Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e20930, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928036

RESUMEN

The estimation of fluid flows inside a centrifugal pump in realtime is a challenging task that cannot be achieved with long-established methods like CFD due to their computational demands. We use a projection-based reduced order model (ROM) instead. Based on this ROM, a realtime observer can be devised that estimates the temporally and spatially resolved velocity and pressure fields inside the pump. The entire fluid-solid domain is treated as a fluid in order to be able to consider moving rigid bodies in the reduction method. A greedy algorithm is introduced for finding suitable and as few measurement locations as possible. Robust observability is ensured with an extended Kalman filter, which is based on a time-variant observability matrix obtained from the nonlinear velocity ROM. We present the results of the velocity and pressure ROMs based on a unsteady Reynolds-averaged Navier-Stokes CFD simulation of a 2D centrifugal pump, as well as the results for the extended Kalman filter.

2.
MethodsX ; 10: 102204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424764

RESUMEN

A simulation methodology derived from a learning algorithm based on Proper Orthogonal Decomposition (POD) is presented to solve partial differential equations (PDEs) for physical problems of interest. Using the developed methodology, a physical problem of interest is projected onto a functional space described by a set of basis functions (or POD modes) that are trained via the POD by solution data collected from direct numerical simulations (DNSs) of the PDE. The Galerkin projection of the PDE is then performed to account for physical principles guided by the PDE. The procedure to construct the physics-driven POD-Galerkin simulation methodology is presented in detail, together with demonstrations of POD-Galerkin simulations of dynamic thermal analysis on a microprocessor and the Schrödinger equation for a quantum nanostructure. The physics-driven methodology allows a reduction of several orders in degrees of freedom (DoF) while maintaining high accuracy. This leads to a drastic decrease in computational effort when compared with DNS. The major steps for implementing the methodology include:•Solution data collection from DNSs of the physical problem subjected to parametric variations of the system.•Calculations of POD modes and eigenvalues from the collected data using the method of snapshots.•Galerkin projection of the governing equation onto the POD space to derive the model.

3.
Biomed Phys Eng Express ; 8(1)2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34808611

RESUMEN

The three-dimensional cardiac monodomain model with inhomogeneous and anisotropic conductivity characterizes a complicated system that contains spatial and temporal approximation coefficients along with a nonlinear ionic current term. These complexities make its numerical modeling computationally challenging, and therefore, the formation of an efficient computational approximation is important for studying cardiac propagation. In this paper, a reduced order modeling approach has been developed for the simplified cardiac monodomain model, which yields a significant reduction of the full order dynamics of the cardiac tissue, reducing the required computational resources. Additionally, the discrete empirical interpolation technique has been implemented to accurately estimate the nonlinearity of the ionic current of the cardiac monodomain scheme. The proper orthogonal decomposition technique has been utilized, which transforms a given dataset called 'snapshots' to a new coordinate system. The snapshots are computed first from the original system, and they encapsulate all the information observed over both time and parameter variations. Next, the proper orthogonal decomposition provides a reduced order basis for projecting the original solution onto a low-dimensional orthonormal subspace. Finally, a reduced set of unknowns of the forward problem is obtained for which the solution involves significant computational savings compared to that for the original system of unknowns. The efficiency of the model order reduction technique for finite difference solution of cardiac electrophysiology is examined concerning simulation time, error potential, activation time, maximum temporal derivative, and conduction velocity. Numerical results for the monodomain show that its solution time can be reduced by a significant factor, with only 0.474 mV RMS error between the full order and reduced dimensions solution.


Asunto(s)
Corazón , Anisotropía , Simulación por Computador
4.
Math Biosci ; 336: 108619, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33887314

RESUMEN

Agent based models (ABMs) are a useful tool for modeling spatio-temporal population dynamics, where many details can be included in the model description. Their computational cost though is very high and for stochastic ABMs a lot of individual simulations are required to sample quantities of interest. Especially, large numbers of agents render the sampling infeasible. Model reduction to a metapopulation model leads to a significant gain in computational efficiency, while preserving important dynamical properties. Based on a precise mathematical description of spatio-temporal ABMs, we present two different metapopulation approaches (stochastic and piecewise deterministic) and discuss the approximation steps between the different models within this framework. Especially, we show how the stochastic metapopulation model results from a Galerkin projection of the underlying ABM onto a finite-dimensional ansatz space. Finally, we utilize our modeling framework to provide a conceptual model for the spreading of COVID-19 that can be scaled to real-world scenarios.


Asunto(s)
COVID-19/transmisión , Modelos Teóricos , Dinámica Poblacional , Análisis Espacio-Temporal , Análisis de Sistemas , Humanos , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA