Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.036
Filtrar
1.
Front Plant Sci ; 15: 1419227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228836

RESUMEN

Bread wheat (T. aestivum) is one of the world's most widely consumed cereals. Since micronutrient deficiencies are becoming more common among people who primarily depend upon cereal-based diets, a need for better-quality wheat varieties has been felt. An association panel of 154 T. aestivum lines was evaluated for the following quality traits: grain appearance (GA) score, grain hardness (GH), phenol reaction (PR) score, protein percent, sodium dodecyl sulfate (SDS) sedimentation value, and test weight (TWt). In addition, the panel was also phenotyped for grain yield and related traits such as days to heading, days to maturity, plant height, and thousand kernel weight for the year 2017-18 at the Borlaug Institute for South Asia (BISA) Ludhiana and Jabalpur sites. We performed a genome-wide association analysis on this panel using 18,351 genotyping-by-sequencing (GBS) markers to find marker-trait associations for quality and grain yield-related traits. We detected 55 single nucleotide polymorphism (SNP) marker trait associations (MTAs) for quality-related traits on chromosomes 7B (10), 1A (9), 2A (8), 3B (6), 2B (5), 7A (4), and 1B (3), with 3A, 4A, and 6D, having two and the rest, 4B, 5A, 5B, and 1D, having one each. Additionally, 20 SNP MTAs were detected for yield-related traits based on a field experiment conducted in Ludhiana on 7D (4) and 4D (3) chromosomes, while 44 SNP MTAs were reported for Jabalpur on chromosomes 2D (6), 7A (5), 2A (4), and 4A (4). Utilizing these loci in marker-assisted selection will benefit from further validation studies for these loci to improve hexaploid wheat for better yield and grain quality.

2.
Front Cardiovasc Med ; 11: 1364126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253394

RESUMEN

Background: Observational clinical studies suggest an association between dilated cardiomyopathy (DCM) and various factors including titin, cardiac troponin I (CTnI), desmocollin-2, the perinatal period, alcoholism, Behçet's disease, systemic lupus erythematosus, hyperthyroidism and thyrotoxicosis, hypothyroidism, carnitine metabolic disorder, and renal insufficiency. The causal nature of these associations remains uncertain. This study aims to explore these correlations using the Mendelian randomization (MR) approach. Objective: To investigate the etiology of DCM through Mendelian randomization analysis. Methods: Data mining was conducted in genome-wide association study databases, focusing on variant target proteins (titin, CTnI, desmocollin-2), the perinatal period, alcoholism, Behçet's disease, systemic lupus erythematosus, hyperthyroidism and thyrotoxicosis, hypothyroidism, carnitine metabolic disorder, and renal insufficiency, with DCM as the outcome. The analysis employed various regression models, namely, the inverse-variance weighted (IVW), MR-Egger, simple mode, weighted median, and weighted mode methods. Results: The IVW results showed a correlation between titin protein and DCM, identifying titin as a protective factor [OR = 0.856, 95% CI (0.744-0.985), P = 0.030]. CTnI protein correlated with DCM, marking it as a risk factor [OR = 1.204, 95% CI (1.010-1.436), P = 0.040]. Desmocollin-2 also correlated with DCM and was recognized as a risk factor [OR = 1.309, 95% CI (1.085-1.579), P = 0.005]. However, no causal relationship was found between the perinatal period, alcoholism, Behçet's disease, systemic lupus erythematosus, hyperthyroidism and thyrotoxicosis, hypothyroidism, carnitine metabolic disorder, renal insufficiency, and DCM (P > 0.05). The MR-Egger intercept test indicated no pleiotropy (P > 0.05), affirming the effectiveness of Mendelian randomization in causal inference. Conclusion: Titin, CTnI, and desmocollin-2 proteins were identified as independent risk factors for DCM. Contrasting with previous observational studies, no causal relationship was observed between DCM and the perinatal period, alcoholism, Behçet's disease, systemic lupus erythematosus, hyperthyroidism and thyrotoxicosis, hypothyroidism, carnitine metabolic disorder, or renal insufficiency.

3.
Plant J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259840

RESUMEN

Trichomes, which originate from the epidermal cell of aerial organs, provide plants with defense and secretion functions. Although numerous genes have been implicated in trichome development, the molecular mechanisms underlying trichome cell formation in plants remain incompletely understood. Here, we using genome-wide association study (GWAS) across 1037 diverse accessions in upland cotton (Gossypium hirsutum) to identify three loci associated with leaf pubescence (hair) amount, located on chromosome A06 (LPA1), A08 (LPA2) and A11 (LPA3), respectively. GhHD1, a previously characterized candidate gene, was identified on LPA1 and encodes an HD-Zip transcription factor. For LPA2 and LPA3, we identified two candidate genes, GhGIR1 and GhGIR2, both encoding proteins with WD40 and RING domains that act as inhibitors of leaf hair formation. Expression analysis revealed that GhHD1 was predominantly expressed in hairy accessions, whereas GhGIR1 and GhGIR2 were expressed in hairless accessions. Silencing GhHD1 or overexpressing GhGIR1 in hairy accessions induced in a hairless phenotype, whereas silencing GhGIR2 in hairless accessions resulted in a hairy phenotype. We also demonstrated that GhHD1 interact with both GhGIR1 and GhGIR2, and GhGIR1 can interact with GhGIR2. Further investigation indicated that GhHD1 functions as a transcriptional activator, binding to the promoters of the GhGIR1 and GhGIR2 to active their expression, whereas GhGIR1 and GhGIR2 can suppress the transcriptional activation of GhHD1. Our findings shed light on the intricate regulatory network involving GhHD1, GhGIR1 and GhGIR2 in the initiation and development of plant epidermal hairs in cotton.

4.
Am J Hum Genet ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39260370

RESUMEN

To identify modifier loci underlying variation in body mass index (BMI) in persons with cystic fibrosis (pwCF), we performed a genome-wide association study (GWAS). Utilizing longitudinal height and weight data, along with demographic information and covariates from 4,393 pwCF, we calculated AvgBMIz representing the average of per-quarter BMI Z scores. The GWAS incorporated 9.8M single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) > 0.005 extracted from whole-genome sequencing (WGS) of each study subject. We observed genome-wide significant association with a variant in FTO (FaT mass and Obesity-associated gene; rs28567725; p value = 1.21e-08; MAF = 0.41, ß = 0.106; n = 4,393 individuals) and a variant within ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5; rs162500; p value = 2.11e-10; MAF = 0.005, ß = -0.768; n = 4,085 pancreatic-insufficient individuals). Notably, BMI-associated variants in ADAMTS5 occur on a haplotype that is much more common in African (AFR, MAF = 0.183) than European (EUR, MAF = 0.006) populations (1000 Genomes project). A polygenic risk score (PRS) calculated using 924 SNPs (excluding 17 in FTO) showed significant association with AvgBMIz (p value = 2.2e-16; r2 = 0.03). Association between variants in FTO and the PRS correlation reveals similarities in the genetic architecture of BMI in CF and the general population. Inclusion of Black individuals in whom the single-gene disorder CF is much less common but genomic diversity is greater facilitated detection of association with variants that are in LD with functional SNPs in ADAMTS5. Our results illustrate the importance of population diversity, particularly when attempting to identify variants that manifest only under certain physiologic conditions.

6.
Genetics ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255064

RESUMEN

The expansive collection of genetic and phenotypic data within biobanks offers an unprecedented opportunity for biomedical research. However, the frequent occurrence of missing phenotypes presents a significant barrier to fully leveraging this potential. In our target application, on one hand, we have only a small and complete dataset with both genotypes and phenotypes to build a genetic prediction model, commonly called a polygenic (risk) score (PGS or PRS); on the other hand, we have a large dataset of genotypes (e.g. from a biobank) without the phenotype of interest. Our goal is to leverage the large dataset of genotypes (but without the phenotype) and a separate GWAS summary dataset of the phenotype to impute the phenotypes, which are then used as an individual-level dataset, along with the small complete dataset, to build a nonlinear model as PGS. More specifically, we trained some nonlinear models to 7 imputed and observed phenotypes from the UK Biobank data. We then trained an ensemble model to integrate these models for each trait, resulting in higher R2 values in prediction than using only the small complete (observed) dataset. Additionally, for 2 of the 7 traits, we observed that the nonlinear model trained with the imputed traits had higher R2 than using the imputed traits directly as the PGS, while for the remaining 5 traits, no improvement was found. These findings demonstrates the potential of leveraging existing genetic data and accounting for nonlinear genetic relationships to improve prediction accuracy for some traits.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39257026

RESUMEN

To comprehensively investigate the risk factors associated with depression, traditional Chinese medicine constitution (TCMC) has been found to be related to depression. However, the underlying mechanism remains unclear. This study examined the association between the concept of unbalanced TCMCs and major depressive disorder (MDD), investigated the overlapping polygenic risks between unbalanced TCMC and MDD, and performed a mediation test to establish potential pathways. In total, 11,030 individuals were recruited from the Taiwan Biobank, and the polygenic risk score (PRS) for MDD for each participant was calculated using the data from the Psychiatric Genomics Consortium. Unbalanced TCMC were classified as yang-deficiency, yin-deficiency, and stasis. The MDD PRS was associated with yang-deficiency odds ratio [OR] per standard deviation increase in standardized (PRS = 1.07, p = 0.0080), yin-deficiency (OR = 1.07, p = 0.0030), and stasis constitution (OR = 1.06, p = 0.0331). Yang-deficiency (OR = 2.07, p < 0.0001) and stasis constitutions (OR = 1.65, p = 0.0015) were associated with an increased risk of MDD. A higher number of unbalanced constitutions was associated with MDD (p < 0.0001). The effect of MDD PRS on MDD was partly mediated by yang-deficiency (10.21%) and stasis (8.41%) constitutions. This study provides evidence for the shared polygenic risk mechanism underlying depression and TCMC and the potential mediating role of TCMC in the polygenic liability for MDD.

8.
Plant J ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259496

RESUMEN

Genome-wide association study (GWAS) with single nucleotide polymorphisms (SNPs) has been widely used to explore genetic controls of phenotypic traits. Alternatively, GWAS can use counts of substrings of length k from longer sequencing reads, k-mers, as genotyping data. Using maize cob and kernel color traits, we demonstrated that k-mer GWAS can effectively identify associated k-mers. Co-expression analysis of kernel color k-mers and genes directly found k-mers from known causal genes. Analyzing complex traits of kernel oil and leaf angle resulted in k-mers from both known and candidate genes. A gene encoding a MADS transcription factor was functionally validated by showing that ectopic expression of the gene led to less upright leaves. Evolution analysis revealed most k-mers positively correlated with kernel oil were strongly selected against in maize populations, while most k-mers for upright leaf angle were positively selected. In addition, genomic prediction of kernel oil, leaf angle, and flowering time using k-mer data resulted in a similarly high prediction accuracy to the standard SNP-based method. Collectively, we showed k-mer GWAS is a powerful approach for identifying trait-associated genetic elements. Further, our results demonstrated the bridging role of k-mers for data integration and functional gene discovery.

9.
Clin Immunol ; 268: 110356, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241920

RESUMEN

Selective IgA deficiency (SIgAD) is the most common inborn error of immunity (IEI). Unlike many IEIs, evidence of a role for highly penetrant rare variants in SIgAD is lacking. Previous SIgAD studies have had limited power to identify common variants due to their small sample size. We overcame this problem first through meta-analysis of two existing GWAS. This identified four novel common-variant associations and enrichment of SIgAD-associated variants in genes linked to Mendelian IEIs. SIgAD showed evidence of shared genetic architecture with serum IgA and a number of immune-mediated diseases. We leveraged this pleiotropy through the conditional false discovery rate procedure, conditioning our SIgAD meta-analysis on large GWAS of asthma and rheumatoid arthritis, and our own meta-analysis of serum IgA. This identified an additional 18 variants, increasing the number of known SIgAD-associated variants to 27 and strengthening the evidence for a polygenic, common-variant aetiology for SIgAD.

10.
Sci Rep ; 14(1): 20944, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251797

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia, characterized by memory loss, cognitive decline, personality changes, and various neurological symptoms. The role of blood-brain barrier (BBB) injury, extracellular matrix (ECM) abnormalities, and oligodendrocytes (ODCs) dysfunction in AD has gained increasing attention, yet the detailed pathogenesis remains elusive. This study integrates single-cell sequencing of AD patients' cerebrovascular system with a genome-wide association analysis. It aims to elucidate the associations and potential mechanisms behind pericytes injury, ECM disorder, and ODCs dysfunction in AD pathogenesis. Finally, we identified that abnormalities in the pericyte PI3K-AKT-FOXO signaling pathway may be involved in the pathogenic process of AD. This comprehensive approach sheds new light on the complex etiology of AD and opens avenues for advanced research into its pathogenesis and therapeutic strategies.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Estudio de Asociación del Genoma Completo , Pericitos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/etiología , Humanos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Pericitos/patología , Pericitos/metabolismo , Transducción de Señal , Oligodendroglía/metabolismo , Oligodendroglía/patología , Matriz Extracelular/metabolismo , Microvasos/patología , Microvasos/metabolismo , Análisis de la Célula Individual , Femenino , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo
11.
bioRxiv ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39253512

RESUMEN

Genotyping single nucleotide polymorphisms (SNPs) is fundamental to disease research, as researchers seek to establish links between genetic variation and disease. Although significant advances in genome technology have been made with the development of bead-based SNP genotyping and Genome Studio software, some SNPs still fail to be genotyped, resulting in "no-calls" that impede downstream analyses. To recover these genotypes, we introduce Cluster Buster, a genotyping neural network and visual inspection system designed to improve the quality of neurodegenerative disease (NDD) research. Concordance analysis with whole genome sequencing (WGS) and imputed genotypes validated the reliability of predicted genotypes, with dozens of high-performing SNPs across LRRK2, APOE, and GBA loci achieving at least 90% concordance per SNP location. Further analysis of concordance between Genome Studio genotypes and imputed and WGS genotypes revealed discrepancies between the genotyping technologies, highlighting the need for selective application of Cluster Buster on SNP locations based on concordance rates. Cluster Buster's implementation significantly reduces manual labor for recovering no-call SNPs, refining genotype quality for the Global Parkinson's Genetics Program (GP2). This system facilitates better imputation and GWAS outcomes, ultimately contributing to a deeper understanding of genetic factors in NDDs.

12.
BMC Genomics ; 25(1): 878, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294559

RESUMEN

BACKGROUND: As precision medicine advances, polygenic scores (PGS) have become increasingly important for clinical risk assessment. Many methods have been developed to create polygenic models with increased accuracy for risk prediction. Our select and shrink with summary statistics (S4) PGS method has previously been shown to accurately predict the polygenic risk of epithelial ovarian cancer. Here, we applied S4 PGS to 12 phenotypes for UK Biobank participants, and compared it with the LDpred2 and a combined S4 + LDpred2 method. RESULTS: The S4 + LDpred2 method provided overall improved PGS accuracy across a variety of phenotypes for UK Biobank participants. Additionally, the S4 + LDpred2 method had the best estimated PGS accuracy in Finnish and Japanese populations. We also addressed the challenge of limited genotype level data by developing the PGS models using only GWAS summary statistics. CONCLUSIONS: Taken together, the S4 + LDpred2 method represents an improvement in overall PGS accuracy across multiple phenotypes and populations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Polimorfismo de Nucleótido Simple , Modelos Genéticos , Femenino
13.
Nutr Metab (Lond) ; 21(1): 75, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304912

RESUMEN

BACKGROUND: 3-Hydroxybutyrate, also called ß-hydroxybutyrate, is a significant constituent of ketone bodies. Previous observational and experimental studies have suggested that ketogenic diet, especially 3-hydroxybutyrate, may have a protective effect against cardiovascular disease. However, the relationship between ketone bodies, especially 3-hydroxybutyrate, and aortic dissection remains uncertain. MATERIALS AND METHODS: Publicly accessible data from genome-wide association study (GWAS) was utilized to obtain information on ketone bodies, including 3-hydroxybutyrate, acetoacetate and acetone as exposure respectively, while GWAS data on aortic dissection was used as outcome. Subsequently, two-sample Mendelian randomization (MR) analysis was conducted to examine the potential relationship between ketone bodies and aortic dissection. Then, reverse and multivariate Mendelian randomization analyses were performed. Additionally, sensitivity tests were conducted to assess the robustness of MR study. RESULTS: The inverse-variance weighted (IVW) method of Mendelian randomization analysis of gene prediction observed a negative correlation between 3-hydroxybutyrate and risk of aortic dissection (OR 0.147, 95% CI 0.053-0.410). Furthermore, consistent findings were obtained through the implementation of the weighted median, simple mode, Mendelian randomization-Egger (MR-Egger), and weighted mode methods. After adjusting acetoacetate (OR 0.143, 95% CI 0.023-0.900) or acetone (OR 0.100, 95% CI 0.025-0.398), MR analysis of gene prediction still observed a negative correlation between 3-hydroxybutyrate and risk of aortic dissection. No indications of heterogeneity or pleiotropy among the SNPs were detected. CONCLUSION: The findings from the MR analysis demonstrated that genetically predicted 3-hydroxybutyrate exhibits a protective effect against aortic dissection.

14.
J Am Stat Assoc ; 119(546): 839-850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219674

RESUMEN

The aim of this paper is to propose a novel method for estimating trans-ancestry genetic correlations in genome-wide association studies (GWAS) using genetically-predicted observations. These correlations describe how genetic architecture of complex traits varies among populations. Our new estimator corrects for biases arising from prediction errors in high-dimensional weak GWAS signals, while addressing the ethnic diversity inherent in GWAS data, such as linkage disequilibrium (LD) differences. A distinguishing feature of our approach is its flexibility regarding sample sizes: it necessitates a large GWAS sample only from one population, while the secondary population may have a much smaller cohort, even in the hundreds. This design directly addresses the existing imbalance in GWAS data resources, where datasets for European populations typically outnumber those of non-European ancestries. Through extensive simulations and real data analysis from the UK Biobank study encompassing 26 complex traits, we validate the reliability of our method. Our results illuminate the broader implications of transferring genetic findings across diverse populations.

15.
Mol Genet Genomics ; 299(1): 85, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230791

RESUMEN

Clinical biomarkers such as fasting glucose, HbA1c, and fasting insulin, which gauge glycemic status in the body, are highly influenced by diet. Indians are genetically predisposed to type 2 diabetes and their carbohydrate-centric diet further elevates the disease risk. Despite the combined influence of genetic and environmental risk factors, Indians have been inadequately explored in the studies of glycemic traits. Addressing this gap, we investigate the genetic architecture of glycemic traits at genome-wide level in 4927 Indians (without diabetes). Our analysis revealed numerous variants of sub-genome-wide significance, and their credibility was thoroughly assessed by integrating data from various levels. This identified key effector genes, ZNF470, DPP6, GXYLT2, PITPNM3, BEND7, and LORICRIN-PGLYRP3. While these genes were weakly linked with carbohydrate intake or glycemia earlier in other populations, our findings demonstrated a much stronger association in the Indian population. Associated genetic variants within these genes served as expression quantitative trait loci (eQTLs) in various gut tissues essential for digestion. Additionally, majority of these gut eQTLs functioned as methylation quantitative trait loci (meth-QTLs) observed in peripheral blood samples from 223 Indians, elucidating the underlying mechanism of their regulation of target gene expression. Specific co-localized eQTLs-meth-QTLs altered the binding affinity of transcription factors targeting crucial genes involved in glucose metabolism. Our study identifies previously unreported genetic variants that strongly influence the diet-glycemia relationship. These findings set the stage for future research into personalized lifestyle interventions integrating genetic insights with tailored dietary strategies to mitigate disease risk based on individual genetic profiles.


Asunto(s)
Glucemia , Metabolismo de los Hidratos de Carbono , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Humanos , India/epidemiología , Glucemia/metabolismo , Masculino , Metabolismo de los Hidratos de Carbono/genética , Femenino , Diabetes Mellitus Tipo 2/genética , Adulto , Predisposición Genética a la Enfermedad , Persona de Mediana Edad , Metilación de ADN/genética , Multiómica
16.
Heliyon ; 10(16): e35904, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220896

RESUMEN

Background: To explore the causal association between Helicobacter pylori (H. pylori) infection, herpesvirus infection and periodontitis (PD) from a genetic perspective using Mendelian randomization (MR). Methods: The PD data were derived from genome-wide association study (GWAS) from the Dental Endpoints (GLIDE) consortium, and the FinnGen Biobank provided data on H. pylori and herpesvirus infections. In addition, we examined GWAS data for subtypes of H. pylori and herpesvirus infection. Inverse variance weighting (IVW) was selected as a major analysis technique, and weighted median (WM), weighted model, simple model, and MR-Egger regression were added as supplementary methods. To verify the findings, the effects of pleiotropy and heterogeneity were assessed. Results: Genetically predicted H. pylori infection (OR = 0.914, 95%CI = 0.693-1.205, P = 0.523), anti-H. pylori VacA (OR = 0.973, 95%CI = 0.895-1.057, P = 0.515), anti-H. pylori CagA (OR = 1.072, 95%CI = 0.986-1.164; P = 0.102), Epstein-Barr virus (EBV) infection (OR = 1.026, 95%CI = 0.940-1.120, P = 0.567), Herpes simplex virus (HSV) infection (OR = 0.962, 95%CI = 0.883-1.048, P = 0.372), cytomegalovirus (CMV) infection (OR = 1.025, 95%CI = 0.967-1.088, P = 0.415), EBV nuclear antigen-1 (EBNA1) (OR = 1.061, 95%CI = 0.930-1.209, P = 0.378), EBV virus capsid antigen (VCA) (OR = 1.043, 95CI% = 0.890-1.222, P = 0.603), HSV-1 (OR = 1.251, 95%CI = 0.782-2.001, P = 0.351), HSV-2 (OR = 1.020, 95%CI = 0.950-1.096, P = 0.585), CMV IgG (OR = 0.990, 95CI% = 0.882-1.111, P = 0.861) were not associated with PD, indicated that H. pylori and herpesvirus infection had no causal relationship to PD. Reverse studies also found no cause effect of PD on H. pylori or herpesvirus infection. The results of the sensitivity analysis suggested the robustness of the MR results. Conclusion: This study offered preliminary proof that H. pylori and herpesvirus infections were not causally linked to PD, and vice versa. However, more robust instrumental variables (IVs) and larger samples of GWAS data were necessary for further MR analysis.

17.
Sci China Life Sci ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39235557

RESUMEN

Understanding the emergence and spread of antibiotic resistance genes (ARGs) in wildlife is critical for the health of humans and animals from a "One Health" perspective. The gut microbiota serve as a reservoir for ARGs; however, it remains poorly understood how environmental and host genetic factors influence ARGs by affecting the gut microbiota. To elucidate this, we analyzed whole-genome resequencing data from 79 individuals of Brandt's vole in two geographic locations with different antibiotics usage, together with metabolomic data and shotgun sequencing data. A high diversity of ARGs (851 subtypes) was observed in vole's gut, with a large variation in ARG composition between individuals from Xilingol and Hulunbuir in China. The diversity and composition of ARGs were strongly correlated with variations in gut microbiota community structure. Genome-wide association studies revealed that 803 loci were significantly associated (P<5.05×10-9) with 31 bacterial species, and bipartite networks identified 906 bacterial species-ARGs associations. Structural equation modeling analysis showed that host genetic factors, air temperature, and presence of pollutants (Bisphenol A) significantly affected gut microbiota community structure, which eventually regulated the diversity of ARGs. The present study advances our understanding of the complex host-environment interactions that underlie the spread of ARGs in the natural environments.

18.
Front Med (Lausanne) ; 11: 1435312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301493

RESUMEN

Background: Observational studies have indicated a potential association between autoimmune diseases and the occurrence of Osteoarthritis (OA), with an increased risk of mortality among affected patients. However, whether a causal relationship exists between the two remains unknown. Methods: In the Mendelian randomization (MR) study, we accessed exposure Genome-wide association study (GWAS) data from both the MRC Integrative Epidemiology Unit (MRC-IEU) and the FinnGen consortium. GWAS data for OA were obtained from MRC-IEU. We employed univariable, multivariable, and reverse MR analyses to explore potential associations between autoimmune disorders and OA. Additionally, a two-step mediation MR analysis was performed to investigate indirect factors possibly influencing the relationship between autoimmune disorders and OA. Afterward, we conducted an observational analysis to further explore the relationship between autoimmune disease and occurrence as well as of OA using a real-world database (the MIMIC-IV database). Based on public gene expression sequencing data, we further explored the potential shared pathogenesis between autoimmune diseases and OA. Results: In our univariable MR study, we identified five autoimmune diseases that are associated with OA. These include Celiac disease (OR = 1.061, 95% CI = 1.018-1.105, p = 0.005), Crohn's disease (OR = 1.235, 95% CI = 1.149-1.327, p = 9.44E-09), Ankylosing spondylitis (OR = 2.63, 95% CI = 1.21-5.717, p = 0.015), RA (OR = 1.082, 95% CI = 1.034-1.133, p = 0.001), and Ulcerative colitis (OR = 1.175, 95% CI = 1.068-1.294, p = 0.001). In the mediation effect analysis, it was found that there is no correlation between cytokines and autoimmune diseases and OA. Based on transcriptome data analysis, it was found that metabolism-related pathways play a key role in the co-morbidity of autoimmune diseases and OA. Conclusion: Our findings revealed that genes associated with Celiac disease, Crohn's disease, Ankylosing spondylitis, RA, and Ulcerative colitis were independently linked to the development of OA. Furthermore, we conducted an analysis of potential pathogenic genes between these diseases and OA, offering a novel approach for the simultaneous treatment of multiple conditions.

19.
Front Genet ; 15: 1471185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301530

RESUMEN

[This corrects the article DOI: 10.3389/fgene.2022.1081175.].

20.
Front Genet ; 15: 1359591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301532

RESUMEN

Genome-wide association studies (GWAS) have emerged as popular tools for identifying genetic variants that are associated with complex diseases. Standard analysis of a GWAS involves assessing the association between each variant and a disease. However, this approach suffers from limited reproducibility and difficulties in detecting multi-variant and pleiotropic effects. Although joint analysis of multiple phenotypes for GWAS can identify and interpret pleiotropic loci which are essential to understand pleiotropy in diseases and complex traits, most of the multiple phenotype association tests are designed for a single variant, resulting in much lower power, especially when their effect sizes are small and only their cumulative effect is associated with multiple phenotypes. To overcome these limitations, set-based multiple phenotype association tests have been developed to enhance statistical power and facilitate the identification and interpretation of pleiotropic regions. In this research, we propose a new method, named Meta-TOW-S, which conducts joint association tests between multiple phenotypes and a set of variants (such as variants in a gene) utilizing GWAS summary statistics from different cohorts. Our approach applies the set-based method that Tests for the effect of an Optimal Weighted combination of variants in a gene (TOW) and accounts for sample size differences across GWAS cohorts by employing the Cauchy combination method. Meta-TOW-S combines the advantages of set-based tests and multi-phenotype association tests, exhibiting computational efficiency and enabling analysis across multiple phenotypes while accommodating overlapping samples from different GWAS cohorts. To assess the performance of Meta-TOW-S, we develop a phenotype simulator package that encompasses a comprehensive simulation scheme capable of modeling multiple phenotypes and multiple variants, including noise structures and diverse correlation patterns among phenotypes. Simulation studies validate that Meta-TOW-S maintains a desirable Type I error rate. Further simulation under different scenarios shows that Meta-TOW-S can improve power compared with other existing meta-analysis methods. When applied to four psychiatric disorders summary data, Meta-TOW-S detects a greater number of significant genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA