Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114497, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39024100

RESUMEN

Ewing sarcoma is a cancer of bone and soft tissue in children and young adults primarily driven by the EWS-FLI1 fusion oncoprotein, which has been undruggable. Here, we report that Ewing sarcoma depends on secreted sphingomyelin phosphodiesterase 1 (SMPD1), a ceramide-generating enzyme, and ceramide. We find that G-protein-coupled receptor 64 (GPR64)/adhesion G-protein-coupled receptor G2 (ADGRG2) responds to ceramide and mediates critical growth signaling in Ewing sarcoma. We show that ceramide induces the cleavage of the C-terminal intracellular domain of GPR64, which translocates to the nucleus and restrains the protein levels of RIF1 in a manner dependent on SPOP, a substrate adaptor of the Cullin3-RING E3 ubiquitin ligase. We demonstrate that both SMPD1 and GPR64 are transcriptional targets of EWS-FLI1, indicating that SMPD1 and GPR64 are EWS-FLI1-induced cytokine-receptor dependencies. These results reveal the SMPD1-ceramide-GPR64 pathway, which drives Ewing sarcoma growth and is amenable to therapeutic intervention.


Asunto(s)
Ceramidas , Proteína Proto-Oncogénica c-fli-1 , Receptores Acoplados a Proteínas G , Sarcoma de Ewing , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Ceramidas/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Línea Celular Tumoral , Esfingomielina Fosfodiesterasa/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Animales , Proteína EWS de Unión a ARN/metabolismo , Proteína EWS de Unión a ARN/genética , Transducción de Señal , Dominios Proteicos , Ratones
2.
Mol Cancer ; 21(1): 199, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229873

RESUMEN

Chimeric fusion transcription factors are oncogenic hallmarks of several devastating cancer entities including pediatric sarcomas, such as Ewing sarcoma (EwS) and alveolar rhabdomyosarcoma (ARMS). Despite their exquisite specificity, these driver oncogenes have been considered largely undruggable due to their lack of enzymatic activity.Here, we show in the EwS model that - capitalizing on neomorphic DNA-binding preferences - the addiction to the respective fusion transcription factor EWSR1-FLI1 can be leveraged to express therapeutic genes.We genetically engineered a de novo enhancer-based, synthetic and highly potent expression cassette that can elicit EWSR1-FLI1-dependent expression of a therapeutic payload as evidenced by episomal and CRISPR-edited genomic reporter assays. Combining in silico screens and immunohistochemistry, we identified GPR64 as a highly specific cell surface antigen for targeted transduction strategies in EwS. Functional experiments demonstrated that anti-GPR64-pseudotyped lentivirus harboring our expression cassette can specifically transduce EwS cells to promote the expression of viral thymidine kinase sensitizing EwS for treatment to otherwise relatively non-toxic (Val)ganciclovir and leading to strong anti-tumorigenic, but no adverse effects in vivo. Further, we prove that similar vector designs can be applied in PAX3-FOXO1-driven ARMS, and to express immunomodulatory cytokines, such as IL-15 and XCL1, in tumor entities typically considered to be immunologically 'cold'.Collectively, these results generated in pediatric sarcomas indicate that exploiting, rather than suppressing, the neomorphic functions of chimeric transcription factors may open inroads to innovative and personalized therapies, and that our highly versatile approach may be translatable to other cancers addicted to oncogenic transcription factors with unique DNA-binding properties.


Asunto(s)
Sarcoma de Ewing , Sarcoma , Antígenos de Superficie/uso terapéutico , Línea Celular Tumoral , Niño , ADN , Ganciclovir/uso terapéutico , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/uso terapéutico , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Sarcoma/genética , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/terapia , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Timidina Quinasa/uso terapéutico
3.
Cancers (Basel) ; 14(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35159080

RESUMEN

Ewing sarcoma is an aggressive and the second most common bone tumor in adolescent and young adult patients. The 5-year survival rate is 60-70% for localized disease but 30% for patients with metastases. Here, we aimed to identify a therapeutic target for Ewing sarcoma and evaluate antibody-based therapeutic agents using in vitro and in vivo models. We identified G protein-coupled receptor 64 (GPR64) as a therapeutic target for Ewing sarcoma via next-generation RNA-sequencing. GPR64v205 mRNA was expressed in HTB166, A673, MG63, 143B, HS-Sy II, and HT1080 cell lines as well as in Ewing sarcoma, undifferentiated pleomorphic sarcoma, leiomyosarcoma, dedifferentiated liposarcoma, and synovial sarcoma tissues. GPR64 expression was observed in 62.5% of sarcoma cases and was overexpressed in 33.9% cases. GPR64-specific monoclonal antibodies were tested as near-infrared probes for in vivo imaging using subcutaneous tumor mouse xenografts. Fluorescence intensity was stronger for the AF700-labeled anti-GPR64 antibody than that for the AF700-labeled isotype control antibody. GPR64 was detected in engrafted tumors of A673, 143B, HT1080, and the epididymis but not in other resected tissues. The anti-GPR64 antibody showed excellent binding to GPR64-positive tumors but not to healthy tissues. This antibody has potential for drug delivery in the antibody-based treatment of sarcomas.

4.
Mol Metab ; 51: 101231, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33831593

RESUMEN

OBJECTIVE: GPR64/ADGRG2 is an orphan Adhesion G protein-coupled receptor (ADGR) known to be mainly expressed in the parathyroid gland and epididymis. This investigation aimed to delineate the cellular expression of GPR64 throughout the body with focus on the gastrointestinal (GI) tract. METHODS: Transgenic Gpr64mCherry reporter mice were histologically examined throughout the body and reporter protein expression in intestinal tuft cells was confirmed by specific cell ablation. The GPCR repertoire of intestinal Gpr64mCherry-positive tuft cells was analyzed by quantitative RT-PCR analysis and in situ hybridization. The Gpr64mCherry was crossed into the general tuft cell reporter Trpm5GFP to generate small intestinal organoids for time-lapse imaging. Intestinal tuft cells were isolated from small intestine, FACS-purified and transcriptionally compared using RNA-seq analysis. RESULTS: Expression of the Gpr64mCherry reporter was identified in multiple organs and specifically in olfactory microvillous cells, enteric nerves, and importantly in respiratory and GI tuft cells. In the small intestine, cell ablation targeting Gpr64-expressing epithelial cells eliminated tuft cells. Transcriptional analysis of small intestinal Gpr64mCherry -positive tuft cells confirmed expression of Gpr64 and the chemo-sensors Sucnr1, Gprc5c, Drd3, and Gpr41/Ffar3. Time-lapse studies of organoids from Trpm5GFP:Gpr64mCherry mice revealed sequential expression of initially Trpm5GFP and subsequently also Gpr64mCherry in maturing intestinal tuft cells. RNA-seq analysis of small intestinal tuft cells based on these two markers demonstrated a dynamic change in expression of transcription factors and GPCRs from young to mature tuft cells. CONCLUSIONS: GPR64 is expressed in chemosensory epithelial cells across a broad range of tissues; however, in the GI tract, GPR64 is remarkably selectively expressed in mature versus young immunoregulatory tuft cells.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Células Epiteliales/metabolismo , Intestino Delgado/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Femenino , Intestino Delgado/citología , Masculino , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/análisis , Receptores Acoplados a Proteínas G/genética
5.
BMC Cancer ; 19(1): 810, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31412816

RESUMEN

BACKGROUND: Endometrial cancer is the most common gynecological cancer. G-protein coupled receptor 64 (GPR64) belongs to a family of adhesion GPCRs and plays an important role in male fertility. However, the function of GPR64 has not been studied in endometrial cancer. Our objective is to investigate the role of GPR64 in endometrial cancer. METHODS: We examined the levels of GPR64 in human endometrioid endometrial carcinoma by immunohistochemistry analysis. To determine a tumor suppressor role of GPR64 in endometrial cancer, we used a siRNA loss of function approach in human endometrial adenocarcinoma cell lines. RESULTS: GPR64 levels were remarkably lower in 10 of 21 (47.62%) of endometrial carcinoma samples compared to control. Depletion of GPR64 by siRNA transfection revealed an increase of colony formation ability, cell proliferation, cell migration, and invasion activity in Ishikawa and HEC1A cells. The expression of Connexin 43 (Cx43), a member of the large family of gap junction proteins, was reduced through activation of AMP-activated protein kinase (AMPK) in Ishikawa cells with GPR64-deficicy. CONCLUSIONS: These results suggest that GPR64 plays an important tumor suppressor role in endometrial cancer.


Asunto(s)
Carcinoma Endometrioide/patología , Neoplasias Endometriales/patología , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Conexina 43/metabolismo , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Fosforilación , ARN Interferente Pequeño , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética
6.
Cell Signal ; 27(12): 2579-88, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26321231

RESUMEN

Adhesion G protein-coupled receptors (ADGRs) are believed to be activated by auto-proteolytic cleavage of their very large extracellular N-terminal domains normally acting as a negative regulator of the intrinsically constitutively active seven transmembrane domain. ADGRG2 (or GPR64) which originally was described to be expressed in the epididymis and studied for its potential role in male fertility, is highly up-regulated in a number of carcinomas, including breast cancer. Here, we demonstrate that ADGRG2 is a functional receptor, which in transfected HEK293 cells signals with constitutive activity through the adhesion- and migration-related transcription factors serum response element (SRE) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) presumably via coupling to Gα12/13 and Gαq. However, activation of these two pathways appears to occur through distinct molecular activation mechanisms as auto-proteolytic cleavage is essential for SRE activation but not required for NFκB signaling. The overall activation mechanism for ADGRG2 is clearly distinct from the established ADGR activation mechanism as it requires the large extracellular N-terminal domain for proper intracellular signal transduction. Knockdown of ADGRG2 by siRNA in the highly motile breast cancer cell lines Hs578T and MDA-MB-231 resulted in a strong reduction in cell adhesion and subsequent cell migration which was associated with a selective reduction in RelB, an NFκB family member. It is concluded that the adhesion GPCR ADGRG2 is critically involved in the adhesion and migration of certain breast cancer cells through mechanisms including a non-canonical NFkB pathway and that ADGRG2 could be a target for treatment of certain types of cancer.


Asunto(s)
Movimiento Celular , Proteínas de Unión al ADN/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Factor de Transcripción ReIB/metabolismo , Factores de Transcripción/metabolismo , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteolisis , Transducción de Señal
7.
Biochem Biophys Res Commun ; 464(3): 743-7, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26188515

RESUMEN

The epididymis-specific adhesion G protein-coupled receptor (aGPCR) GPR64/ADGRG2 has been shown to be a key-player in the male reproductive system. As its disruption leads to infertility, GPR64 has drawn attention as potential target for male fertility control or improvement. Like the majority of aGPCRs GPR64 is an orphan receptor regarding its endogenous agonist and signal transduction. In this study we examined the G protein-coupling abilities of GPR64 and showed that it is activated through a tethered agonist sequence, which we have previously identified as the Stachel sequence. Synthetic peptides derived from the Stachel region can activate the receptor, opening for the first time the possibility to externally manipulate the receptor activity.


Asunto(s)
Péptidos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Epidídimo/metabolismo , Fertilidad/fisiología , Masculino , Ratones , Datos de Secuencia Molecular , Oligopéptidos/genética , Oligopéptidos/metabolismo , Péptidos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA