Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Intervalo de año de publicación
1.
Protoplasma ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271488

RESUMEN

The Alismataceae family, widely distributed across tropical temperate swamps and wetlands, includes 15 genera post-merger with Limnocharitaceae. In Argentina, six genera are represented across three clades. Embryological characters, notably the male gametophyte and anther, are crucial in taxonomy due to their stability against environmental changes. This study aims to analyze the ultrastructure of the tapetum and pollen grain development in three economically and ecologically important species representing each clade: Sagittaria montevidensis (Clade A), Hydrocleys nymphoides (Clade B), and Alisma plantago-aquatica (Clade C). Anthers at different developmental stages were processed according to classic techniques for their observation with bright-field and transmission electron microscopy. The three studied species within the Alismataceae family exhibit similar reproductive characteristics. Seven stages of pollen grain development were identified. The microsporogenesis is successive with a regular meiosis. The ultrastructure of the tapetal cells shows similarities to other species with plasmodial tapetum. During the microspore tetrad stage, there is tapetal hyperactivity and an increase in secretion processes. In the free microspore stage, the tapetal cells lose their walls and increase the amount of rough endoplasmic reticulum forming a network of cisternae that extend into evaginations. Later cells completely invade the anther locule and fuse to form a tapetal plasmodium. No peritapetal membrane with orbicules was observed. Pollen is released at the tricellular stage. The pollen grain wall presents an ectexine with a basal layer, columellae, and tectum with supratectal spines while an endexine is not observed in any of the three species. This research enhances the understanding of tapetal cell interactions with developing pollen grains and contributes to the knowledge of the ultrastructure of plasmodial tapetum. Moreover, these findings highlight evolutionary reproductive patterns in Alismataceae, suggesting the plasmodial tapetum as a synapomorphy for the order.

2.
Plant Sci ; 348: 112231, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39154893

RESUMEN

In angiosperms, ovules give rise to seeds upon fertilization. Thus, seed formation is dependent on both successful ovule development and tightly controlled communication between female and male gametophytes. During establishment of these interactions, cell walls play a pivotal role, especially arabinogalactan-proteins (AGPs). AGPs are highly glycosylated proteins decorated by arabinogalactan side chains, representing 90 % of the AGP molecule. AGP glycosylation is initiated by a reaction catalysed by hydroxyproline-O-galactosyltransferases (Hyp-GALTs), specifically eight of them (GALT2-9), which add the first galactose to Hyp residues. Five Hyp-GALTs (GALT2, 5, 7, 8 and 9) were previously described as essential for AGP functions in pollen and ovule development, pollen-pistil interactions, and seed morphology. In the present work, a higher order Hyp-GALT mutant (23456789) was studied, with a high degree of under-glycosylated AGPs, to gain deeper insight into the crucial roles of these eight enzymes in female reproductive tissues. Notably, the 23456789 mutant demonstrated a high quantity of unfertilized ovules, displaying abnormal callose accumulation both at the micropylar region and, sometimes, throughout the entire embryo sac. Additionally, this mutant displayed ovules with abnormal embryo sacs, had a disrupted spatiotemporal distribution of AGPs in female reproductive tissues, and showed abnormal seed and embryo development, concomitant with a reduction in AGP-GlcA levels. This study revealed that at least three more enzymes exhibit Hyp-O-GALT activity in Arabidopsis (GALT3, 4 and 6), and reinforces the crucial importance of AGP carbohydrates in carrying out the biological functions of AGPs during plant reproduction.


Asunto(s)
Arabidopsis , Galactosiltransferasas , Óvulo Vegetal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Galactosiltransferasas/metabolismo , Galactosiltransferasas/genética , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Reproducción , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mucoproteínas/metabolismo , Mucoproteínas/genética
3.
Curr Biol ; 34(15): 3454-3472.e7, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39059395

RESUMEN

Most land plants alternate between generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, fern gametophytes are free living and grow independently of their sporophytes. In homosporous ferns such as Ceratopteris, gametophytes derived from genetically identical spores exhibit sexual dimorphism, developing as either males or hermaphrodites. Males lack meristems and promote cell differentiation into sperm-producing antheridia. In contrast, hermaphrodites initiate multicellular meristems that stay undifferentiated, sustain cell division and prothallus expansion, and drive the formation of egg-producing archegonia. Once initiating the meristem, hermaphrodites secrete the pheromone antheridiogen, which triggers neighboring slower-growing gametophytes to develop as males, while the hermaphrodites themselves remain insensitive to antheridiogen. This strategy promotes outcrossing and prevents all individuals in the colony from becoming males. This study reveals that an evolutionarily conserved GRAS-domain transcriptional regulator (CrHAM), directly repressed by Ceratopteris microRNA171 (CrmiR171), promotes meristem development in Ceratopteris gametophytes and determines the male-to-hermaphrodite ratio in the colony. CrHAM preferentially accumulates within the meristems of hermaphrodites but is excluded from differentiated antheridia. CrHAM sustains meristem proliferation and cell division through conserved hormone pathways. In the meantime, CrHAM inhibits the antheridiogen-induced conversion of hermaphrodites to males by suppressing the male program expression and preventing meristem cells from differentiating into sperm-producing antheridia. This finding establishes a connection between meristem indeterminacy and sex determination in ferns, suggesting both conserved and diversified roles of meristem regulators in land plants.


Asunto(s)
Células Germinativas de las Plantas , Meristema , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Pteridaceae/genética , Pteridaceae/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Procesos de Determinación del Sexo
4.
J Exp Bot ; 75(16): 4822-4836, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38717070

RESUMEN

A functional female gametophyte is the basis of successful sexual reproduction in flowering plants. During female gametophyte development, the megaspore mother cell (MMC), which differentiates from a single subepidermal somatic cell in the nucellus, undergoes meiosis to produce four megaspores; only the one at the chalazal end, referred to as the functional megaspore (FM), then undergoes three rounds of mitosis and develops into a mature embryo sac. Here, we report that RING1A and RING1B (RING1A/B), two functionally redundant Polycomb proteins in Arabidopsis, are critical for female gametophyte development. Mutations of RING1A/B resulted in defects in the specification of the MMC and the FM, and in the subsequent mitosis of the FM, thereby leading to aborted ovules. Detailed analysis revealed that several genes essential for female gametophyte development were ectopically expressed in the ring1a ring1b mutant, including Argonaute (AGO) family genes and critical transcription factors. Furthermore, RING1A/B bound to some of these genes to promote H2A monoubiquitination (H2Aub). Taken together, our study shows that RING1A/B promote H2Aub modification at key genes for female gametophyte development, suppressing their expression to ensure that the development progresses correctly.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Óvulo Vegetal , Ubiquitinación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Portadoras , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Histonas/genética , Óvulo Vegetal/crecimiento & desarrollo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética
5.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38203741

RESUMEN

Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.


Asunto(s)
Magnoliopsida , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Epigenómica , Perfilación de la Expresión Génica , Polen/genética
6.
Plants (Basel) ; 12(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653850

RESUMEN

Calmodulins (CaMs) and Calmodulin-like proteins (CMLs) are vital in plant growth, development, and stress responses. However, CaMs and CMLs have not been fully identified and characterized in brown algae, which has been evolving independently of the well-studied green plant lineage. In this study, whole-genome searches revealed one SjCaM and eight SjCMLs in Saccharina japonica, and one EsCaM and eleven EsCMLs in Ectocarpus sp. SjCaM and EsCaM encoded identical protein products and shared 88.59-89.93% amino acid identities with Arabidopsis thaliana AtCaMs, thereby indicating that brown algae CaMs retained a similar Ca2+ sensors function as in plants. The phylogenetic and gene structure analysis results showed that there was significant divergence in the gene sequences among brown algae CMLs. Furthermore, evolutionary analysis indicated that the function of brown alga CMLs was relatively conserved, which may be related to the fact that brown algae do not need to face complex environments like terrestrial plants. Regulatory elements prediction and the expression analysis revealed the probable functioning of SjCaM/CML genes in gametophyte development and the stress response in S. japonica. In addition, the SjCaM/SjCMLs interacting proteins and chemicals were preliminarily predicted, suggesting that SjCaM/SjCMLs might play putative roles in Ca2+/CaM-mediated growth and development processes and stimulus responses. Therefore, these results will facilitate our understanding of the evolution of brown algae CaMs/CMLs and the functional identification of SjCaM/SjCMLs.

7.
BMC Plant Biol ; 23(1): 114, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823547

RESUMEN

BACKGROUND: Glehnia littoralis is an economic herb with both medicinal and edible uses. It also has important ecological value and special phylogenetic status as it is a monotypic genus species distributing around beach. Little information on its reproductive biology has been reported so far, which has hindered conservation and application of this species. In this study, we observed morphological changes from buds emergence to seeds formation and internal changes during sporogenesis, gametophyte development and embryo and endosperm development of G. littoralis using paraffin-embedded-sectioning and stereo microscope. RESULTS: The results showed that the stages of internal development events of G. littoralis corresponded to obvious external morphological changes, most of developmental features were consistent with other Apiaceae species. The development of male and female gametophytes was not synchronized in the same flower, however, exhibited temporal overlap. From mid-late April to mid-May, the anther primordial and ovule primordial developed into the trinucleate pollen grain and eight-nuclear embryo sac, respectively. From late-May to mid-July, the zygote developed into mature embryo. In addition, some defects in gynoecium or ovule development and abnormal embryo and endosperm development were found. We induced that the possible causes of abortion in G. littoralis were as follows: nutrient limitation, poor pollination and fertilization, and bad weather. CONCLUSIONS: This study revealed the whole process and morphological characteristics of the development of reproductive organ in G. littoralis, which not only provided important data for the study of systematic and conservation biology, but also provided a theoretical basis for cross breeding.


Asunto(s)
Apiaceae , Células Germinativas de las Plantas , Filogenia , Fitomejoramiento , Desarrollo Embrionario
8.
Am J Bot ; 109(6): 887-898, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35506584

RESUMEN

PREMISE: In Arabidopsis thaliana, the role of the most important key genes that regulate ovule development is widely known. In nonmodel species, and especially in gymnosperms, the ovule developmental processes are still quite obscure. In this study, we describe the putative roles of Ginkgo biloba orthologs of regulatory genes during ovule development. Specifically, we studied AGAMOUS (AG), AGAMOUS-like 6 (AGL6), AINTEGUMENTA (ANT), BELL1 (BEL1), Class III HD-Zip, and YABBY Ginkgo genes. METHODS: We analyzed their expression domains through in situ hybridizations on two stages of ovule development: the very early stage that corresponds to the ovule primordium, still within wintering buds, and the late stage at pollination time. RESULTS: GBM5 (Ginkgo ortholog of AG), GbMADS8 (ortholog of AGL6) and GbC3HDZ1-2-3 were expressed in both the stages of ovule development, while GbMADS1, GbAGL6-like genes (orthologs of AGL6), GbBEL1-2 and YABBY Ginkgo orthologs (GbiYAB1B and GbiYABC) seem mostly involved at pollination time. GbANTL1 was not expressed in the studied stages and was different from GbANTL2 and GbBEL1, which seem to be involved at both stages of ovule development. In Ginkgo, the investigated genes display patterns of expression only partially comparable to those of other studied seed plants. CONCLUSIONS: The expression of most of these regulatory genes in the female gametophyte region at pollination time leads to suggest a communication between the sporophytic maternal tissue and the developing female gametophyte, as demonstrated for well-studied model angiosperms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes Reguladores , Células Germinativas de las Plantas , Ginkgo biloba/genética , Óvulo Vegetal/genética , Factores de Transcripción/genética
9.
Protoplasma ; 259(4): 1061-1079, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34743240

RESUMEN

The inflorescence is composed of spikes, and the spike is the carrier of grass seed formation and development, so the development status of inflorescence implies grass seed yield and quality. So far, the systematic analysis of inflorescence development of Kentucky bluegrass has not been reported. The development process of the female gametophyte of wild germplasm materials of Kentucky bluegrass in Gannan, Gansu Province of China (KB-GN), was observed. Based on this, the key developmental stages of inflorescence in KB-GN were divided into premeiosis (GPreM), meiosis (GM), postmeiosis (GPostM), and anthesis (GA), and four stages of inflorescence were selected to analyze the transcriptome expression profile. We found that its sexual reproduction formed a polygonum-type embryo sac. Transcriptome analysis showed that 4256, 1125, 1699, and 3127 genes were highly expressed in GPreM, GM, GPostM, and GA, respectively. And a large number of transcription factors (TFs) such as MADS-box, MYB and NAC, AP2, C2H2, FAR1, B3, bHLH, WRKY, and TCP were highly expressed throughout the inflorescence development stages. KEGG enrichment and MapMan analysis showed that genes involved in plant hormone metabolism were also highly expressed at the entire stages of inflorescence development. However, a few TFs belong to stage-specific genes, such as TRAF proteins with unknown function in plants was screened firstly, which was specifically and highly expressed in the GPreM, indicating that TRAF may regulate the preparatory events of meiosis or be essential for the development of megaspore mother cell (MMC). The expression patterns of 15 MADS-box genes were analyzed by qRT-PCR, and the expression results were consistent with that of the transcriptome. The study on the inflorescence development of KB-GN will be great significant works and contribution to illustrate the basic mechanism of grass seeds formation and development.


Asunto(s)
Óvulo Vegetal , Poa , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Inflorescencia , Kentucky , Proteínas de Plantas/genética , Reproducción
10.
Plant J ; 107(3): 760-774, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33977586

RESUMEN

Poly(ADP-ribose) polymerases (PARPs), which transfer either monomer or polymer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+ ) onto target proteins, are required for multiple processes in DNA damage repair, cell cycle, development, and abiotic stress in animals and plants. Here, the uncharacterized rice (Oryza sativa) OsPARP1, which has been predicted to have two alternative OsPARP1 mRNA splicing variants, OsPARP1.1 and OsPARP1.2, was investigated. However, bimolecular fluorescence complementation showed that only OsPARP1.1 interacted with OsPARP3 paralog, suggesting that OsPARP1.1 is a functional protein in rice. OsPARP1 was preferentially expressed in the stamen primordial and pollen grain of mature stamen during flower development. The osparp1 mutant and CRISPR plants were delayed in germination, indicating that defective DNA repair machinery impairs early seed germination. The mutant displayed a normal phenotype during vegetative growth but had a lower seed-setting rate than wild-type plants under normal conditions. Chromosome bridges and DNA fragmentations were detected in male meiocytes at anaphase I to prophase II. After meiosis II, malformed tetrads or tetrads with micronuclei were formed. Meanwhile, the abnormality was also found in embryo sac development. Collectively, these results suggest that OsPARP1 plays an important role in mediating response to DNA damage and gametophyte development, crucial for rice yield in the natural environment.


Asunto(s)
Células Germinativas de las Plantas/fisiología , Meiosis/fisiología , Oryza/enzimología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Semillas/fisiología , Daño del ADN , Fertilidad , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Germinación , Oryza/genética , Oryza/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética
11.
BMC Plant Biol ; 20(1): 426, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933474

RESUMEN

BACKGROUND: The genus Cypripedium L. is one of the five genera of the subfamily Cypripedioideae, members of which are commonly known as lady's slipper orchids. Cypripedium japonicum is a perennial herb native to East Asia, specifically China, Japan, and Korea. Due to its limited distribution, the species is included in the Endangered category of the IUCN Red List. RESULTS: We investigated gametophyte development, including complete embryogenesis, in C. japonicum. The complete reproductive cycle is presented based on our observations. Anther development begins under the soil, and meiosis of pollen mother cells begins 3 weeks before anthesis, possibly during early April. The megaspore mother cells develop just after pollination in early May and mature in mid-late June. The pattern of embryo sac formation is bisporic, and there are six nuclei: three forming the egg apparatus, two polar nuclei, and an antipodal cell in the mature embryo sac. Triple fertilization results in the endosperm nucleus, which degenerates when the proembryo reaches the eight-to-sixteen-cell stage. CONCLUSION: Our overall comparisons of the features of gametophyte and embryo development in C. japonicum suggest that previous reports on the embryology of Cypripedium are not sufficient for characterization of the entire genus. Based on the available information, a reproductive calendar showing the key reproductive events leading to embryo formation has been prepared.


Asunto(s)
Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/fisiología , Orchidaceae/genética , Orchidaceae/fisiología , Reproducción/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Especies en Peligro de Extinción , Asia Oriental , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Células Germinativas de las Plantas/citología , Orchidaceae/citología , Filogenia , Reproducción/fisiología , Semillas/citología
12.
Front Plant Sci ; 10: 1351, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708954

RESUMEN

The REproductive Meristem (REM) gene family encodes for transcription factors belonging to the B3 DNA binding domain superfamily. In Arabidopsis thaliana, the REM gene family is composed of 45 members, preferentially expressed during flower, ovule, and seed developments. Only a few members of this family have been functionally characterized: VERNALIZATION1 (VRN1) and, most recently, TARGET OF FLC AND SVP1 (TFS1) regulate flowering time and VERDANDI (VDD), together with VALKYRIE (VAL) that control the death of the receptive synergid cell in the female gametophyte. We investigated the role of REM34, REM35, and REM36, three closely related and linked genes similarly expressed in both female and male gametophytes. Simultaneous silencing by RNA interference (RNAi) caused about 50% of the ovules to remain unfertilized. Careful evaluation of both ovule and pollen developments showed that this partial sterility of the transgenic RNAi lines was due to a postmeiotic block in both female and male gametophytes. Furthermore, protein interaction assays revealed that REM34 and REM35 interact, which suggests that they work together during the first stages of gametogenesis.

13.
Protoplasma ; 256(6): 1519-1530, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31183549

RESUMEN

Jujube (Ziziphus jujuba Mill.) is an important fruit tree species in China. In this study, we studied the megasporogenesis, microsporogenesis, and female and male gametophyte development of two major jujube cultivars, "Dongzao" and "Mayazao," using the squash technique, improved paraffin section technology, and optical microscopy. Our investigation revealed that both "Dongzao" and "Mayazao" have bilocular ovaries, basal placenta, and anatropous, bitegmic, crassinucellate ovules. The tetrads formed by meiosis of megaspore mother cells are arranged in a straight line or a tetrahedron. Embryo sac development is of the Polygonum type. The flower buds contain five anthers, each having four pollen sacs. The anther wall, which is of the fundamental form, is composed of epidermis, endothecium, one or two middle layers, and glandular tapetum. Mature pollen grains are two-celled and three-colporate. Both "Dongzao" and "Mayazao" can form normal mature pollen grains. Our study, which has revealed the basic phenomena and progression of megasporogenesis, microsporogenesis, and female and male gametophyte development in jujube, has generated important data for further research on jujube cytology and reproductive biology. Finally, our explorations of the cytological mechanism of male sterility in "Dongzao" also have provided a cytological basis for crossbreeding.


Asunto(s)
Gametogénesis en la Planta/genética , Ziziphus/química
14.
Front Plant Sci ; 10: 569, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31130976

RESUMEN

During pre-mRNA splicing, U2 small nuclear ribonucleoprotein auxiliary factor 65 (U2AF65) interacts with U2AF35 and splicing factor 1 (SF1), allowing for the recognition of the 3'-splice site by the ternary complex. The functional characterization of U2AF65 homologs has not been performed in Arabidopsis thaliana yet. Here, we show that normal plant development, including floral transition, and male gametophyte development, requires two Arabidopsis U2AF65 isoforms (AtU2AF65a and AtU2AF65b). Loss-of-function mutants of these two isoforms displayed opposite flowering phenotypes: atu2af65a mutants showed late flowering, whereas atu2af65b mutants were characterized by slightly early flowering, as compared to that in the wild-type (Col-0) plants. These abnormal flowering phenotypes were well-correlated with the expression patterns of the flowering time genes such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT). However, the two atu2af65 mutants did not display any morphological abnormalities or alterations in abiotic stress tests. Double mutation of the AtU2AF65a and AtU2AF65b genes resulted in non-viable seeds due to defective male gametophyte. In vitro pollen germination test revealed that mutations in both AtU2AF65a and AtU2AF65b genes significantly impaired pollen tube growth. Collectively, our findings suggest that two protein isoforms of AtU2AF65 are differentially involved in regulating flowering time and display a redundant role in pollen tube growth.

15.
J Exp Bot ; 70(7): 2059-2076, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30715463

RESUMEN

Members of the pepsin-like family (A1) of aspartic proteases (APs) are widely distributed in plants. A large number of genes encoding putative A1 APs are found in different plant genomes, the vast majority of which exhibit distinct features when compared with the so-called typical APs (and, therefore, grouped as atypical and nucellin-like APs). These features include the absence of the plant-specific insert; an unusually high number of cysteine residues; the nature of the amino acids preceding the first catalytic aspartate; and unexpected localizations. The over-representation of atypical and nucellin-like APs in plants is suggestive of greater diversification of protein functions and a more regulatory role for these APs, as compared with the housekeeping function generally attributed to typical APs. New functions have been uncovered for non-typical APs, with proposed roles in biotic and abiotic stress responses, chloroplast metabolism, and reproductive development, clearly suggesting functional specialization and tight regulation of activity. Furthermore, unusual enzymatic properties have also been documented for some of these proteases. Here, we give an overview of the current knowledge on the distinctive features and functions of both atypical and nucellin-like APs, and discuss this emerging pattern of functional complexity and specialization among plant pepsin-like proteases.


Asunto(s)
Proteasas de Ácido Aspártico/genética , Desarrollo de la Planta/fisiología , Proteínas de Plantas/genética , Plantas/genética , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Proteasas de Ácido Aspártico/metabolismo , Desarrollo de la Planta/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estrés Fisiológico
16.
Mol Genet Genomics ; 294(3): 583-596, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30689096

RESUMEN

The gametophyte of moss exhibits a simple body plan, yet its growth is regulated by complex developmental phenomena similar to angiosperms. Because moss can be easily maintained under laboratory conditions, amenable for gene targeting and the availability of genome sequence, P. patens has become an attractive model system for studying evolutionary traits. Until date, there has been no Agrobacterium-mediated Tnt1 mutagenesis protocol for haploid protonemal filaments of moss. Hence, we attempted to use the intact tobacco Tnt1 retrotransposon as a mutagen for P. patens. Bioinformatic analysis of initiator methionyl-tRNA (Met-tRNAi), a critical host factor for Tnt1 transposition process, suggested that it can be explored as a mutagen for bryophytes. Using protonemal filaments and Agrobacterium-mediated transformation, 75 Tnt1 mutants have been generated and cryopreserved. SSAP analysis and TAIL-PCR revealed that Tnt1 is functional in P. patens and has a high-preference for gene and GC-rich regions. In addition, LTR::GUS lines exhibited a basal but tissue-specific inducible expression pattern. Forward genetic screen resulted in 5 novel phenotypes related to hormonal and gravity response, phyllid, and gamete development. SSAP analysis suggests that the Tnt1 insertion pattern is stable under normal growth conditions and the high-frequency phenotypic deviations are possibly due to the combination of haploid explant (protonema) and the choice of mutagen (Tnt1). We demonstrate that Agrobacterium-mediated Tnt1 insertional mutagenesis could generate stable P. patens mutant populations for future forward genetic studies.


Asunto(s)
Bryopsida/genética , Células Germinativas de las Plantas/metabolismo , Mutagénesis Insercional , Retroelementos/genética , Agrobacterium/genética , Secuencia de Bases , Cromosomas de las Plantas/genética , ADN de Plantas/clasificación , ADN de Plantas/genética , Genoma de Planta/genética , Filogenia , Plantas Modificadas Genéticamente , ARN de Transferencia de Metionina/clasificación , ARN de Transferencia de Metionina/genética , Homología de Secuencia de Ácido Nucleico , Nicotiana/genética , Transformación Genética
17.
Int J Mol Sci ; 19(8)2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30071597

RESUMEN

The development of the female gametophyte (FG) is one of the key processes of life cycle alteration between the haploid gametophyte and the diploid sporophytes in plants and it is required for successful seed development after fertilization. It is well demonstrated that free nuclear mitosis (FNM) of FG is crucial for the development of the ovule. However, studies of the molecular mechanism of ovule and FG development focused mainly on angiosperms, such as Arabidopsis thaliana and further investigation of gymnosperms remains to be completed. Here, Illumina sequencing of six transcriptomic libraries obtained from developing and abortive ovules at different stages during free nuclear mitosis of magagametophyte (FNMM) was used to acquire transcriptome data and gene expression profiles of Pinus tabulaeformis. Six cDNA libraries generated a total of 71.0 million high-quality clean reads that aligned with 63,449 unigenes and the comparison between developing and abortive ovules identified 7174 differentially expressed genes (DEGs). From the functional annotation results, DEGs involved in the cell cycle and phytohormone regulation were highlighted to reveal their biological importance in ovule development. Furthermore, validation of DEGs from the phytohormone signal transduction pathway was performed using quantitative real-time PCR analysis, revealing the dynamics of transcriptional networks and potential key components in the regulation of FG development in P. tabulaeformis were identified. These findings provide new insights into the regulatory mechanisms of ovule development in woody gymnosperms.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Mitosis/fisiología , Óvulo Vegetal , ARN de Planta , Análisis de Secuencia de ARN , Fertilidad , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Pinus , ARN de Planta/biosíntesis , ARN de Planta/genética
18.
New Phytol ; 219(1): 163-175, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29655284

RESUMEN

Phospholipases play crucial roles in plant membrane lipid homeostasis. Nonspecific phospholipase C (NPCs) establish a unique class of phospholipases found only in plants and certain bacteria. Here, we show that two previously uncharacterized NPC isoforms, NPC2 and NPC6, are required for male and female gametophyte development in Arabidopsis. Double mutant plants of npc2-1 npc6-2 could not be retrieved because npc2-1 npc6-2 ovule and pollen development is affected. Genetic complementation, reciprocal crossing and microscope observation of npc2-1/- npc6-2/+ and npc2-1/+ npc6-2/- plants suggest that NPC2 and NPC6 are redundant and are required for normal gametophyte development. Both NPC2 and NPC6 proteins are localized to the plastids. Promoter-GUS assays in transgenic Arabidopsis revealed that NPC2 and NPC6 are preferentially expressed in floral organs rather than in leaves. In vitro enzyme assays showed that NPC2 and NPC6 hydrolyze phosphatidylcholine and phosphatidylethanolamine, but not phosphatidate, being consistent with the reported substrate selectivity of NPCs. The amounts of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol were increased in buds but not in flowers of npc2-1/- npc6-2/+ and npc2-1/+ npc6-2/- plants, presumably due to reduced phospholipid hydrolysis activity in developing flowers. Our results demonstrate that NPC2 and NPC6 play crucial roles in gametogenesis during flower development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fosfolipasas/metabolismo , Fosfolipasas de Tipo C/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Células Germinativas de las Plantas/enzimología , Células Germinativas de las Plantas/crecimiento & desarrollo , Hidrólisis , Isoenzimas , Óvulo Vegetal/enzimología , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Fosfolipasas/genética , Fosfolípidos/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Fosfolipasas de Tipo C/genética
19.
J Exp Bot ; 68(13): 3365-3373, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28633292

RESUMEN

Histidine phosphotransfer proteins (HPs) are key elements of the two-component signaling system, which act as a shuttle to transfer phosphorylation signals from histidine kinases (HKs) to response regulators (RRs). CYTOKININ INDEPENDENT 1 (CKI1), a key regulator of central cell specification in the Arabidopsis female gametophyte, activates the cytokinin signaling pathway through the Arabidopsis histidine phosphotransfer proteins (AHPs). There are five HP genes in Arabidopsis, AHP1-AHP5, but it remains unknown which AHP genes act downstream of CKI1 in Arabidopsis female gametophyte development. Promoter activity analysis of AHP1-AHP5 in embryo sacs revealed AHP1, AHP2, AHP3, and AHP5 expression in the central cell. Phenotypic studies of various combinations of ahp mutants showed that triple mutations in AHP2, AHP3, and AHP5 resulted in defective embryo sac development. Using cell-specific single and double markers in the female gametophyte, the ahp2-2 ahp3 ahp5-2/+ triple mutant ovules showed loss of central cell and antipodal cell fates and gain of egg cell or synergid cell attributes, resembling the cki1 mutant phenotypes. These data suggest that AHP2, AHP3, and AHP5 are the major factors acting downstream of CKI1 in the two-component cytokinin signaling pathway to promote Arabidopsis female gametophyte development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Fosfotransferasas/genética , Proteínas Quinasas/genética , Transducción de Señal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/genética , Flores/genética , Flores/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fosfotransferasas/metabolismo , Proteínas Quinasas/metabolismo
20.
Plant Signal Behav ; 11(2): e1062196, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26451709

RESUMEN

Callose, a linear ß-1,3-glucan molecule, plays important roles in a variety of processes in angiosperms, including development and the response to biotic and abiotic stress. Despite the importance of callose deposition, our understanding of the roles of callose in rice reproductive development and the regulation of callose biosynthesis is limited. GLUCAN SYNTHASE-LIKE genes encode callose synthases (GSLs), which function in the production of callose at diverse sites in plants. Studies have shown that callose participated in plant reproductive development, and that the timely deposition and degradation of callose were essential for normal male gametophyte development. In this mini-review, we described conserved sequences found in GSL family proteins from monocotyledonous (Oryza sativa and Zea mays) and dicotyledonous (Arabidopsis thaliana and Glycine max) plants. We also describe the latest findings on callose biosynthesis and deposition during reproductive development and discuss future challenges in unraveling the mechanism of callose synthesis and deposition in higher plants.


Asunto(s)
Glucanos/biosíntesis , Glucosiltransferasas/química , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Plantas/genética , Reproducción/genética , Análisis de Secuencia de Proteína , Glycine max/genética , Glycine max/metabolismo , Zea mays/genética , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA