brain injury in various pathological conditions. Here, using a mouse SAH model, we aim to investigate whether microglia efferocytosis is involved in post-SAH inflammation and to determine the underlying signaling pathway. We hypothesized that TAM receptors and their ligands regulate this process. To prove our hypothesis, the expression and cellular location of TAM (Tyro3, Axl, and Mertk) receptors and their ligands growth arrest-specific 6 (Gas6) and Protein S (ProS1) were examined by PCR, western blots, and fluorescence immunostaining. Thirty minutes after SAH, mice received an intraventricular injection of recombinant Gas6 (rGas6) or recombinant ProS1 (rPros1) and underwent evaluations of inflammatory mediator expression, neurological deficits, and blood-brain barrier integrity at 24 h. Microglia efferocytosis of apoptotic neurons was analyzed in vivo and in vitro. The potential mechanism was determined by inhibiting or knocking down TAM receptors and Rac1 by specific inhibitors or siRNA. SAH induced upregulation of Axl and its ligand Gas6. The administration of rGas6 but not rPros1 promoted microglia efferocytosis, alleviated inflammation, and ameliorated SAH-induced BBB breakdown and neurological deficits. The beneficial effects of rGas6 were arrogated by inhibiting or knocking down Axl and Rac1. We concluded that rGas6 attenuated the development of early brain injury in mice after SAH by facilitating microglia efferocytosis and preventing inflammatory response, which is partly dependent on activation of Axl and Rac1.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Animales , Microglía/patología , Hemorragia Subaracnoidea/patología , Transducción de Señal , Inflamación/metabolismo , Modelos Animales de Enfermedad
5.
Brain Behav Immun ; 107: 76-86, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36198341

RESUMEN

Current treatments for chronic pain are unsatisfactory, therefore, new therapeutics are urgently needed. Our previous study indicated that KATP channel openers have analgesic effects, but the underlying mechanism has not been elucidated. We speculated that KATP channel openers might increase suppressor of cytokine signaling (SOCS)-3 expression to induce inflammatory tolerance and attenuate chronic pain. Postoperative pain was induced by plantar incision to establish a chronic pain model. Growth arrest-specific 6 (Gas6)-/- and Axl-/- mice were used for signaling studies. The microglia cell line BV-2 was cultured for the in vitro experiments. The KATP channel opener significantly attenuated incision-induced mechanical allodynia in mice associated with the upregulated expression of SOCS3. Opening KATP channels induced the expression of SOCS3 in the Gas6/Axl signaling pathway in microglia, inhibited incision-induced mechanical allodynia by activating the Gas6/Axl-SOCS3 signaling pathway, and induced inflammatory tolerance to relieve neuroinflammation and postoperative pain. We demonstrated that opening of the KATP channel opening activated Gas6/Axl/SOCS3 signaling to induce inflammatory tolerance and relieve chronic pain. We explored a new target for anti-inflammatory and analgesic effects by regulating the innate immune system and provided a theoretical basis for clinical preemptive analgesia.


Asunto(s)
Dolor Crónico , Animales , Ratones , Dolor Crónico/prevención & control , Dolor Postoperatorio , Adenosina Trifosfato
6.
Front Oncol ; 11: 756225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778071

RESUMEN

Extensive interest in cancer immunotherapy is reported according to the clinical importance of CTLA-4 and (PD-1/PD-L1) [programmed death (PD) and programmed death-ligand (PD-L1)] in immune checkpoint therapies. AXL is a receptor tyrosine kinase expressed in different types of cancer and in relation to resistance against various anticancer therapeutics due to poor clinical prognosis. AXL and its ligand, i.e., growth arrest-specific 6 (GAS6) proteins, are expressed on many cancer cells, and the GAS6/AXL pathway is reported to promote cancer cell proliferation, survival, migration, invasion, angiogenesis, and immune evasion. AXL is an attractive and novel therapeutic target for impairing tumor progression from immune cell contracts in the tumor microenvironment. The GAS6/AXL pathway is also of interest immunologically because it targets fewer antitumor immune responses. In effect, several targeted therapies are selective and nonselective for AXL, which are in preclinical and clinical development in multiple cancer types. Therefore, this review focuses on the role of the GAS6/AXL signaling pathway in triggering the immunosuppressive tumor microenvironment as immune evasion. This includes regulating its composition and activating T-cell exclusion with the immune-suppressive activity of regulatory T cells, which is related to one of the hallmarks of cancer survival. Finally, this article discusses the GAS6/AXL signaling pathway in the context of several immune responses such as NK cell activation, apoptosis, and tumor-specific immunity, especially PD-1/PDL-1 signaling.

7.
Pharm Biol ; 59(1): 1369-1377, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34629012

RESUMEN

CONTEXT: Ginsenoside Rb1 (Rb1) exerts many beneficial effects and protects against cardiovascular disease. OBJECTIVE: To investigate whether Rb1 could attenuate age-related vascular impairment and identify the mechanism. MATERIALS AND METHODS: Female C57BL/6J mice aged 2 and 18 months, randomly assigned to Young, Young + 20 mg/kg Rb1, Old + vehicle, Old + 10 mg/kg Rb1 and Old + 20 mg/kg Rb1 groups, were daily intraperitoneal injected with vehicle or Rb1 for 3 months. The thoracic aorta segments were used to inspect the endothelium-dependent vasorelaxation. Left thoracic aorta tissues were collected for histological or molecular expression analyses, including ageing-related proteins, markers relevant to calcification and fibrosis, and expression of Gas6/Axl. RESULTS: We found that in Old + vehicle group, the expression of senescence proteins and cellular adhesion molecules were significantly increased, with worse endothelium-dependent thoracic aorta relaxation (58.35% ± 2.50%) than in Young group (88.84% ± 1.20%). However, Rb1 treatment significantly decreased the expression levels of these proteins and preserved endothelium-dependent relaxation in aged mice. Moreover, Rb1 treatment also reduced calcium deposition, collagen deposition, and the protein expression levels of collagen I and collagen III in aged mice. Furthermore, we found that the downregulation of Gas6 protein expression by 41.72% and mRNA expression by 52.73% in aged mice compared with young mice was abrogated by Rb1 treatment. But there was no significant difference on Axl expression among the groups. CONCLUSIONS: Our study confirms that Rb1 could ameliorate vascular injury, suggesting that Rb1 might be a potential anti-ageing related vascular impairment agent.


Asunto(s)
Envejecimiento/efectos de los fármacos , Ginsenósidos/farmacología , Péptidos y Proteínas de Señalización Intercelular/genética , Enfermedades Vasculares/prevención & control , Factores de Edad , Envejecimiento/patología , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ginsenósidos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Vasodilatación/efectos de los fármacos
8.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34576116

RESUMEN

Many signaling pathways are dysregulated in cancer cells and the host tumor microenvironment. Aberrant receptor tyrosine kinase (RTK) pathways promote cancer development, progression, and metastasis. Hence, numerous therapeutic interventions targeting RTKs have been actively pursued. Axl is an RTK that belongs to the Tyro3, Axl, MerTK (TAM) subfamily. Axl binds to a high affinity ligand growth arrest specific 6 (Gas6) that belongs to the vitamin K-dependent family of proteins. The Gas6/Axl signaling pathway has been implicated to promote progression, metastasis, immune evasion, and therapeutic resistance in many cancer types. Therapeutic agents targeting Gas6 and Axl have been developed, and promising results have been observed in both preclinical and clinical settings when such agents are used alone or in combination therapy. This review examines the current state of therapeutics targeting the Gas6/Axl pathway in cancer and discusses Gas6- and Axl-targeting agents that have been evaluated preclinically and clinically.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Animales , Productos Biológicos/uso terapéutico , Humanos , Tirosina Quinasa del Receptor Axl
9.
Cell Biosci ; 11(1): 159, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399835

RESUMEN

BACKGROUND: Vascular calcification is a closely linked to cardiovascular diseases, such as atherosclerosis, chronic kidney disease, diabetes, hypertension and aging. The extent of vascular calcification is closely correlate with adverse clinical events and cardiovascular all-cause mortality. The role of autophagy in vascular calcification is complex with many mechanistic unknowns. METHODS: In this review, we analyze the current known mechanisms of autophagy in vascular calcification and discuss the theoretical advantages of targeting autophagy as an intervention against vascular calcification. RESULTS: Here we summarize the functional link between vascular calcification and autophagy in both animal models of and human cardiovascular disease. Firstly, autophagy can reduce calcification by inhibiting the osteogenic differentiation of VSMCs related to ANCR, ERα, ß-catenin, HIF-1a/PDK4, p62, miR-30b, BECN1, mTOR, SOX9, GHSR/ERK, and AMPK signaling. Conversely, autophagy can induce osteoblast differentiation and calcification as mediated by CREB, degradation of elastin, and lncRNA H19 and DUSP5 mediated ERK signaling. Secondly, autophagy also links apoptosis and vascular calcification through AMPK/mTOR/ULK1, Wnt/ß-catenin and GAS6/AXL synthesis, as apoptotic cells become the nidus for calcium-phosphate crystal deposition. The failure of mitophagy can activate Drp1, BNIP3, and NR4A1/DNA­PKcs/p53 mediated intrinsic apoptotic pathways, which have been closely linked to the formation of vascular calcification. Additionally, autophagy also plays a role in osteogenesis by regulating vascular calcification, which in turn regulates expression of proteins related to bone development, such as osteocalcin, osteonectin, etc. and regulated by mTOR, EphrinB2 and RhoA. Furthermore, autophagy also promotes vitamin K2-induced MC3T3 E1 osteoblast differentiation and FGFR4/FGF18- and JNK/complex VPS34-beclin-1-related bone mineralization via vascular calcification. CONCLUSION: The interaction between autophagy and vascular calcification are complicated, with their interaction affected by the disease process, anatomical location, and the surrounding microenvironment. Autophagy activation in existent cellular damage is considered protective, while defective autophagy in normal cells result in apoptotic activation. Identifying and maintaining cells at the delicate line between these two states may hold the key to reducing vascular calcification, in which autophagy associated clinical strategy could be developed.

10.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34244439

RESUMEN

AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.


Asunto(s)
Actinas/metabolismo , Extensiones de la Superficie Celular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Pinocitosis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Citoesqueleto de Actina/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Glioblastoma/patología , Glutamina/farmacología , Células HEK293 , Humanos , Modelos Biológicos , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Proteína de Unión al GTP rac1/metabolismo , Tirosina Quinasa del Receptor Axl
11.
Onco Targets Ther ; 13: 5901-5911, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606800

RESUMEN

BACKGROUND: Gastric cancer (GC) is an aggressive malignancy with high lethality. Systematic chemotherapy is the main therapeutic strategy for advanced GC patients. The overexpression of Axl is associated with poor prognosis and regulates tumor growth and metastasis in many types of cancer. However, the role of Axl in GC progression remains elusive. MATERIALS AND METHODS: Western blot and quantitative real-time PCR assay (RT-PCR) assays were used to detect the expression of Gas6, Axl, ZEB1 and epithelial-mesenchymal transition (EMT)-related markers in GC cells. Cell proliferation was determined by EdU cell proliferation assay and CCK-8 assay. Transwell invasion assay was performed to explore the effect of Axl and ZEB1 on cell invasion. Tumor xenografts and lung metastasis models were conducted to examine the effect of Axl on the growth and lung metastasis of GC cells. RESULTS: In our study, we found that high levels of Gas6 and Axl expression were associated with reduced overall survival (OS) in GC patients and the expression of Gas6 and Axl was upregulated in GC cell lines. Ectopic expression of Axl induced EMT and promoted GC cell invasion and proliferation. The knockdown of Axl inhibited EMT and suppressed the proliferation and invasion of GC cell. In vivo study showed that inhibition of Axl impaired tumor growth and lung metastasis of GC cells. Mechanistic investigations revealed that Axl promoted EMT, invasion, and proliferation via upregulating ZEB1 expression in GC cells. CONCLUSION: Our results demonstrated that the Gas6/Axl/ZEB1 signaling pathway regulated EMT, invasion, and proliferation in GC cells and might represent a potential therapeutic target for GC treatment.

12.
Cancers (Basel) ; 12(7)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32660000

RESUMEN

Receptor tyrosine kinases have been shown to dysregulate a number of pathways associated with tumor development, progression, and metastasis. Axl is a receptor tyrosine kinase expressed in many cancer types and has been associated with therapy resistance and poor clinical prognosis and outcomes. In addition, Axl and its ligand growth arrest specific 6 (Gas6) protein are expressed by a number of host cells. The Gas6/Axl signaling pathway has been implicated in the promotion of tumor cell proliferation, survival, migration, invasion, angiogenesis, and immune evasion. As a result, Axl is an attractive, novel therapeutic target to impair multiple stages of tumor progression from both neoplastic and host cell axes. This review focuses on the role of the Gas6/Axl signaling pathway in promoting the immunosuppressive tumor microenvironment, as immune evasion is considered one of the hallmarks of cancer. The review discusses the structure and activation of the Gas6/Axl signaling pathway, GAS6 and AXL expression patterns in the tumor microenvironment, mechanisms of Axl-mediated tumor immune response, and the role of Gas6/Axl signaling in immune cell recruitment.

13.
Aging (Albany NY) ; 12(10): 9714-9725, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32432570

RESUMEN

Qigesan (QGS) has been used to effectively treat esophageal cancer (EC) for decades in China, but the mechanism by which it suppresses EC metastasis remains unknown. In this study, we examined the effects of QGS on EC cell mobility. Using immunohistochemistry and immunofluorescence, expression of Gas6 and Axl, which promote tumor cell migration and invasion, was examined in carcinoma tissues and adjacent normal tissues from EC patients. Levels of Gas6, Axl, and the Gas6/Axl complex were also examined in ECA109 and TE13 EC cells treated with QGS. In addition, immunofluorescent staining and quantitative protein analysis were used to examine E-cadherin, N-cadherin, and Snail levels in ECA109 and TE13 EC cells after QSG administration, and cell mobility was assessed. The results demonstrated that levels of Gas6 and Axl expression are higher in EC tissues than in adjacent normal tissues. Moreover, QGS decreased Gas6/Axl levels, increased E-cadherin expression, decreased Snail and N-cadherin expression, and inhibited epithelial-mesenchymal transition (EMT) in EC cells. QGS thus suppresses EMT in EC by inhibiting Gas6/Axl binding.


Asunto(s)
Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Esofágicas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Invasividad Neoplásica , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina Quinasa del Receptor Axl
14.
Biosci Rep ; 39(6)2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31110076

RESUMEN

The present study is mainly to explore the mechanism that how Qigesan (QGS) affects the movement capacity of esophageal cancer (EC) cell. QGS incubates ECA109 and TE1 cell lines and detecting the motility of tumor cells by different experiments. Growth arrest-specific 6 (Gas6) and Anexelekto (Axl) were co-localized, and then detecting Gas6, Axl signaling pathway, and protein expression after QGS intervention. Similarly, Observing the signal localization and protein expression of P-phosphoinositide3-kinases (PI3K), P-AKT protein kinase B (AKT), P-nuclear factor-kappa B (NF-κB), matrix metalloproteinase-2 (MMP2), and matrix metalloproteinase-9 (MMP9). The results showed that the concentration of QGS was less than 200 ug/ml, and the cultured cells did not exceed 24 h, that no obvious cytotoxicity was observed. QGS significantly inhibited the mobility of ECA109 and TE1 cell lines in the concentration-dependent manner. In addition, QGS can regulate the Gas6/Axl pathway, inhibit the formation and localization of the Gas6/Axl complex, and reduce the protein activation of PI3K/AKT, NF-κB, MMP2, and MMP9. Experimental innovation shows that QGS can significantly slow down the mobility of EC cells by regulating the Gas6/Axl complex and downstream signaling pathways, and provides a theoretical basis for the pharmacological effects of QGS in the therapy of EC.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Neoplasias Esofágicas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Neoplasias Esofágicas/patología , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Tirosina Quinasa del Receptor Axl
15.
Free Radic Biol Med ; 134: 484-497, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30716432

RESUMEN

Renal ischemia-reperfusion injury (IRI) is a complex syndrome, which causes chronic kidney disease (CKD) after recovery from IRI-mediated acute kidney injury (AKI). There is no single therapy that could effectively prevent the renal injury after ischemia. In this study, the effects of melatonin or poricoic acid A (PAA) and their combination were investigated in protecting against AKI-to-CKD transition in rats and hypoxia/reoxygenation (H/R)-induced injury in cultured renal NRK-52E cells. Melatonin and PAA significantly reduced the magnitude of rise in serum creatinine and urea levels in IRI rats at days 3 and 14. Our results further showed that treatment with melatonin and PAA ameliorated renal fibrosis and podocyte injury by attenuating oxidative stress and inflammation via regulation of nuclear factor-kappa B (NF-κB) and nuclear factor-erythroid-2-related factor 2 (Nrf2) pathways in IRI rats. Melatonin and PAA protected against AKI-to-CKD transition by regulating growth arrest-specific 6 (Gas6)/AxlNFκB/Nrf2 signaling cascade. Melatonin and PAA initiallyupregulated Gas6/Axl signaling to reduce oxidative stress and inflammation in AKI and subsequently downregulated Gas6/Axl signaling to attenuate renal fibrosis and progression to CKD. Melatonin and PAA inhibited expression of extracellular matrix proteins. Poricoic acid A enhances melatonin-mediated inhibition of AKI-to-CKD transition by the regulating Gas6/AxlNFκB/Nrf2 signaling cascade. Notably, our study first identified Axl as a promising therapeutic target for prevention of AKI-to-CKD transition.


Asunto(s)
Lesión Renal Aguda/complicaciones , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/efectos de los fármacos , Melatonina/farmacología , Insuficiencia Renal Crónica/prevención & control , Daño por Reperfusión/prevención & control , Triterpenos/farmacología , Animales , Antioxidantes/farmacología , Biomarcadores/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
16.
Exp Gerontol ; 119: 128-137, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30710682

RESUMEN

BACKGROUND: Androgen has been implicated in aging-related cardiac remodeling, but its precise role in aging heart remains controversial. We aimed to investigate the role of testosterone in the development of aging-related cardiac remodeling and the mechanisms involved. METHODS: Wild type and Axl knockout mice (Axl-/-) were randomized into three groups: the young group (n = 30, 3 months old), the aging group (n = 30, 18 months old), the testosterone undecanoate treatment group (TU, n = 30, 18 months old). Mice in the TU group were given testosterone undecanoate (39 mg/kg) by subcutaneous injection on the back at fifteen-months-old, once a month, a total of three times. The old group received solvent reagent (corn oil) by the same method. RESULTS: The aging mice exhibited a decrease in serum testosterone, and Gas6 levels and an increase in apoptosis, and manifested cardiac fibrosis. Testosterone injection to wild type mice increased the levels of testosterone and Gas6 in serum and decreased cardiac apoptosis and fibrosis. Axl-/-mice receiving testosterone injection exhibited no obvious improvement in cardiac remodeling although the levels of testosterone and Gas6 in serum elevated. CONCLUSIONS: These data indicated that testosterone replacement therapy (TRT) alleviates cardiac fibrosis and apoptosis, at least in part by enhancing Gas6 expression. Moreover, deletion of Axl disables testosterone, which indicated that Axl is an important downstream regulator of testosterone. TRT would improve aging-related cardiac remolding via Gas6/Axl signaling pathway, implicating its therapeutic potential to treat aging-related heart disease.


Asunto(s)
Envejecimiento/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Miocardio/patología , Testosterona/análogos & derivados , Envejecimiento/sangre , Envejecimiento/patología , Animales , Apoptosis/efectos de los fármacos , Fibrosis , Corazón/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Distribución Aleatoria , Transducción de Señal/efectos de los fármacos , Testosterona/administración & dosificación , Testosterona/sangre , Testosterona/deficiencia , Proteína Tumoral Controlada Traslacionalmente 1
17.
Oncotarget ; 9(5): 6402-6415, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29464081

RESUMEN

PURPOSE: Impotence is one of the major complications occurring in prostate cancer patients after radical prostectomy (RP). Self-repair of the injured nerve has been observed in animal models and in patients after RP. However, the downstream signalling is not well documented. Here, we found that the DAPK/CIP2A complex is involved in GAS6/AXL-related Schwann cell proliferation. MATERIALS AND METHODS: The 3 groups were a sham group, a 14-day post-bilateral cavernous nerve injury (BCNI) group and a 28-day post-BCNI group. Erectile function was assessed and immunohistochemistry was performed. The rat Schwann cell RSC96 line was chosen for gene knockdown, cell viability, western blot, immunofluorescence and co-immunoprecipitation assays. RESULTS: The intracavernosal pressure was low on the 14th day after BCNI and partially increased by the 28th day. GAS6 and p-AXL expression gradually increased in the cavernous nerve after BCNI. RSC96 cells incubated with a GAS6 ligand showed increased levels of p-ERK1/2 and p-AKT. Moreover, DAPK and CIP2A.p-AXL and p-DAPK and CIP2A complexes were identified by both immunoblotting and co-immunoprecipitation. CONCLUSION: The DAPK/CIP2A complex is involved in GAS6/AXL-related Schwann cell proliferation. CIP2A inhibits PP2A activity, which results in p-DAPK(S308) maintenance and promotes Schwann cell proliferation. CIP2A is a potential target for the treatment of nerve injury after RP.

18.
Onco Targets Ther ; 11: 509-519, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29416351

RESUMEN

BACKGROUND: Axl is a receptor tyrosine kinase that is involved in many pathological conditions and carcinogenesis. Gas6 is the major ligand of Axl. Activation of Gas6/Axl pathway is essential for cancer development. However, its prognostic significance in solid tumors remains unclear. Therefore, we performed this meta-analysis to elucidate the prognostic impact of Axl. METHODS: Published studies on Axl or Gas6 expression and overall survival (OS) and/or disease-free survival (DFS) were searched from databases. The outcome measurement is hazard ratio (HR) for OS or DFS related to Axl/Gas6 expression. Meta-analysis was performed using RevMan. The pooled HR was calculated by fixed-/random-effect models. RESULTS: A total of 3,344 patients from 25 studies were included. The results of meta-analysis showed that Axl overexpression was correlated with shorter OS (HR: 2.03, p<0.0001) and DFS (HR: 1.85, p<0.0001). In subgroup analysis, Axl expression was significantly correlated with poor prognosis in hepatocellular, esophageal and lung cancer. Axl expression was associated with differentiation grade, TNM stage, lymph node and distant metastasis. CONCLUSION: These results suggest that Axl overexpression is correlated with poor prognosis in solid tumors. This correlation varies among different types of cancers. More studies are needed to further investigate the prognostic value of Axl.

19.
J Vet Med Sci ; 79(9): 1507-1515, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28717059

RESUMEN

Cisplatin (CDDP) is a chemotherapeutic agent that is widely used in the treatment of lymphomas and solid malignancies. However, its clinical usage is limited by its severe side effects in the kidneys. Glomerular and tubular injuries in the kidneys commonly progress to interstitial fibrosis and, ultimately, the end stage of renal failure. We previously reported that 3-acetyl-5-methyltetronic acid (AMT) had inhibitory effects on rat renal vitamin K1 2,3-epoxide reductase (VKOR) in vitro and also suppressed mesangial cell proliferation and, consequently, the formation of fibrosis via the vitamin K-dependent activation of the growth arrest-specific 6 (Gas6)/Axl pathway in anti-Thy-1 glomerulonephritis (Thy-1 GN) in rats. In the present study, we demonstrated that AMT alleviated the progression of renal fibrosis in CDDP-treated rats. The repeated intravenous administration of AMT for 28 days dose-dependently suppressed increases in plasma urea nitrogen and plasma creatinine levels as well as creatinine clearance in CDDP-treated rats. Furthermore, the treatment suppressed the expression of α-smooth muscle actin (SMA)-positive cells and ameliorated the extracellular matrix accumulation of collagen III, indicating an antifibrotic effect. In conclusion, our toxicological and histopathological results demonstrated quantitatively the pharmacological inhibitory effects of AMT on the progression of renal fibrosis in CDDP-treated rats.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Furanos/farmacología , Enfermedades Renales/prevención & control , Vitamina K Epóxido Reductasas/antagonistas & inhibidores , Animales , Cisplatino/antagonistas & inhibidores , Fibrosis/inducido químicamente , Fibrosis/tratamiento farmacológico , Enfermedades Renales/sangre , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Masculino , Ratas
20.
Inflammation ; 40(2): 578-588, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28054238

RESUMEN

Pterostilbene (PTB) has been suggested to protect against myocardial ischemia/reperfusion (MI/R) injury. Gas6/Axl signaling has been suggested to play an important role in cell survival. However, the interaction between PTB and Gas6/Axl signaling in MI/R remains unclear. This study aims to evaluate the role of Gas6/Axl signaling in the protective effects of PTB against MI/R injury. In experiment 1, the rats were subjected to 30 min of ischemia, followed by 3, 6, and 12 h of reperfusion, respectively. In experiment 2, the rats were administered intraperitoneally with PTB or vehicle and subjected to MI/R injury. The results suggested that the expression of Gas6 and Axl decreased significantly after MI/R injury. PTB treatment conferred a cardioprotective effect with an improved post-ischemic cardiac function, a reduced myocardial infarct size, and decreased lactate dehydrogenase and creatine kinase-MB in the serum, a decreased oxidative stress and inflammation, and a reduced number of apoptotic cardiomyocytes. Moreover, PTB treatment up-regulated the expression of Gas6, Axl, and Bcl-2 and down-regulated Bax expression. Our findings suggest that PTB treatment exerts cardioprotection against MI/R injury via attenuating inflammatory response, oxidative stress, and apoptosis and up-regulating the expression of Gas6 and Axl. The application of PTB may be a new strategy for the treatment of MI/R injury.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos , Estilbenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas , Estilbenos/uso terapéutico , Tirosina Quinasa del Receptor Axl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA