Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 10(8)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39194892

RESUMEN

Grapevine trunk diseases (GTDs) are currently limiting grapevine productivity in many vineyards worldwide. As no chemical treatments are registered to control GTDs, biocontrol agents are being tested against these diseases. Esquive® WP, based on the fungus Trichoderma atroviride I-1237 strain, is the first biocontrol product registered in France to control GTDs. In this study, we determine whether, following grapevine pruning wound treatments with Esquive® WP, changes occurred or not in the indigenous microbial communities that are colonizing grapevine wood. Over a 6-year period, Esquive® WP was applied annually to pruning wounds on three grapevine cultivars located in three different regions. Wood samples were collected at 2 and 10 months after the Esquive® WP treatments. Based on MiSeq high-throughput sequencing analyses, the results showed that specific microbial communities were linked to each 'region/cultivar' pairing. In certain cases, a significant modification of alpha diversity indexes and the relative abundance of some microbial taxa were observed between treated and non-treated grapevines 2 months after Esquive® WP treatment. However, these modifications disappeared over time, i.e., 10 months post-treatment. This result clearly showed that Esquive® WP pruning wood treatment did not induce significant changes in the grapevine wood's microbiome, even after 6 years of recurrent applications on the plants.

2.
Microorganisms ; 12(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38399754

RESUMEN

Grapevine trunk diseases (GTDs) attack the vine's wood, devastating vineyards worldwide. Chile is the world's fourth-largest wine exporter, and Cabernet Sauvignon is one of the most economically important red wine varieties. Botryosphaeria dieback is an important GTD, and Diplodia seriata is one of the main pathogenic species. Biocontrol studies of these pathogens are commonly carried out at different incubation times but at a single temperature. This study aimed to evaluate the biocontrol effect of Chilean PGPB and grapevine endophytic bacteria against D. seriata at different temperatures. We analyzed the biocontrol effect of Pseudomonas sp. GcR15a, Pseudomonas sp. AMCR2b and Rhodococcus sp. PU4, with three D. seriata isolates (PUCV 2120, PUCV 2142 and PUCV 2183) at 8, 22 and 35 °C. Two dual-culture antagonism methods (agar plug diffusion and double plate) were used to evaluate the in vitro effect, and an in vivo test was performed with Cabernet Sauvignon cuttings. In vitro, the greatest inhibitions were obtained using the agar plug diffusion method and at a temperature of 8 °C, where Rhodococcus sp. PU4 obtains a 65% control (average) and Pseudomonas sp. GcR15a a 57% average. At 22 °C, only strains of Pseudomonas sp. show control. At 35 °C, one Pseudomonas strain shows the highest control (38%), on average, similar to tebuconazole (33%), and then Rhodococcus sp. (30%). In vivo, a biocontrol effect is observed against two D. seriata isolates, while the PUCV 2142 proves to be more resistant to control. The biocontrol ability at low temperatures is promising for effective control in the field, where infections occur primarily in winter.

3.
Plants (Basel) ; 12(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375877

RESUMEN

The study of microbial communities associated with different plants of agronomic interest has allowed, in recent years, to answer a number of questions related to the role and influence of certain microbes in key aspects of their autoecology, such as improving the adaptability of the plant host to different abiotic or biotic stresses. In this study, we present the results of the characterization, through both high-throughput sequencing and classical microbiological methods, of the fungal microbial communities associated with grapevine plants in two vineyards of different ages and plant genotypes located in the same biogeographical unit. The study is configured as an approximation to the empirical demonstration of the concept of "microbial priming" by analyzing the alpha- and beta-diversity present in plants from two plots subjected to the same bioclimatic regime to detect differences in the structure and taxonomic composition of the populations. The results were compared with the inventories of fungal diversity obtained by culture-dependent methods to establish, where appropriate, correlations between both microbial communities. Metagenomic data showed a differential enrichment of the microbial communities in the two vineyards studied, including the populations of plant pathogens. This is tentatively explained due to factors such as the different time of exposure to microbial infection, different plant genotype, and different starting phytosanitary situation. Thus, results suggest that each plant genotype recruits differential fungal communities and presents different profiles of associated potential microbial antagonists or communities of pathogenic species.

4.
Plants (Basel) ; 12(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37375953

RESUMEN

Grape production worldwide is increasingly threatened by grapevine trunk diseases (GTDs). No grapevine cultivar is known to be entirely resistant to GTDs, but susceptibility varies greatly. To quantify these differences, four Hungarian grape germplasm collections containing 305 different cultivars were surveyed to determine the ratios of GTDs based on symptom expression and the proportion of plant loss within all GTD symptoms. The cultivars of monophyletic Vitis vinifera L. origin were amongst the most sensitive ones, and their sensitivity was significantly (p < 0.01) higher than that of the interspecific (hybrid) cultivars assessed, which are defined by the presence of Vitis species other than V. vinifera (e.g., V. labrusca L., V. rupestris Scheele, and V. amurensis Rupr.) in their pedigree. We conclude that the ancestral diversity of grapes confers a higher degree of resilience against GTDs.

5.
J Fungi (Basel) ; 9(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108951

RESUMEN

Fomitiporia mediterranea (Fmed) is the primary Basidiomycota species causing white rot in European vineyards affected by the Esca complex of diseases (ECD). In the last few years, an increasing number of studies have highlighted the importance of reconsidering the role of Fmed in ECD etiology, justifying an increase in research interest related to Fmed's biomolecular pathogenetic mechanisms. In the context of the current re-evaluation of the binary distinction (brown vs. white rot) between biomolecular decay pathways induced by Basidiomycota species, our research aims to investigate the potential for non-enzymatic mechanisms adopted by Fmed, which is typically described as a white rot fungus. Our results demonstrate how, in liquid culture reproducing nutrient restriction conditions often found in wood, Fmed can produce low molecular weight compounds, the hallmark of the non-enzymatic "chelator-mediated Fenton" (CMF) reaction, originally described for brown rot fungi. CMF reactions can redox cycle with ferric iron, generating hydrogen peroxide and ferrous iron, necessary reactants leading to hydroxyl radical (•OH) production. These observations led to the conclusion that a non-enzymatic radical-generating CMF-like mechanism may be utilized by Fmed, potentially together with an enzymatic pool, to contribute to degrading wood constituents; moreover, indicating significant variability between strains.

6.
Plants (Basel) ; 11(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36501420

RESUMEN

Grapevine trunk diseases (GTDs), caused by fungal pathogens, are a serious threat to vineyards worldwide, causing significant yield and economic loss. To date, curative methods are not available for GTDs, and the relationship between the pathogen and symptom expression is poorly understood. Several plant pathologists, molecular biologists, and chemists have been investigating different aspects of the pathogenicity, biochemistry, and chemical ecology of the fungal species involved in GTDs. Many studies have been conducted to investigate virulence factors, including the chemical characterization of phytotoxic metabolites (PMs) that assist fungi in invading and colonizing crops such as grapevines. Moreover, multidisciplinary studies on their role in pathogenicity, symptom development, and plant-pathogen interactions have also been carried out. The aim of the present review is to provide an illustrative overview of the biological and chemical characterization of PMs produced by fungi involved in Eutypa dieback, Esca complex, and Botryosphaeria dieback. Moreover, multidisciplinary investigations on host-pathogen interactions, including those using cutting-edge Omics techniques, will also be reviewed and discussed. Finally, challenges and opportunities in the role of PMs for reliable field diagnosis and control of GTDs in vineyards will also be explored.

7.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499052

RESUMEN

Worldwide, Esca is a complex and devastating Grapevine Trunk Disease (GTD), characterized by inconstant foliar symptoms and internal wood degradation. A large range of fungal taxa have been reported as causal agents. We applied both culture-dependent and culture-independent methods (Illumina Technology and q-PCR) to investigate this concerning disease. Woods from vines with asymptomatic leaves and vines with leaf Esca symptoms were compared. Internally, different types of wood were found, from healthy wood with black necrosis to wood with white rot. A combination of leaf and wood Esca symptoms resulted in four experimental categories. Although there was no relation with symptoms, culture-independent mycobiome composition revealed Phaeomoniella chlamydospora, a GTD pathogen, as the most abundant species (detected in 85.4% of wood samples, with 14.8% relative abundance). Using TaqMan q-PCR, P. chlamydospora DNA was detected in 60.4% of samples (far from the 18.8% of positive results in the culture-dependent approach). There was a predominance of saprotrophs, even if their abundance was not affected by Esca symptoms. Concerning pathotrophs, the white rot development within grapevines was linked to the abundance of fungi belonging to the Hymenochaetaceae family. The Botryosphaeriaceae family was identified as an indicator for expression of Esca foliar symptoms. Lastly, the Aureobasidiaceae family was found to be a potential biocontrol agent for Esca, since it was most abundant in the control asymptomatic plants.


Asunto(s)
Basidiomycota , Micobioma , Vitis , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Madera/microbiología
8.
Pathogens ; 11(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36145437

RESUMEN

Vitis vinifera, known as the common grape vine, represents one of the most important fruit crops in the world. Romania is a wine-producing country with a rich and long tradition in viticulture. In the last decade, increasing reports of damage caused by grapevine trunk diseases (GTDs) have raised concerns in all wine producing countries. Up to now, no study was performed regarding the GTDs situation in Romania, an important grapevine grower in Europe. In this study, we aim, after a comprehensive presentation of the fungal GTDs worldwide, to review the scientific information related to these diseases in Romania in order to open a national platform in an international framework. In order to achieve this, we consulted over 500 references from different scientific databases and cited 309 of them. Our review concludes that, in Romania, there is little amount of available literature on this matter. Three out of six fungal GTDs are reported and well documented in all of the Romanian viticultural zones (except for viticultural zone 4). These are Eutypa dieback, Phomopsis dieback, and Esca disease. Of the fungal pathogens considered responsible Eutypa lata, Phomopsis viticola and Stereum hirsutum are the most studied and well documented in Romania. Management measures are quite limited, and they mostly include preventive measures to stop the GTDs spread and the removal of affected grapevines.

9.
J Fungi (Basel) ; 8(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35049987

RESUMEN

Grapevine trunk diseases (GTDs) are caused by cryptic complexes of fungal pathogens and have become a growing problem for new grapevine (Vitis vinifera) plantations. We studied the role of the nursery, variety, and rootstock in the composition of the fungal communities in root collars and graft unions of planting material in Catalonia (NE Spain). We compared necrosis and fungal communities in graft unions and root collars at harvest, and then after three months of cold storage. We evaluated combinations of eleven red and five white varieties with four common rootstocks coming from six nurseries. Fungal communities were characterized by isolation and metabarcoding of the ITS2 region. Our data suggests that nursery followed by rootstock and variety had significant effects on necrosis and fungal community structure in graft and root tissues. Within the plant, we found large differences in terms fungal community distribution between graft and root tissues. Graft unions housed a significantly higher relative abundance of GTD-related Operational Taxonomic Units (OTUs) than root collars. More severe necrosis was correlated with a lower relative abundance of GTD-related OTUs based on isolation and metabarcoding analyses. Our results suggest that nurseries and therefore their plant production practices play a major role in determining the fungal and GTD-related fungal community in grapevine plants sold for planting. GTD variation across rootstocks and varieties could be explored as a venue for minimizing pathogen load in young plantations.

10.
Front Fungal Biol ; 3: 1026516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746210

RESUMEN

Grapevine trunk diseases (GTDs) are one of the most important phytosanitary problems that affect grapevines (Vitis vinifera) worldwide. In Chile, Phaeomoniella chlamydospora is the major fungal trunk pathogen associated with GTDs. In the vineyards, the natural infections by P. chlamydospora are associated with air-borne conidia dispersed onto fresh pruning wounds from pycnidia. These pruning wounds are considered an important entrance for fungal trunk pathogens such as P. chlamydospora in the host in the field. However, the duration of the susceptibility of grapevine annual pruning wounds to P. chlamydospora is still unknown in Chile. Therefore, this study aimed to evaluate the period of susceptibility of pruning wounds of different ages to artificial infection of P. chlamydospora on grapevine cv. Cabernet Sauvignon, Central Chile. Artificial inoculations of a conidial suspension (105 conidia/mL) of P. chlamydospora were used to determine the susceptibility of pruning wounds of different ages, from 1, 15, 30, and 45 days after pruning. The experiments were conducted on lignified cuttings in a greenhouse, and on vine spurs in two vineyards (Buin and Nancagua, Central Chile) during two consecutive seasons. The results indicated that the pruning wounds of grapevine cv. Cabernet Sauvignon were very susceptible to infections by P. chlamydospora, with a percentage of pruning wounds infected from 97 to 71% for cuttings, and 96% to 60% for spurs, during the first 15 days after pruning. However, the susceptibility of pruning wounds of different ages in cuttings and spurs of grapevine, generally decreased as the time from pruning to inoculation increased. Moreover, the pruning wounds the pruning wounds remained susceptible to artificial inoculation by P. chlamydospora for up 45 days after pruning with percent of wounds infected from 8.0 to 12.2, and 8.3 to 18.8% on cuttings and spurs of grapevine, respectively. Finally, this study constitutes study constitutes the first research focalized on the susceptibility of pruning wounds of various ages of grapevine cv. Cabernet Sauvignon to artificial inoculations by P. chlamydospora in Central Chile.

11.
Nat Prod Res ; 36(17): 4322-4329, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34668831

RESUMEN

Didymella glomerata and Truncatella angustata associated with grapevine trunk diseases (GTDs) in Iran, were grown in vitro to evaluate the production of phytotoxic metabolites as potential pathogenicity determinants. 2,5-Dihydroxymethylfuran and (+)-6-hydroxyramulosin were isolated from the culture filtrates of D. glomerata and T. angustata, respectively. They were identified by physical and spectroscopic (essentially 1 D and 2 D 1H and 13C NMR and ESIMS) methods and X ray analysis. Both compounds induced significant necrosis and curling on the leaves of the host plant Vitis vinifera L. and the effects were concentration dependent. No effect was observed on the leaves of the non-host Solanum lycopersicum L.. plant.


Asunto(s)
Ascomicetos , Vitis , Ascomicetos/química , Irán , Enfermedades de las Plantas
12.
Plants (Basel) ; 10(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34451572

RESUMEN

In this work, the chemical composition of Rubia tinctorum root hydromethanolic extract was analyzed by GC-MS, and over 50 constituents were identified. The main phytochemicals were alizarin-related anthraquinones and flavoring phenol compounds. The antifungal activity of this extract, alone and in combination with chitosan oligomers (COS) or with stevioside, was evaluated against the pathogenic taxa Diplodia seriata, Dothiorella viticola and Neofusicoccum parvum, responsible for the so-called Botryosphaeria dieback of grapevine. In vitro mycelial growth inhibition tests showed remarkable activity for the pure extract, with EC50 and EC90 values as low as 66 and 88 µg·mL-1, respectively. Nonetheless, enhanced activity was attained upon the formation of conjugate complexes with COS or with stevioside, with synergy factors of up to 5.4 and 3.3, respectively, resulting in EC50 and EC90 values as low as 22 and 56 µg·mL-1, respectively. The conjugate with the best performance (COS-R. tinctorum extract) was then assayed ex situ on autoclaved grapevine wood against D. seriata, confirming its antifungal behavior on this plant material. Finally, the same conjugate was evaluated in greenhouse assays on grafted grapevine plants artificially inoculated with the three aforementioned fungal species, resulting in a significant reduction in the infection rate in all cases. This natural antifungal compound represents a promising alternative for developing sustainable control methods against grapevine trunk diseases.

13.
Nat Prod Res ; 35(23): 5192-5198, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32744072

RESUMEN

A strain of Kalmusia variispora associated with grapevine trunk diseases (GTDs) was identified in Iran and induced disease symptoms on the host in greenhouse conditions. The grapevine pathogens are able to produce a plethora of toxic metabolites belonging to different classes of naturally occurring compounds. Two homogeneous compounds were isolated from the organic extract of K. variispora culture filtrates. They were identified by physic (specific optical rotation), and spectroscopic (essentially 1D 1H and 13C NMR and HR ESIMS) methods as the fungal polyketides massarilactones D and H (1 and 2). The unassigned absolute configuration of massarilactone D was unambiguously determined by X-ray diffractometric analysis. Massarilactones D and H showed phytotoxic activity on Vitis vinifera L. at two concentrations used and depending from the days of inoculation. Phytotoxicity is also increased when the 3,4,7-O,O',O"-triacetyl derivative of massarilactone D (3) was assayed on the host plant. This is the first report on the investigation of phytotoxic metabolites produced by K. variispora isolated from infected grapevine in Iran and they seem to be involved in the development of disease symptoms.


Asunto(s)
Ascomicetos , Vitis , Irán , Enfermedades de las Plantas
14.
Epigenomics ; 8(6): 767-87, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27337502

RESUMEN

AIM: The resemblance between invasive behavior of cancer cells and placental trophoblasts and the role of aberrant epigenetic regulation in cancer development is well known. METHODS: We analyzed the role of promoter region CpG-methylation and H3K9/27me3 of tumor suppressor genes in normal and pathological pregnancies and utilized their CpG-methylation data to search for fetal DNA epigenetic marker in maternal blood. RESULTS: CpG and H3K9/27-methylation associated decreased expression of RASSF1A and APC and increased expression of P16, RB1 and PRKCDBP was observed with advancing normal gestation. Gestational trophoblastic diseases and preeclampsia revealed gene-specific epigenetic deregulation of candidate tumor suppressor genes. Furthermore, APC and PRKCDBP showed the potential to act as fetal DNA epigenetic markers, similar to RASSF1A. CONCLUSION: Deregulation of methylation of tumor suppressor genes contributes to the development of preeclampsia and gestational trophoblastic diseases. APC and PRKCDBP may act as fetal DNA epigenetic markers for prenatal diagnosis.


Asunto(s)
Epigénesis Genética , Genes Supresores de Tumor , Enfermedad Trofoblástica Gestacional/genética , Preeclampsia/genética , Regiones Promotoras Genéticas , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Adulto , Biomarcadores/sangre , Línea Celular , Islas de CpG , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Metilación de ADN , Femenino , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Placenta/metabolismo , Placenta/patología , Embarazo , Procesamiento Proteico-Postraduccional , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo , Transcriptoma , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA