Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902379

RESUMEN

Digital stress is a newly identified cosmetic stress that is mainly characterized by blue light exposure. The effects of this stress have become increasingly important with the emergence of personal digital devices, and its deleterious effects on the body are now well-known. Blue light has been observed to cause perturbation of the natural melatonin cycle and skin damage similar to that from UVA exposure, thus leading to premature aging. "A melatonin-like ingredient" was discovered in the extract of Gardenia jasminoides, which acts as a filter against blue light and as a melatonin-like ingredient to prevent and stop premature aging. The extract showed significant protective effects on the mitochondrial network of primary fibroblasts, a significant decrease of -86% in oxidized proteins on skin explants, and preservation of the natural melatonin cycle in the co-cultures of sensory neurons and keratinocytes. Upon analysis using in silico methods, only the crocetin form, released through skin microbiota activation, was found to act as a melatonin-like molecule by interacting with the MT1-receptor, thus confirming its melatonin-like properties. Finally, clinical studies revealed a significant decrease in wrinkle number of -21% in comparison to the placebo. The extract showed strong protection against blue light damage and the prevention of premature aging through its melatonin-like properties.


Asunto(s)
Envejecimiento Prematuro , Gardenia , Melatonina , Envejecimiento Prematuro/metabolismo , Melatonina/farmacología , Piel/metabolismo
2.
Food Chem ; 401: 134091, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36116299

RESUMEN

A new AAPH-Incubating HPLC-DAD-HR MS/MS method was developed for the rapid and high-throughput screening of antioxidants directly in natural products and applied to Gardenia jasminoides fruit. This method was assumed that the peak areas of compounds with potential antioxidant activity in HPLC chromatograms would be significantly reduced or disappeared after incubating with the AAPH which can release ROO at physiological conditions (37 °C, pH 7.4). Additionally, the activity of antioxidants can be evaluated by comparing the peak reduction rates and the screened components can be further identified by HRMS/MS. Then, 17 potential natural antioxidants from the crude extract of GJF was screened. Among them, three major components including crocin I, crocin II and crocetin showed excellent ROO scavenging activity, which were further validated by the ORAC assay. In conclusion, our study provided a simple and effective strategy to rapidly screen antioxidants in natural products.


Asunto(s)
Productos Biológicos , Gardenia , Antioxidantes/química , Gardenia/química , Cromatografía Líquida de Alta Presión/métodos , Frutas/química , Productos Biológicos/análisis , Espectrometría de Masas en Tándem
3.
Plants (Basel) ; 11(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35161261

RESUMEN

The recovery of physiologically bioactive ingredients from agricultural wastes as an abundant and low-cost source for the production of high value-added mutraceuticlas has been recognized and supported for the commercial interests and sustainable managements. In the extraction of geniposide for the development of natural food colorants from the dried fruits of Gardenia jasminoides Rubiaceae, the gardenia fruit waste (GFW) still remaining 0.86% (w/w) of crocins has always been discarded without any further treatments Until now, there was no simple and effective protocol for high-purity trans-crocein (TC) preparation without the coexistence of non-biologically active cis-crocein from GFW. We proposed an effective process to obtain the compound as follows. Crocins were extracted firstly by 50% of ethanol in the highest yield of 8.61 mg/g (w/w) from GFW. After the HPD-100 column fractionation in the collecting of crocins, the conversion ratio of 75% of crocins to crocetins can be obtained from the commercial available enzyme- Celluclast® 1.5 L. The crocins hydrolyzed products, were then separated through the HPD-100 resin adsorption and finally purified with the centrifugal partition chromatography (CPC) in single-step to obtain TC in a purity of 96.76 ± 0.17%. Conclusively, the effective enzyme transformation and purification co-operated with CPC technologies on crocins resulted in a high purity product of TC may be highly application in the commercial production.

4.
J Ethnopharmacol ; 233: 169-178, 2019 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-30639058

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gardenia jasminoides fruit (GJF) is used as a well-known traditional folk medicine, a food and a natural colorant in Asia with a long history. The herbal medicine has usually been harvested in the autumn from September to November. However, this time span is too long and might result in the quality instability of GJF. AIM OF STUDY: We aimed to conduct the comprehensive quality evaluation of GJF including the quantitative analysis of the bioactive components and the main bioactivities, and further to determine the most appropriate harvest time of this phytomedicine. MATERIALS AND METHODS: In this study, an UFLC-Q-TRAP-MS/MS method was established to quantify 7 iridoid glycosides (geniposide, geniposidic acid, secoxyloganin, gardenoside, genipin 1-gentiobioside, scandoside methyl ester, and shanzhiside), 7 phenylpropanoid acids (chlorogenic acid, cryptochlorogenic acid, neochlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C, and caffeic acid) and 2 carotenoids (crocin-1 and crocin-2) in GJF. With this method, nine samples of GJF harvested at different times were analyzed and compared. These samples were also investigated and compared in terms of their antioxidant activity (DPPH free radical scavenging, ABTS free radical scavenging, ferric-reducing antioxidation) and anti-influenza activity (neuraminidase inhibition), which are closely related to the GJF efficacies. Then, hierarchical cluster analysis (HCA) was separately performed for the quantitative analysis and bioactivity evaluation in vitro. RESULTS: The HCA results demonstrated that three GJF samples (S5, S6, and S7) were clustered into one group for both quantitative analysis and bioactivity evaluation in vitro; these three samples were found to have the highest standardized scores in both the former (12.775, 12.106, 10.817) and the latter (3.406, 3.374, 3.440). Based on the comprehensive results, the optimum harvest period was confirmed to extend from mid-October to early-November. CONCLUSIONS: This study firstly validated the use of UFLC-Q-TRAP-MS/MS method for the determination of 16 bioactive components in GJF. It was also the first time that a quantitative analysis and a bioactivity assay in vitro were integrated for the determination of the most appropriate harvest period of GJF. We hope this paper may provide some reference to studies of appropriate harvest periods and even the quality control of TCMs.


Asunto(s)
Antioxidantes , Antivirales , Gardenia , Fitoquímicos , Agricultura/métodos , Antioxidantes/química , Antivirales/química , Benzotiazoles/química , Compuestos de Bifenilo/química , Análisis por Conglomerados , Frutas/química , Gardenia/química , Neuraminidasa/antagonistas & inhibidores , Fitoquímicos/análisis , Picratos/química , Ácidos Sulfónicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA