Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Pharmacol Sci ; 156(2): 77-81, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179337

RESUMEN

Dopamine (DA) D2 receptors (D2Rs) have 2 isoforms, a long form (D2L) and a short form (D2S). D2L is predominantly postsynaptic in the striatal medium spiny neurons and cholinergic interneurons. D2S is principally presynaptic autoreceptors in the nigrostriatal DA neurons. Recently, we demonstrated that L-3,4-dihydroxyphenylalanine (L-DOPA) augments D2L function through the coupling between D2L and GPR143, a receptor of L-DOPA that was originally identified as the gene product of ocular albinism 1. Here we show that GPR143 modifies the functions of D2L and D2S in an opposite manner. Haloperidol-induced catalepsy was attenuated in DA neuron-specific Gpr143 gene-deficient (Dat-cre;Gpr143flox/y) mice, compared with wild-type (Wt) mice. Haloperidol increased in vivo DA release from the dorsolateral striatum, and this increase was augmented in Gpr143-/y mice compared with Wt mice. A D2R agonist quinpirole-induced increase in the phosphorylation of GSK3ß(pGSK3ß(S9)) was enhanced in Chinese hamster ovary (CHO) cells coexpressing D2L and GPR143 compared with cells expressing D2L alone, while it was suppressed in cells coexpressing D2S and GPR143 compared with D2S alone, suggesting that GPR143 differentially modifies D2R functions depending on its isoforms of D2L and D2S.


Asunto(s)
Cricetulus , Dopamina , Haloperidol , Receptores de Dopamina D2 , Animales , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Haloperidol/farmacología , Células CHO , Dopamina/metabolismo , Cuerpo Estriado/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Ratones , Levodopa/farmacología , Catalepsia/inducido químicamente , Catalepsia/genética , Catalepsia/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Quinpirol/farmacología , Neuronas Dopaminérgicas/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo
2.
J Pharmacol Sci ; 156(1): 45-48, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068034

RESUMEN

The gene product of ocular albinism 1 (OA1)/G-protein-coupled receptor (GPR)143 is a receptor for L-3,4-dihydroxyphenylanine (l-DOPA), the most effective agent for Parkinson's disease. When overexpressed, human wild-type GPR143, but not its mutants, inhibits neurite outgrowth in PC12 cells. We investigated the downstream signaling pathway for GPR143-induced inhibition of neurite outgrowth. Nifedipine restored GPR143-induced neurite outgrowth inhibition to the level of control transfectant but did not affect outgrowth in GPR143-knockdown cells. Cilnidipine and flunarizine also suppressed the GPR143-induced inhibition, but their effects at higher concentrations still occurred even in GPR143-knockdown cells. These results suggest that GPR143 regulates neurite outgrowth via L-type calcium channel(s).


Asunto(s)
Canales de Calcio Tipo L , Proyección Neuronal , Nifedipino , Receptores Acoplados a Proteínas G , Células PC12 , Animales , Ratas , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Nifedipino/farmacología , Proyección Neuronal/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiología , Humanos , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/farmacología , Flunarizina/farmacología , Transducción de Señal/efectos de los fármacos , Levodopa/farmacología , Técnicas de Silenciamiento del Gen , Neuritas/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Glicoproteínas de Membrana
3.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798688

RESUMEN

Mutations in the human Ocular albinism type-1 gene OA1 are associated with abnormal retinal pigment epithelium (RPE) melanogenesis and poor binocular vision resulting from misrouting of ipsilateral retinal ganglion cell (iRGC) axons to the brain. We studied the latter using wild-type (WT) and Oa1-/- mouse eyes. At embryonic stages, the WT RPE-specific Oa1 protein signals through cAMP/Epac1-Erk2-CREB. Following CREB phosphorylation, a pCREB gradient extends from the RPE to the differentiating retinal amacrine and RGCs. In contrast to WT, the Oa1-/- RPE and ventral ciliary-margin-zone, a niche for iRGCs, express less pCREB while their retinas have a disrupted pCREB gradient, indicating Oa1's involvement in pCREB maintenance. Oa1-/- retinas also show hyperproliferation, enlarged nuclei, reduced differentiation, and fewer newborn amacrine and RGCs than WT retinas. Our results demonstrate that Oa1's absence leads to reduced binocular vision through a hyperproliferation-associated block in differentiation that impairs neurogenesis. This may affect iRGC axon's routing to the brain.

4.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38286627

RESUMEN

Dopamine neurons play crucial roles in pleasure, reward, memory, learning, and fine motor skills and their dysfunction is associated with various neuropsychiatric diseases. Dopamine receptors are the main target of treatment for neurologic and psychiatric disorders. Antipsychotics that antagonize the dopamine D2 receptor (DRD2) are used to alleviate the symptoms of these disorders but may also sometimes cause disabling side effects such as parkinsonism (catalepsy in rodents). Here we show that GPR143, a G-protein-coupled receptor for L-3,4-dihydroxyphenylalanine (L-DOPA), expressed in striatal cholinergic interneurons enhances the DRD2-mediated side effects of haloperidol, an antipsychotic agent. Haloperidol-induced catalepsy was attenuated in male Gpr143 gene-deficient (Gpr143-/y ) mice compared with wild-type (Wt) mice. Reducing the endogenous release of L-DOPA and preventing interactions between GPR143 and DRD2 suppressed the haloperidol-induced catalepsy in Wt mice but not Gpr143-/y mice. The phenotypic defect in Gpr143-/y mice was mimicked in cholinergic interneuron-specific Gpr143-/y (Chat-cre;Gpr143flox/y ) mice. Administration of haloperidol increased the phosphorylation of ribosomal protein S6 at Ser240/244 in the dorsolateral striatum of Wt mice but not Chat-cre;Gpr143flox/y mice. In Chinese hamster ovary cells stably expressing DRD2, co-expression of GPR143 increased cell surface expression level of DRD2, and L-DOPA application further enhanced the DRD2 surface expression. Shorter pauses in cholinergic interneuron firing activity were observed after intrastriatal stimulation in striatal slice preparations from Chat-cre;Gpr143flox/y mice compared with those from Wt mice. Together, these findings provide evidence that GPR143 regulates DRD2 function in cholinergic interneurons and may be involved in parkinsonism induced by antipsychotic drugs.


Asunto(s)
Antipsicóticos , Trastornos Parkinsonianos , Receptores de Neurotransmisores , Humanos , Ratones , Masculino , Animales , Cricetinae , Haloperidol/farmacología , Levodopa/efectos adversos , Catalepsia/inducido químicamente , Células CHO , Cricetulus , Antipsicóticos/efectos adversos , Interneuronas/metabolismo , Colinérgicos/farmacología , Proteínas del Ojo/metabolismo , Glicoproteínas de Membrana/metabolismo
5.
Apoptosis ; 29(3-4): 372-392, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37945816

RESUMEN

BACKGROUND: Skin cutaneous melanoma (SKCM) is an aggressive and life-threatening skin cancer. G-protein coupled receptor 143 (GPR143) belongs to the superfamily of G protein-coupled receptors. METHODS: We used the TCGA, GTEx, CCLE, and the Human Protein Atlas databases to examine the mRNA and protein expression of GPR143. In addition, we performed a survival analysis and evaluated the diagnostic efficacy using the Receiver-Operating Characteristic (ROC) curve. Through CIBERSORT, R programming, TIMER, Gene Expression Profiling Interactive Analysis, Sangerbox, and Kaplan-Meier plotter database analyses, we explored the relationships between GPR143, immune infiltration, and gene marker expression of immune infiltrated cells. Furthermore, we investigated the proteins that potentially interact with GPR143 and their functions using R programming and databases including STRING, GeneMANIA, and GSEA. Meanwhile, the cBioPortal, UALCNA, and the MethSurv databases were used to examine the genomic alteration and methylation of GPR143 in SKCM. The Connectivity Map database was used to discover potentially effective therapeutic molecules against SKCM. Finally, we conducted cell experiments to investigate the potential role of GPR143 in SKCM. RESULTS: We demonstrated a significantly high expression level of GPR143 in SKCM compared with normal tissues. High GPR143 expression and hypomethylation status of GPR143 were associated with a poorer prognosis. ROC analysis showed that the diagnostic efficacy of the GPR143 was 0.900. Furthermore, GPR143 expression was significantly correlated with immune infiltration in SKCM. We identified 20 neighbor genes and the pathways they enriched were anabolic process of pigmentation, immune regulation, and so on. Genomic alteration analysis revealed significantly different copy number variations related to GPR143 expression in SKCM, and shallow deletion could lead to high expression of GPR143. Ten potential therapeutic drugs against SKCM were identified. GPR143 knockdown inhibited melanoma cell proliferation, migration, and colony formation while promoting apoptosis. CONCLUSIONS: Our findings suggest that GPR143 serves as a novel diagnostic and prognostic biomarker and is associated with the progression of SKCM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Variaciones en el Número de Copia de ADN , Apoptosis , Biología Computacional , Proteínas del Ojo , Glicoproteínas de Membrana
6.
Biol Pharm Bull ; 46(7): 869-873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37394637

RESUMEN

Adrenergic receptors (ADRs) are widely distributed in the peripheral and central nervous systems. We previously reported that L-3,4-dihydroxyphenylalanine (L-DOPA), the precursor of dopamine, sensitizes adrenergic α1 receptor (ADRA1) through a G protein-coupled receptor GPR143. Chimeric analysis, in which the transmembrane (TM) domains of GPR143 were replaced with those of GPR37, revealed that the second TM region was essential for the potentiation of phenylephrine-induced extracellular signal-regulated kinase (ERK) phosphorylation by GPR143. In HEK293T cells expressing ADRA1B, phenylephrine-induced ERK phosphorylation was augmented by the co-expression of GPR143, compared to the mock vector. Immunoprecipitation analysis revealed that a synthetic transactivator of the transcription peptide fused with TM2 of GPR143 (TAT-TM2) disrupts the interaction between GPR143 and ADRA1B. This TAT-TM2 peptide suppressed the augmentation of phenylephrine-induced ERK phosphorylation by GPR143 in HEK293T cells co-expressing ADRA1B and GPR143. These results indicate that the interaction between GPR143 and ADRA1B is required for the potentiation of ADRA1B-mediated signaling by GPR143. The TM2 region of GPR143 is a crucial dimeric interface for the functional coupling between ADRA1B and GPR143.


Asunto(s)
Adrenérgicos , Dihidroxifenilalanina , Glicoproteínas de Membrana , Receptores Adrenérgicos alfa 1 , Humanos , Quinasas MAP Reguladas por Señal Extracelular , Proteínas del Ojo , Células HEK293 , Glicoproteínas de Membrana/metabolismo , Fenilefrina/farmacología , Receptores Adrenérgicos alfa 1/metabolismo
7.
Adv Exp Med Biol ; 1415: 43-47, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440012

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the developed world. Caucasians are eightfold more likely to develop AMD than any other race, indicating a racial bias in AMD incidence which is unexplained. We hypothesize that pigmentation of the retinal pigment epithelium (RPE) and choroid protects from AMD and underlies this peculiar racial bias. We investigated GPR143, a receptor in the pigmentation pathway, which is activated by a melanin synthesis by-product, l-dopa. In this model, greater pigmentation leads to greater l-dopa production and, in turn, greater GPR143 signaling. GPR143 activity upregulates PEDF and downregulates both VEGF and exosomes; all of which reduce the angiogenic potential in the retina. Moreover, we demonstrate that GPR143 signaling enhances the digestion of shed photoreceptor outer segments. Together, our data suggests a central role for GPR143 signaling in RPE-photoreceptor interaction which is critical to healthy vision.


Asunto(s)
Levodopa , Degeneración Macular , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Coroides
8.
J Pharmacol Sci ; 152(3): 178-181, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257945

RESUMEN

Methylphenidate (MPH) and methamphetamine (METH) are the current treatments of choice for attention deficit/hyperactivity disorder. We previously reported that METH induces the release of dopamine (DA) and of the neurotransmitter candidate L-3,4-dihydroxyphenylalanine (L-DOPA). In contrast, we here found that MPH increased the DA release while it did not affect the L-DOPA release from the dorsolateral striatum. Nevertheless, MPH-induced hyperlocomotion was reduced in Gpr143 (L-DOPA receptor) gene-deficient (Gpr143-/y) mice. The rewarding effect and increased c-fos expression induced by MPH were also attenuated in Gpr143-/y mice. Together, these findings suggest that GPR143 is involved in the acute and chronic actions of MPH.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Metilfenidato , Ratones , Animales , Metilfenidato/farmacología , Levodopa/farmacología , Receptores de Neurotransmisores , Dopamina/metabolismo , Metanfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología
9.
Dev Cell ; 58(4): 320-334.e8, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36800996

RESUMEN

Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.


Asunto(s)
Exosomas , Neoplasias , Humanos , Animales , Ratones , Exosomas/metabolismo , Proteómica , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Transporte de Proteínas , Transporte Biológico , Cuerpos Multivesiculares/metabolismo , Neoplasias/metabolismo , Proteínas del Ojo/metabolismo , Glicoproteínas de Membrana/metabolismo
10.
J Neurochem ; 165(2): 177-195, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36807226

RESUMEN

Dopamine (DA) is involved in neurological and physiological functions such as motor control. L-3,4-dihydroxyphenylalanine (L-DOPA), a precursor of DA, is conventionally believed to be an inert amino acid precursor of DA, and its major therapeutic effects in Parkinson's disease (PD) are mediated through its conversion to DA. On the contrary, accumulating evidence suggests that L-DOPA itself is a neurotransmitter. We here show that L-DOPA potentiates DA D2 receptor (DRD2) signaling through GPR143, the gene product of X-linked ocular albinism 1, a G-protein-coupled receptor for L-DOPA. In Gpr143-gene-deficient (Gpr143-/y ) mice, quinpirole, a DRD2/DRD3 agonist, -induced hypolocomotion was attenuated compared to wild-type (WT) mice. Administration of non-effective dose of L-DOPA methyl ester augmented the quinpirole-induced hypolocomotion in WT mice but not in Gpr143-/y mice. In cells co-expressing GPR143 and DRD2, L-DOPA enhanced the interaction between GPR143 and DRD2 and augmented quinpirole-induced decrease in cAMP levels. This augmentation by L-DOPA was not observed in cells co-expressing GPR143 and DRD1 or DRD3. Chimeric analysis in which the domain of GPR143 was replaced with GPR37 revealed that GPR143 interacted with DRD2 at the fifth transmembrane domain. Intracerebroventricular administration of a peptide that disrupted the interaction mitigated quinpirole-induced behavioral changes in WT mice but not in Gpr143-/y mice. These findings provide evidence that coupling between GPR143 and DRD2 is required for selective DRD2 modulation by L-DOPA in the dorsal striatum.


Asunto(s)
Levodopa , Enfermedad de Parkinson , Receptores de Dopamina D2 , Animales , Ratones , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Levodopa/farmacología , Enfermedad de Parkinson/metabolismo , Quinpirol/farmacología , Quinpirol/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
11.
Front Genet ; 13: 977806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072665

RESUMEN

Idiopathic infantile nystagmus (IIN) is an inherited disorder occurring in the first 6 months of life, with no underlying retinal or neurological etiologies and is predominantly caused by mutations in the FRMD7 gene. IIN poses a diagnostic challenge as underlying pre-symptomatic "multisystem" disorders varying from benign to life-threatening should first be ruled out before nystagmus can be labeled as idiopathic. A multidisciplinary approach including multimodal ocular investigations and next-generation sequencing with whole-genome sequencing (WGS) or targeted gene panel testing is required to delineate the exact etiology. We report the clinical and genetic outcomes of 22 patients, from 22 unrelated families of diverse ethnicities, with IIN seen in the ocular genetics service at Moorfields Eye Hospital NHS Foundation Trust between 2016 and 2022. Thirty-six percent (8/22) received a confirmed molecular diagnosis with eight mutations identified in two genes (seven in FRMD7 including one novel variant c.706_707del; p. [Lys236Alafs*66], and one in GPR143). This study expands the mutational spectrum of IIN and highlights the significant role of an integrated care pathway and broader panel testing in excluding underlying pathologies.

12.
Prog Retin Eye Res ; 91: 101091, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35729001

RESUMEN

Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.


Asunto(s)
Albinismo , Melaninas , Humanos , Melaninas/genética , Melaninas/metabolismo , Mutación , Albinismo/genética , Retina/metabolismo , Pigmentación/genética
13.
Front Mol Biosci ; 9: 873777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495622

RESUMEN

GPCRs transform extracellular stimuli into a physiological response by activating an intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-coupled receptors (GPCRs) hold the potential to pave the way for development of new, innovative therapeutic strategies. In this review we will introduce G protein-coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within the GPCR superfamily and localization. GPR143 has not been assigned to any of the GPCR families due to the lack of common structural motifs. Hence we will describe the most important motifs of classes A and B and compare them to the protein sequence of GPR143. While a precise function for the receptor has yet to be determined, the protein is expressed abundantly in pigment producing cells. Many GPR143 mutations cause X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system development and function. In pigment cells of the skin, loss of functional GPR143 results in abnormally large melanosomes (organelles in which pigment is produced). Studies have shown that the receptor is localized internally, including at the melanosomal membrane, where it may function to regulate melanosome size and/or facilitate protein trafficking to the melanosome through the endolysosomal system. Numerous additional roles have been proposed for GPR143 in determining cancer predisposition, regulation of blood pressure, development of macular degeneration and signaling in the brain, which we will briefly describe as well as potential ligands that have been identified. Furthermore, GPR143 is a promiscuous receptor that has been shown to interact with multiple other melanosomal proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in many different physiological actions.

14.
Stem Cells ; 40(2): 215-226, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35257172

RESUMEN

Neurogenesis occurs in the hippocampus throughout life and is implicated in various physiological brain functions such as memory encoding and mood regulation. L-3,4-dihydroxyphenylalanine (L-DOPA) has long been believed to be an inert precursor of dopamine. Here, we show that L-DOPA and its receptor, GPR143, the gene product of ocular albinism 1, regulate neurogenesis in the dentate gyrus (DG) in a dopamine-independent manner. L-DOPA at concentrations far lower than that of dopamine promoted proliferation of neural stem and progenitor cells in wild-type mice under the inhibition of its conversion to dopamine; this effect was abolished in GPR143 gene-deficient (Gpr143-/y) mice. Hippocampal neurogenesis decreased during development and adulthood, and exacerbated depression-like behavior was observed in adult Gpr143-/y mice. Replenishment of GPR143 in the DG attenuated the impaired neurogenesis and depression-like behavior. Our findings suggest that L-DOPA through GPR143 modulates hippocampal neurogenesis, thereby playing a role in mood regulation in the hippocampus.


Asunto(s)
Dopamina , Levodopa , Animales , Hipocampo/metabolismo , Levodopa/farmacología , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
15.
Ophthalmology ; 129(6): 708-718, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35157951

RESUMEN

PURPOSE: To characterize the genotypic and phenotypic spectrum of foveal hypoplasia (FH). DESIGN: Multicenter, observational study. PARTICIPANTS: A total of 907 patients with a confirmed molecular diagnosis of albinism, PAX6, SLC38A8, FRMD7, AHR, or achromatopsia from 12 centers in 9 countries (n = 523) or extracted from publicly available datasets from previously reported literature (n = 384). METHODS: Individuals with a confirmed molecular diagnosis and availability of foveal OCT scans were identified from 12 centers or from the literature between January 2011 and March 2021. A genetic diagnosis was confirmed by sequence analysis. Grading of FH was derived from OCT scans. MAIN OUTCOME MEASURES: Grade of FH, presence or absence of photoreceptor specialization (PRS+ vs. PRS-), molecular diagnosis, and visual acuity (VA). RESULTS: The most common genetic etiology for typical FH in our cohort was albinism (67.5%), followed by PAX6 (21.8%), SLC38A8 (6.8%), and FRMD7 (3.5%) variants. AHR variants were rare (0.4%). Atypical FH was seen in 67.4% of achromatopsia cases. Atypical FH in achromatopsia had significantly worse VA than typical FH (P < 0.0001). There was a significant difference in the spectrum of FH grades based on the molecular diagnosis (chi-square = 60.4, P < 0.0001). All SLC38A8 cases were PRS- (P = 0.003), whereas all FRMD7 cases were PRS+ (P < 0.0001). Analysis of albinism subtypes revealed a significant difference in the grade of FH (chi-square = 31.4, P < 0.0001) and VA (P = 0.0003) between oculocutaneous albinism (OCA) compared with ocular albinism (OA) and Hermansky-Pudlak syndrome (HPS). Ocular albinism and HPS demonstrated higher grades of FH and worse VA than OCA. There was a significant difference (P < 0.0001) in VA between FRMD7 variants compared with other diagnoses associated with FH. CONCLUSIONS: We characterized the phenotypic and genotypic spectrum of FH. Atypical FH is associated with a worse prognosis than all other forms of FH. In typical FH, our data suggest that arrested retinal development occurs earlier in SLC38A8, OA, HPS, and AHR variants and later in FRMD7 variants. The defined time period of foveal developmental arrest for OCA and PAX6 variants seems to demonstrate more variability. Our findings provide mechanistic insight into disorders associated with FH and have significant prognostic and diagnostic value.


Asunto(s)
Albinismo Ocular , Albinismo Oculocutáneo , Albinismo , Defectos de la Visión Cromática , Albinismo Ocular/diagnóstico , Albinismo Ocular/genética , Albinismo Oculocutáneo/diagnóstico , Albinismo Oculocutáneo/genética , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/genética , Proteínas del Citoesqueleto , Fóvea Central/anomalías , Humanos , Proteínas de la Membrana , Trastornos de la Visión/diagnóstico
16.
J Pharmacol Sci ; 148(2): 214-220, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35063136

RESUMEN

Pulmonary hypertension (PH) is a severe and progressive disease that causes elevated right ventricular systolic pressure, right ventricular hypertrophy and ultimately right heart failure. However, the underlying pathophysiologic mechanisms are poorly understood. We previously showed that 3,4-l-dihydroxylphenyalanine (DOPA) sensitizes vasomotor response to sympathetic tone via coupling between the adrenergic receptor alpha1 (ADRA1) and a G protein-coupled receptor 143 (GPR143), a DOPA receptor. We investigated whether DOPA similarly enhances ADRA1-mediated contraction in pulmonary arteries isolated from rats, and whether GPR143 is involved in the PH pathogenesis. Pretreating the isolated pulmonary arteries with DOPA 1 µM enhanced vasoconstriction in response to phenylephrine, an ADRA1 agonist, but not to U-46619, a thromboxane A2 agonist or endothelin-1. We generated Gpr143 gene-deficient (Gpr143-/y) rats, and confirmed that DOPA did not augment phenylephrine-induced contractile response in Gpr143-/y rat pulmonary arteries. We utilized a rat model of monocrotaline (MCT)-induced PH. In the MCT model, the right ventricular systolic pressure was attenuated in the Gpr143-/y rats than in WT rats. Phenylephrine-induced cell migration and proliferation were also suppressed in Gpr143-/y pulmonary artery smooth muscle cells than in WT cells. Our result suggests that GPR143 is involved in the PH pathogenesis in the rat models of PH.


Asunto(s)
Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/genética , Monocrotalina/efectos adversos , Receptores Acoplados a Proteínas G/fisiología , Receptores de Neurotransmisores/genética , Sístole , Función Ventricular Derecha/genética , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Animales , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/etiología , Hipertrofia Ventricular Derecha/etiología , Técnicas In Vitro , Masculino , Arteria Pulmonar/fisiología , Ratas Sprague-Dawley , Receptores Adrenérgicos alfa 1/fisiología , Vasoconstricción/efectos de los fármacos , Vasoconstricción/genética , Disfunción Ventricular Derecha/etiología
17.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361094

RESUMEN

Protein-protein interactions between G protein-coupled receptors (GPCRs) can augment their functionality and increase the repertoire of signaling pathways they regulate. New therapeutics designed to modulate such interactions may allow for targeting of a specific GPCR activity, thus reducing potential for side effects. Dopamine receptor (DR) heteromers are promising candidates for targeted therapy of neurological conditions such as Parkinson's disease since current treatments can have severe side effects. To facilitate development of such therapies, it is necessary to identify the various DR binding partners. We report here a new interaction partner for DRD2 and DRD3, the orphan receptor G protein-coupled receptor 143 (GPR143), an atypical GPCR that plays multiple roles in pigment cells and is expressed in several regions of the brain. We previously demonstrated that the DRD2/ DRD3 antagonist pimozide also modulates GPR143 activity. Using confocal microscopy and two FRET methods, we observed that the DRs and GPR143 colocalize and interact at intracellular membranes. Furthermore, co-expression of wildtype GPR143 resulted in a 57% and 67% decrease in DRD2 and DRD3 activity, respectively, as determined by ß-Arrestin recruitment assay. GPR143-DR dimerization may negatively modulate DR activity by changing affinity for dopamine or delaying delivery of the DRs to the plasma membrane.


Asunto(s)
Dopamina/metabolismo , Proteínas del Ojo/metabolismo , Glicoproteínas de Membrana/metabolismo , Dominios y Motivos de Interacción de Proteínas , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , beta-Arrestinas/metabolismo , Proteínas del Ojo/genética , Humanos , Glicoproteínas de Membrana/genética , Mutación , Unión Proteica , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética , Transducción de Señal
18.
Ophthalmic Genet ; 42(6): 717-724, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34346269

RESUMEN

PURPOSE: Ocular albinism type I (OA1) is caused by mutations in the GPR143 gene. The purpose of this study was to describe the clinical and genetic findings in 13 patients from 12 unrelated Chinese pedigrees with a pathogenic variant of the GPR143 gene. METHODS: Most patients underwent clinical examination, including best-corrected visual acuity (BCVA), slit-lamp biomicroscopy, fundus examination, spectral domain optical coherence tomography, and full-field electroretinograms (ERG). A combination of molecular screening procedures, consisting of Sanger-DNA sequencing of GPR143 and targeted next-generation sequencing, was performed to identify each mutation. In silico programs were utilized to evaluate the pathogenicity of all the variants. RESULTS: The 13 patients (mean age 21.75 ± 16.63 years, range 1-54 years) all presented with congenital nystagmus, different extents of visual impairment, and severe foveal hypoplasia. Their BCVA was between 0.05 and 0.3 (decimal notation). The patients and obligate carriers exhibited different extents of mild depigmentation of the iris and fundus. We detected 11 distinct mutations in this patient cohort, including 7 novel mutations. Most (82%) were null mutations and included frameshift indel, nonsense, splicing effect, and large genomic DNA deletions, while missense mutations only accounted for 18%. CONCLUSIONS: Patients with GPR143 mutations all have congenital nystagmus, visual impairment, and foveal hypoplasia, whereas hypopigmentation in their iris and fundus is mild. They exhibit no evident genotype-phenotype correlations. GPR143 mutation screening is very important for establishing a precise diagnosis and for providing genetic counseling for patients and their families.


Asunto(s)
Albinismo Ocular/genética , Pueblo Asiatico/genética , Proteínas del Ojo/genética , Glicoproteínas de Membrana/genética , Mutación/genética , Adolescente , Adulto , Albinismo Ocular/diagnóstico , Albinismo Ocular/fisiopatología , Albinismo Oculocutáneo , Niño , Preescolar , China/epidemiología , Estudios Transversales , Electrorretinografía , Femenino , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Nistagmo Congénito/diagnóstico , Nistagmo Congénito/genética , Nistagmo Congénito/fisiopatología , Linaje , Retina/fisiología , Estudios Retrospectivos , Microscopía con Lámpara de Hendidura , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología
19.
Front Cell Dev Biol ; 9: 627295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732697

RESUMEN

Purpose: Congenital nystagmus (CN) is a genetically and clinically heterogeneous ocular disorder that manifests as involuntary, periodic oscillations of the eyes. To date, only FRMD7 and GPR143 have been reported to be responsible for causing CN. Here, we aimed to identify the disease-causing mutations and describe the clinical features in the affected members in our study. Methods: All the subjects underwent a detailed ophthalmic examination. Direct sequencing of all coding exons and splice site regions in FRMD7 and GPR143 and a mutation assessment were performed in each patient. Results: We found 14 mutations in 14/37 (37.8%) probands, including nine mutations in the FRMD7 gene and five mutations in the GPR143 gene, seven of which are novel, including c.284G>A(R95K), c.964C>T(P322S), c.284+10T>G, c.901T>C (Y301H), and c.2014_2023delTCACCCATGG(S672Pfs*12) in FRMD7, and c.250+1G>C, and c.485G>A (W162*) in GPR143. The mutation detection rate was 87.5% (7/8) of familial vs. 24.1% (7/29) of sporadic cases. Ten mutations in 24 (41.7%) non-syndromic subjects and 4 mutations in 13(30.8%) syndromic subjects were detected. A total of 77.8% (7/9) of mutations in FRMD7 were concentrated within the FERM and FA domains, while all mutations in GPR143 were located in exons 1, 2, 4 and 6. We observed that visual acuity tended to be worse in the GPR143 group than in the FRMD7 group, and no obvious difference in other clinical manifestations was found through comparisons in different groups of patients. Conclusions: This study identified 14 mutations (seven novel and seven known) in eight familial and 29 sporadic patients with congenital nystagmus, expanding the mutational spectrum and validating FRMD7 and GPR143 as mutation hotspots. These findings also revealed a significant difference in the screening rate between different groups of participants, providing new insights for the strategy of genetic screening and early clinical diagnosis of CN.

20.
BMC Ophthalmol ; 21(1): 156, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785018

RESUMEN

BACKGROUND: Pathogenic variants of G-protein coupled receptor 143 (GPR143) gene often leads to ocular albinism type I (OA1) characterized by nystagmus, iris and fundus hypopigmentation, and foveal hypoplasia. In this study, we identified a novel hemizygous nonsense mutation in GPR143 that caused an atypical manifestation of OA1. CASE PRESENTATION: We reported a large Chinese family in which all affected individuals are afflicted with poor visual acuity and foveal hypoplasia without signs of nystagmus. Fundus examination of patients showed an absent foveal reflex and mild hypopigmentation. The fourth grade of foveal hypoplasia and the reduced area of blocked fluorescence at foveal region was detected in OCT. OCTA imaging showed the absence of foveal avascular zone. In addition, the amplitude of multifocal ERG was reduced in the central ring. Gene sequencing results revealed a novel hemizygous mutation (c.939G > A) in GPR143 gene, which triggered p.W313X. However, no iris depigmentation and nystagmus were observed among both patients and carriers. CONCLUSIONS: In this study, we reported a novel nonsense mutation of GPR143 in a large family with poor visual acuity and isolated foveal hypoplasia without nystagmus, which further expanded the genetic mutation spectrum of GPR143.


Asunto(s)
Proteínas del Ojo , Glicoproteínas de Membrana , China , Proteínas del Ojo/genética , Humanos , Glicoproteínas de Membrana/genética , Mutación , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA