Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 843
Filtrar
1.
Intern Med J ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305104

RESUMEN

COP-28, the United Nations' Climate Change Conference, hosted by the United Arab Emirates, ended on 12 December 2023. At the convention, Australia released its National Health and Climate Strategy, committing to low-carbon, climate-responsive care. The Strategy will need new policies, projects and investments and a fit-for-purpose health workforce. This is a tall order considering healthcare's challenges. Everyone has a role, including clinicians, healthcare agencies, policymakers, politicians, patients and the providers and manufacturers in the supply chain. Clinicians' groups, policymakers and federal and state departments of health have an opportunity to lead climate change reform by considering climate change impacts across clinical practice and health policy.

2.
Animal ; 18(9): 101294, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226780

RESUMEN

Rearing of replacement heifers makes up a significant part of the total costs in dairy farming. Nevertheless, the average age at first calving for dairy heifers still stays well above 2 years in many countries. This study examined the economic and environmental impacts of increased heifer growth rates and reduced replacement rates on Norwegian dairy farms. The current average growth rate in Norway (baseline scenario) was compared to an accelerated growth rate scenario. Within each of the two growth rate scenarios, we compared three different cow replacement rates. A farm account survey dataset containing physical and economic data on 311 Norwegian farms was clustered into three farm groups: small, medium, and large. To model economic consequences, we used the whole-farm linear programming model ScotFarm. A life cycle analysis model was used to model the environmental impacts of the baseline scenario and an accelerated growth rate scenario on the three farm groups. Accelerated heifer growth rate had a positive effect (14-28%) on farm annual gross margin depending on farm size. While accelerated growth rate resulted in only minor reductions in total emissions at farm level compared to the baseline scenario, reduced replacement rate lowered total farm level emissions by up to 8%, and emissions per unit of output by up to 6%. We conclude that an accelerated heifer growth rate scenario could potentially increase farm gross margin by some 14-28% compared with a baseline growth rate scenario. Reducing the replacement rate would be more efficient to reduce farm-level greenhouse gas emissions.


Asunto(s)
Industria Lechera , Granjas , Gases de Efecto Invernadero , Animales , Bovinos/crecimiento & desarrollo , Femenino , Industria Lechera/métodos , Industria Lechera/economía , Gases de Efecto Invernadero/análisis , Noruega , Crianza de Animales Domésticos/métodos , Crianza de Animales Domésticos/economía
3.
Environ Evid ; 13(1): 10, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-39294837

RESUMEN

BACKGROUND: The global food system is inflicting substantial environmental harm, necessitating a shift towards more environmentally sustainable food consumption practices. Policy interventions, for example, information campaigns, taxes and subsidies and changes in the choice context are essential to stimulate sustainable change, but their effectiveness in achieving environmental goals remains inadequately understood. Existing literature lacks a comprehensive synthesis of evidence on the role of public policies in promoting sustainable food consumption. Our systematic map addressed this gap by collecting and categorising research evidence on public policy interventions aimed at establishing environmentally sustainable food consumption patterns, in order to answer the primary research question: What evidence exists on the effects of public policy interventions for achieving environmentally sustainable food consumption? METHODS: Searches for relevant records (in English) were performed in WoS, Scopus, ASSIA, ProQuest Dissertation and Theses, EconLit, Google Scholar and in bibliographies of relevant reviews. A grey literature search was also performed on 28 specialist websites (searches were made in the original language of the webpages and publications in English, Swedish, Danish and Norwegian were eligible) and Google Scholar (search in English). Screening was performed at title/abstract and full-text levels, with machine learning-aided priority screening at title/abstract level. Eligibility criteria encompassed settings, interventions (public policies on sustainable food consumption), target groups and outcomes. No critical appraisal of study validity was conducted. Data coding covered bibliographic details, study characteristics, intervention types and outcomes. Evidence was categorised into intervention types and subcategories. Visual representation utilised bar plots, diagrams, heatmaps and an evidence atlas. This produced a comprehensive overview of effects of public policy interventions on sustainable food consumption patterns. REVIEW FINDINGS: The evidence base included 227 articles (267 interventions), with 92% of studies in high-income countries and only 4% in low-income countries. Quantitative studies dominated (83%), followed by mixed methods (16%) and qualitative studies (1%). Most interventions were information-based and 50% of reviewed studies looked at labels. Information campaigns/education interventions constituted 10% of the sample, and menu design changes and restriction/editing of choice context 8% each. Market-based interventions represented 13% of total interventions, of which two-thirds were taxes. Administrative interventions were rare (< 1%). Proxies for environmental impact (85%) were more frequent outcome measures than direct impacts (15%). Animal-source food consumption was commonly used (19%) for effects of interventions on, for example, greenhouse gas emissions. Most studies used stated preferences (61%) to evaluate interventions. CONCLUSIONS: The literature assessing policies for sustainable food consumption is dominated by studies on non-intrusive policy instruments; labels, information campaigns, menu design changes and editing choice contexts. There is a strong need for research on sustainable food policies to leave the lab and enter the real world, which will require support and cooperation of public and private sector stakeholders. Impact evaluations of large-scale interventions require scaling-up of available research funding and stronger multidisciplinary research, including collaborations with industry and other societal actors. Future research in this field should also go beyond the European and North American context, to obtain evidence on how to counteract increasing environmental pressures from food consumption worldwide.

4.
Bioresour Technol ; 413: 131446, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241814

RESUMEN

Cordycepin, a nucleoside analog, is widely used in medicine and health products. However, the production of cordycepin from Cordyceps militaris faces the challenges of low productivity and high rate of greenhouse gas emissions. In this study, by optimizing the cordycepin biosynthesis pathway through promoter combination, Kozak sequence, and enzyme fusion, enhancing the methanol assimilation capacity in peroxisomes, adjusting the synthesis of NADPH and ATP, and combining the enhanced supply of adenosine and 3'-AMP, the cordycepin high-yield strain Pp29 was constructed, which produced 1551.44 mg/L cordycepin by shake-flask fermentation. In fed-batch fermentation, Pp29 achieved the highest yield (8.11 g/L, 67.64 mg/g DCW, and 1.35 g/L/d) to date in 10 L fermenter, and the CO2-eq emissions were 1.9-17.3 times lower than C. militaris and other yeast systems. This study provide basis for Pichia pastoris to be used as chassis cell for synthesizing cordycepin and other nucleoside analogs by methanol as carbon source.

5.
Front Nutr ; 11: 1438369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246405

RESUMEN

Introduction: Sustainable foods need to be nutrient-rich, affordable, environmentally friendly, and socially acceptable. Pulses, which include beans, lentils, chickpeas, and dried peas are a food group that can fit all those criteria. Methods: These concepts were tested serially using nutrient profiling methods that focused on protein and were extended to include food prices, greenhouse gas emissions, and energy demand. The present sustainability analyses were based on the US Department of Agriculture (USDA) nutrient composition and food prices data. Environmental impact data came from life cycle assessments (LCA). First, the USDA Protein Foods Group was disaggregated into animal and plant proteins. Plant proteins were separated into pulses, soy products, and nuts and seeds. Results: Pulses were among the lowest-cost protein sources (per 100 g and per 100 kcal) and had the lowest greenhouse gas emissions GHGE and energy demand. Pulses were among the most sustainable foods when monetary and energy costs were expressed per 50 g of protein (equivalent to 100% DV). Pulses scored well on the Nutrient Rich Food (NRF9.3) nutrient profiling system and on the related Affordable Nutrition Index that assessed nutrient density per penny. Discussion: Pulses are a source of low-cost plant-based protein and a variety of priority vitamins and minerals, have low carbon footprint and energy demand, and are a valued culinary ingredient across diverse regions and cultures. As dietary guidance turns to plant-based diets, pulses need to be integrated into the global sustainability framework.

6.
Heliyon ; 10(16): e35759, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247308

RESUMEN

Rice-shrimp rotation systems are one of the widespread farming practices in the Vietnamese Mekong Delta coastal areas. However, greenhouse gas (GHG) emissions in the system have remained unclear. This study aimed to examine methane (CH4) and nitrous oxide (N2O) emissions from the system, including (i) land-based versus high-density polyethylene-lined (HDPE) nursery ponds and (ii) conventional versus improved grow-out ponds inoculated with effective microorganisms (EM) bioproducts. The results showed that CH4 flux in land-based and HDPE-lined nursery ponds were 1.04 and 0.25 mgCH4 m-2 h-1, respectively, while the N2O flux was 8.37 and 6.62 µgN2O m-2 h-1, respectively. Global warming potential (GWP) from land-based nursery ponds (18.3 g CO2eq m-2) was approximately 3 folds higher than that of the HDPE-lined nursery pond (6.1 g CO2eq m-2). Similarly, the mean CH4 and N2O fluxes were 15.84 mg CH4 m-2 h-1 and 7.17 µg N2O m-2 h-1 for the conventional ponds, and 10.51 mg CH4 m-2 h-1 and 7.72 µg N2O m-2 h-1 for the improved grow-out ponds. Conventional practices (2388 g CO2eq m-2) had a higher 1.5-fold GWP compared to the improved grow-out pond (1635 g CO2eq m-2). The continuation of the land-based nursery pond and conventional aquacultural farming practices increase CH4 emission and GWP, while applying HDPE-lined nursery ponds combined with improved grow-out ponds could be a promising approach for reducing GHG emissions in rice-shrimp rotation systems. This study recommends further works in the rice-shrimp rotation systems, including (i) an examination of the effects of remaining rice stubbles in the platform on the availability of TOC levels and GHG emissions and (ii) ameliorating dissolved oxygen (DO) concentration on the effectiveness of GHG emission reduction.

7.
J Environ Manage ; 370: 122476, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276657

RESUMEN

The intricate encapsulation structure and material composition of photovoltaic modules necessitate full materials recycling involving multiple stages and different technological configurations, thereby increasing environmental burden of recycling process. Consequently, environmental impact assessments are imperative. However, previous studies primarily focused on a single technology or compared different technologies within a specific recycling stage, overlooking various technological configurations and thus engendering incomprehensive assessment. Hence, we employ a comparative life-cycle assessment to evaluate the environmental performance of six recycling alternatives with different technological configurations for silicon photovoltaic waste in China, which encompasses five recycling stages and glass/silicon remanufacturing processes. Results shows thermal delamination reduces the normalized environmental impact by 8.73% and 4.62% compared with mechanical and chemical delamination, respectively; electrolysis for metals extraction carries 35.72%-36.35% higher environmental benefits than precipitation. Additionally, introducing silicon/glass remanufacturing provides an additional 6.27%-11.55% environmental benefits. Therefore, integrating disassembly, thermal delamination, leaching & etching, electrolysis, and remanufacturing exhibits the best environmental performance, with -4796 kg CO2-eq/tonne carbon emission and -46400 MJ/tonne energy demand. Environmental hotspots analysis identifies key contributors to environmental impact and benefits. Further sensitivity analysis highlights the importance of enhancing silver and copper recovery efficiency. Finally, targeted strategies are proposed for green recycling routes of photovoltaic waste.

8.
Trop Life Sci Res ; 35(1): 139-160, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39262860

RESUMEN

A large-scale rubber plantation in Southern Thailand is expected to capture a significant amount of carbon dioxide from emissions through carbon sinks in the vegetation and soil. The goal of this research is to create a carbon offset assessment for rubber plantations lasting for 30 years using a voluntary market contract approach. To evaluate the area of large-scale rubber plantations, this study evaluated major growing regions in five provinces in the middle-south region of Thailand (Nakhon Si Thammarat, Phatthalung, Songkhla, Satun and Trang) using an integrated RS-GIS technique that incorporated biomass allometric equations, soil series databases, and object-based classification. The classification of rubber plantation areas and the mapping of rubber stand ages were conducted to estimate the above-ground biomass of the rubber tree. Texture analysis was used in the rubber classification process, and normalised difference vegetation index (NDVI) was combined with texture analysis to separate vegetation areas from other land cover. Four groups of varying ages (1-6, 7-13, 14-20 and 21-30 years old) were evaluated for their capacity to generate carbon offsets. The equations of voluntary market contract revenue according to the contract method of the CCX were applied for this case study. This evaluation was used to estimate their annual value, total and net incomes in the carbon market price regarding the RGGI Allowance (RGA). Carbon offset income was then used to estimate the potential income (over a 30-year period) of the life of the contract. The results showed that the carbon stock potential of rubber plantations depended on the age of the trees and the soil carbon stock. The total carbon stock in the rubber plantations varied from 249.73 to 301.48 Mg C/ha (or equivalently 916.49 to 1,106.44 Mg CO2e/ha). Furthermore, the potential net income of the contract was estimated to be between USD5,378.32 and USD5,930.38 Mg CO2e/ha over a 30-year period according to the voluntary market contract revenue. These results suggest that the large agricultural land plot policy could create opportunities for carbon offsetting. The policy of large-scale rubber areas could be used as a tool and mechanism for farmers who are considering participating in carbon-crediting mechanisms. Then, farmers could use voluntary market contracts as a guide and foundation for their decision-making. The carbon offset credit strategy could assist Thailand in achieving its climate goals of transitioning to a low-carbon agriculture sector.

9.
Sci Total Environ ; 953: 176069, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244066

RESUMEN

Eutrophic shallow lakes are hotspots of carbon (C) and nitrogen (N) accumulation and transformation, and are increasingly recognized as important sources of greenhouse gases (GHGs: CO2, CH4 and N2O). Lacustrine groundwater discharge (LGD) is a crucial component of the water budget and terrestrial material delivery for lakes, but its interplays with intrinsic CN biogeochemical processes remain less tackled. In this study, C and N ingredients and multiple stable isotopes (δ2H, δ18O, δ13C, and δ15N) were measured seasonally in groundwater, river water and lake water of a large eutrophic shallow lake in eastern China. The results revealed that groundwater is enriched with various forms of C and N that have similar sources and pathways as surface water in the lake and rivers. The isotope balance model also indicated that LGD derived C and N contribute significantly to lake inventories in addition to river runoff. These allochthonous C and N provide extra substrates for related biogeochemical processes, such as algae proliferation, organic matter degradation, methanogenesis and denitrification. Simultaneously, the excess oxygen consumption leads to depletion and hypoxia in the lake, further facilitating the processes of methanogenesis and denitrification. LGD functions not only as an external source of C and N that directly increases GHG saturations, but also as a mediator of internal CN pathways, which significantly affect hypoxia formation, GHG productions and emissions in the eutrophic lake. This study highlights the unrevealed potential regulation of LGD on biogeochemical processes in the eutrophic lake, and underscores the need for its consideration in environmental and ecological studies of lakes both regionally and globally.

10.
Plants (Basel) ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273883

RESUMEN

Agroecological ecosystems produce significant carbon dioxide fluxes; however, the equilibrium of their carbon sequestration, as well as emission rates, faces considerable uncertainties. Therefore, sustainable cropping practices represent a unique opportunity for carbon sequestration, compensating greenhouse gas emissions. In this research, we evaluated the short-term effect of different management practices in alleys (tillage, no tillage, alley cropping with Rosmarinus officinalis and Thymus hyemalis on soil properties, carbon sequestration, and CO2 emissions in a grapefruit orchard under semiarid climate). For two years every four months, soil sampling campaigns were performed, soil CO2 emissions were measured, and rhizosphere soils were sampled at the end of the experimental period. The results show that alley cropping with Thymus and Rosmarinus contributed to improve soil fertility, increasing soil organic carbon (SOC), total nitrogen, cation exchange capacity, and nutrients. The CO2 emission rates followed the soil temperature/moisture pattern. Tillage did not contribute to higher overall CO2 emissions, and there were no decreased SOC contents. In contrast, alley crops increased CO2 emission rates, especially Rosmarinus; however, the bigger root system and biomass of Rosmarinus contributed to soil carbon sequestration at a greater rate than Thymus. Therefore, Rosmarinus is positioned as a better option than Thymus to be used as an alley crop, although long-term monitoring is required to evaluate if the reported short-term benefits are maintained over time.

11.
Plants (Basel) ; 13(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273988

RESUMEN

Returning straw to the field is a crucial practice for enhancing soil quality and increasing efficient use of secondary crop products. However, maize straw has a higher carbon-to-nitrogen ratio compared to other crops. This can result in crop nitrogen loss when the straw is returned to the field. Therefore, it is crucial to explore how different methods of straw return affect maize (Zea mays L.) farmland. In this study, a field experiment was performed with three treatments (I, no straw returned, CK; II, direct straw return, SR; and III, straw returned in deep furrows, ISR) to explore the effects of the different straw return modes on soil carbon and nitrogen content and greenhouse gas emissions. The results indicated that the SR and ISR treatments increased the dissolved organic carbon (DOC) content in the topsoil (0-15 cm). Additionally, the ISR treatment boosted the contents of total nitrogen (TN), nitrate nitrogen (NO3--N), ammonium nitrogen (NH4+-N), dissolved organic nitrogen (DON), and DOC in the subsurface soil (15-30 cm) compared with CK. When it comes to greenhouse gas emissions, the ISR treatment led to an increase in CO2 emissions. However, SR and ISR reduced N2O emissions, with ISR showing a more pronounced reduction. The ISR treatment significantly increased leaf and grain biomass compared to CK and SR. The correlation analyses showed that the yield was positively correlated with soil DOC, and soil greenhouse gas emission was correlated with soil NO3--N. The ISR technology has great potential in sequestering soil organic matter, improving soil fertility, and realizing sustainable agricultural development.

12.
Environ Sci Pollut Res Int ; 31(43): 55720-55735, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243329

RESUMEN

The increase in the negative effects of global change promotes the search for alternatives to supply the demand for food worldwide aligned with the Sustainable Development Goals (SDGs) to ensure food security. Animal protein, which is a main source of nutrients in the diet of today's society, especially beef, which is one of the most demanded products nowadays, has been criticized not only for its high water consumption and land occupation for production but also for the emission of greenhouse gases (GHG) from enteric methane generated in the fermentation process within the bovine rumen and deforestation for the adaptation of pastures. This study is mainly motivated by the lack of quantifiable scientific information in Colombia on the environmental impacts of beef production. Therefore, it is intended to estimate some of the impacts of beef production in extensive systems using the life cycle assessment (LCA) method under a particular scenario considering all the production phases (from raw material to fattening, where the cattle are ready to be slaughtered). The study was conducted with data supplied by a farm in Antioquia, Colombia, and the functional unit (FU) was defined as 1 kg of live weight (LW). The scope of this study was gate-to-gate. "The 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories" (IPCC  2006; IPCC 2019) was used to calculate methane and nitrous oxide emissions. LCA modeling was developed with Ecoinvent database v3.8 and the Umberto LCA + software. It was found that the most affected category of damage was ecosystem quality, which represents 77% of the total, followed by human health at 17% and resources at 6%. The category impact of agricultural land occupation is the one that represents the most significant contribution to the ecosystem quality endpoint, with a percentage of 87%, due to the soil's compaction and the loss of the soil's properties. Additionally, the obtained carbon footprint for the system was 28.9 kg of CO2-eq/kg LW.


Asunto(s)
Gases de Efecto Invernadero , Colombia , Bovinos , Animales , Gases de Efecto Invernadero/análisis , Ambiente , Metano
13.
Environ Res ; : 119652, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39096994

RESUMEN

Estuaries are significant contributors to greenhouse gases (GHGs) in waterways. However, the effects of human activities and ecological variables on GHG emissions in estuaries remain poorly understood. This study examines the patterns and causes of GHG emissions in the Scheldt Estuary, focusing on the roles of salinity, water contamination, and land use. The findings indicate that salinity negatively impacts the release of carbon dioxide (CO2) and nitrous oxide (N2O), likely due to reduced salt levels and cleaner water upstream. Water contamination's influence on GHG emissions was more pronounced in cleaner, upriver sites compared to saltier downstream locations. Specifically, CO2 emissions quadrupled, and N2O emissions tripled as water conditions worsened from healthy (near the mouth, bordered by agricultural land) to polluted (farther downstream, bordered by urban areas). Methane (CH4) emissions were significantly higher in aquatic locations than in salty sites. The reduced impact of contamination from downstream to the river mouth may be due to increasing population density. Urban sites emitted about twice as much CO2 and N2O as those in natural and industrial areas. Machine learning analysis also showed that fertilizers and organic enrichment, along with salinity, significantly increased GHG emissions. These results highlight the importance of understanding the interplay of salinity, water contamination, and land use in influencing GHG emissions in coastal ecosystems.

14.
Food Sci Nutr ; 12(8): 5966-5978, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139955

RESUMEN

Considering the importance of sustainable nutrition, it is important that hospitals' meal menus are planned to ensure the lowest possible environmental footprint. In this study, we aimed to evaluate the environmental effects of hospital menus and the changes that may occur when these menus are planned according to the Turkey Dietary Guidelines and Mediterranean diet recommendations. In this context, first, the yearly environmental footprints of the standard meal menus of the state university hospitals in Turkey (n = 42), including water footprint (WF) and greenhouse gas emission (GHGE) values, were determined. Second, changes in the environmental footprint as a result of arranging the standard meal menus of state university hospitals according to the Turkey Dietary Guidelines and Mediterranean nutritional models were evaluated. It was determined that the average WF and GHGE values of hospital menus were 137,280 ± 18537.2 L/month and 140.0 ± 18.4 kg CO2-eq/month, respectively. Adjusting state university hospitals' standard meal menus according to Turkey Dietary Guidelines and Mediterranean nutritional models reduced WF by 24.8% to 103206.7 L/month and 37.8% to 85420.5 L/month, and GHGEs by 31.7% to 95.5 kg CO2-eq/month and 49% to 71.3 kg CO2-eq/month, respectively. In addition, it was determined that hospital meal menus planned according to the Turkey Dietary Guidelines and the Mediterranean nutritional model contained lower saturated fat and cholesterol and higher dietary fiber. In conclusion, planning hospital menus according to the Turkey Dietary Guidelines and Mediterranean nutritional recommendations can reduce the environmental footprint of hospital food services.

15.
Glob Chang Biol ; 30(8): e17470, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39149882

RESUMEN

Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.


Asunto(s)
Oligoquetos , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/efectos adversos , Animales , Suelo/química , Microplásticos/análisis , Microplásticos/toxicidad , Gases de Efecto Invernadero/análisis , Nanopartículas/análisis , Productos Agrícolas/crecimiento & desarrollo
16.
Environ Monit Assess ; 196(9): 851, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192147

RESUMEN

Nighttime lighting (NTL), population growth, and climate change are critical concerns for Turkey. The intensity of nighttime lights in Turkey has significantly increased in recent years, closely associated with rapid population growth and urban expansion. Areas with higher population density exhibit greater nighttime light presence. Nighttime lighting is directly linked to energy consumption and greenhouse gas (GHG) emissions, contributing significantly to global climate change. The rise in nighttime lighting in Turkey exacerbates climate change effects. In this study, data on NTL were gathered from the NOAA/V21 satellite for 2013-2021, the NOAA/CMCFG satellite for average DMSP-OLS radiance values from 2013 to 2023, and the NOAA/VNP46A2 satellite for BRDF-corrected DMSP-OLS NTL data from 2013 to 2023. Night temperature values were extracted from NOAA and MODIS images, and their correlation with NTL data was analyzed. A moderate relationship was observed between NTL and night land surface temperature (LST) (R, 0.32; p-value < 0.05). Population and greenhouse gas emission data were sourced from the Turkish Statistical Institute (TurkStat). Carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases (F-gases) are direct greenhouse gases. A strong correlation was found between NTL and greenhouse gases (R, 0.8; p-value < 0.05). Population density emerges as a significant determinant of nighttime light intensity. These findings underscore the substantial correlation between nighttime light intensity in Turkey, population dynamics, and GHG emissions. The study suggests that NTL data can inform the development of sustainable environmental policies. Mitigating greenhouse gas emissions necessitates controlling population growth and energy consumption, pivotal steps toward environmental sustainability.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Gases de Efecto Invernadero , Iluminación , Turquía , Gases de Efecto Invernadero/análisis , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Metano/análisis , Contaminación del Aire/estadística & datos numéricos , Óxido Nitroso/análisis
17.
Environ Geochem Health ; 46(10): 406, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212763

RESUMEN

The Qinghai-Tibet Plateau is particularly vulnerable to the effects of climate change and disturbances caused by human activity. To better understand the interactions between soil nitrogen and sulfur cycles and human activities on the plateau, the distribution characteristics of soil nitrogen and sulfur density and their influencing factors for three soil layers in Machin County at depths of 0-20 cm, 0-100 cm, and 0-180 cm are discussed in this paper. The results indicated that at depths of 0-180 cm, soil nitrogen density in Machin County varied between 1.36 and 16.85 kg/m2, while sulfur density ranged from 0.37 to 4.61 kg/m2. The effects of three factors-geological background, land use status, and soil type-on soil nitrogen and sulfur density were all highly significant (p < 0.01). Specifically, natural factors such as soil type and geological background, along with anthropogenic factors including land use practices and grazing intensity, were identified as decisive in causing spatial variations in soil nitrogen and sulfur density. Machin County on the Tibetan Plateau exhibits natural nitrogen and sulfur sinks; However, it is crucial to monitor the emissions of N2O and SO2 into the atmosphere from areas with high external nitrogen and sulfur inputs and low fertility retention capacities, such as bare land. On this basis, changes in the spatial and temporal scales of the nitrogen and sulfur cycles in soils and their source-sink relationships remain the focus of future research.


Asunto(s)
Gases de Efecto Invernadero , Nitrógeno , Suelo , Azufre , Suelo/química , Nitrógeno/análisis , Gases de Efecto Invernadero/análisis , Azufre/análisis , Tibet , Monitoreo del Ambiente , Cambio Climático
18.
Surg Endosc ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174709

RESUMEN

BACKGROUND: Surgical care in the operating room (OR) contributes one-third of the greenhouse gas (GHG) emissions in healthcare. The European Association of Endoscopic Surgery (EAES) and the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) initiated a joint Task Force to promote sustainability within minimally invasive gastrointestinal surgery. METHODS: A scoping review was conducted by searching MEDLINE via Ovid, Embase via Elsevier, Cochrane Central Register of Controlled Trials, and Scopus on August 25th, 2023 to identify articles reporting on the impact of gastrointestinal surgical care on the environment. The objectives were to establish the terminology, outcome measures, and scope associated with sustainable surgical practice. Quantitative data were summarized using descriptive statistics. RESULTS: We screened 22,439 articles to identify 85 articles relevant to anesthesia, general surgical practice, and gastrointestinal surgery. There were 58/85 (68.2%) cohort studies and 12/85 (14.1%) Life Cycle Assessment (LCA) studies. The most commonly measured outcomes were kilograms of carbon dioxide equivalents (kg CO2eq), cost of resource consumption in US dollars or euros, surgical waste in kg, water consumption in liters, and energy consumption in kilowatt-hours. Surgical waste production and the use of anesthetic gases were among the largest contributors to the climate impact of surgical practice. Educational initiatives to educate surgical staff on the climate impact of surgery, recycling programs, and strategies to restrict the use of noxious anesthetic gases had the highest impact in reducing the carbon footprint of surgical care. Establishing green teams with multidisciplinary champions is an effective strategy to initiate a sustainability program in gastrointestinal surgery. CONCLUSION: This review establishes standard terminology and outcome measures used to define the environmental footprint of surgical practices. Impactful initiatives to achieve sustainability in surgical practice will require education and multidisciplinary collaborations among key stakeholders including surgeons, researchers, operating room staff, hospital managers, industry partners, and policymakers.

19.
J Sci Food Agric ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189852

RESUMEN

BACKGROUND: This study explored the mechanism of irrigation and nitrogen (N) coupling on spring maize yield and soil greenhouse gas (GHG) emissions, with the objective of achieving water saving, high yield and emission reduction. Field experiments were conducted to analyze the effects of multiple irrigation and N management strategies on GHG emissions and to determine the optimal balance between GHG, water conservation and grain yield. The experiments were conducted on spring maize with three irrigation levels (low, IL; medium, IM; and high, IH) and 4 N application levels (N40, N80, N120 and N160 kg N ha-1). RESULTS: The IL treatment exhibited the lowest N2O and CO2 emission fluxes and the lowest CH4 uptake fluxes. The N40 treatment exhibited the lowest N2O and CO2 emission fluxes and the highest CH4 uptake flux. Significant positive correlations were observed among N2O and CO2 emission fluxes, CH4 uptake fluxes, and soil moisture and inorganic N content. Maize yield initially increased and then decreased with rising levels of irrigation and N management. By employing the TOPSIS method to assess yield and greenhouse effects, we identified the IMN120 treatment as optimal given that this treatment achieved the highest yield (14 686.26 kg ha-1) and water use efficiency (3.51 kg m-3) while maintaining relatively low global warming potential (573.30 kg CO2 eq ∙ ha-1) and GHG intensity (0.0390 kg CO2 eq ∙ kg-1). CONCLUSION: Irrigation optimization and N management are key to reducing GHG emissions, enhancing yield, and promoting both the sustainable development of agriculture and environmental protection. © 2024 Society of Chemical Industry.

20.
Sci Total Environ ; 951: 175470, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142409

RESUMEN

The potential of the EAT-Lancet reference diet, which promotes a healthy diet within planetary limits, to reduce greenhouse gas emissions (GHGe) remains understudied. This study examines the role of nutritional and acceptability constraints in reducing GHGe through diet optimization, and tests the alignment between GHGe reduction and the EAT-Lancet score. The study used data from 29,413 NutriNet-Santé participants to model French diets and evaluate their environmental, nutritional, economic, and health impact. The Organic Food Frequency Questionnaire was used to assess organic and conventional food consumed, and the Dialecte database was used to estimate the diet environmental impacts. Quality of diets were also evaluated based using the PNNS-GS2 (Programme National Nutrition-Santé 2 guidelines score). When testing minimizing GHGe under strict nutritional and acceptability constraints, it was possible to reduce GHGe up to 67 % (from 4.34 in the observed diet to GHGe = 1.45 kgeqCO2/d) while improving the EAT score by 103 % with 91 % of the food as organic. Greater reductions required relaxation of some constraints. When testing maximizing EAT score under gradual reduction in GHGe, the adherence to the EAT-Lancet diet was not significantly affected by the gradual reduction in GHGe. To maximize EAT score with 75 % reduction in GHGe (1.09 kgeqCO2/d), less strict constraints on the bioavailability of iron and zinc are necessary. The EAT score improved by 141 %, while land occupation decreased by 57 %, compared to the observed value. The diet contained 94 % of organic foods. There was some alignment between the degree of adherence to the EAT-Lancet diet and the reduction in GHGe, but other diets may also lead to a strong reduction in GHGe. Thus, GHGe can be greatly reduced by dietary choices, but require profound reshaping of diets which must be coupled with changes in other areas of the food chain.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Humanos , Dieta , Dieta Saludable , Adulto , Francia , Masculino , Estudios de Cohortes , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA