Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1018365

RESUMEN

Objective To investigate whether Liuwei Dihuang Pills enhances the antigen cross-presenting ability of dendritic cell(DC)by increasing gap junctional intercellular communication(GJIC),and to explore the mechanisms involved.Methods Western Blot and immunofluorescence were used to observe the effects of Liuwei Dihuang Pills-containing serum on the expression and membrane localisation of gap junction protein connexin43(Cx43)in mouse melanoma cells(B16);Calcein-AM/DiI fluorescence tracer assay was used to observe the effects of Liuwei Dihuang Pills-containing serum on the function of GJIC in B16 cells;flow cytometry was used to observe the role of GJIC in the enhancement of DC antigen presenting ability by Liuwei Dihuang Pills-containing serum;and propidium iodide(PI)/Hoechst staining assay was used to observe the immunocidal effect of CD8+ T-lymphocytes.Results Western Blot and immunofluorescence experiments showed that Liuwei Dihuang Pills-containing serum led to the up-regulation of Cx43 expression;fluorescence tracer experiments proved that the GJIC function of B16 cells was significantly enhanced by Liuwei Dihuang Pills-containing serum;flow cytometry analyses showed that the DC antigen-presenting ability was enhanced by Liuwei Dihuang Pills-containing serum;and the results of PI/Hoechst staining showed that the immuno-killing effect of CD8+T-cells was more significant after the intervention of Liuwei Dihuang Pills-containing serum in B16-OVA.Conclusion Liuwei Dihuang Pills improve the GJIC function by up-regulating the Cx43 expression of melanoma cells,and then enhance the cross-presenting ability of DCs thus activating stronger CD8+ T-cell immunocidal responses.

2.
Front Cell Infect Microbiol ; 13: 1138232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260709

RESUMEN

Human papillomaviruses (HPVs) are highly prevalent commensal viruses that require epithelial stratification to complete their replicative cycle. While HPV infections are most often asymptomatic, certain HPV types can cause lesions, that are usually benign. In rare cases, these infections may progress to non-replicative viral cycles associated with high HPV oncogene expression promoting cell transformation, and eventually cancer when not cleared by host responses. While the consequences of HPV-induced transformation on keratinocytes have been extensively explored, the impact of viral replication on epithelial homeostasis remains largely unexplored. Gap junction intercellular communication (GJIC) is critical for stratified epithelium integrity and function. This process is ensured by a family of proteins named connexins (Cxs), including 8 isoforms that are expressed in stratified squamous epithelia. GJIC was reported to be impaired in HPV-transformed cells, which was attributed to the decreased expression of the Cx43 isoform. However, it remains unknown whether and how HPV replication might impact on the expression of Cx isoforms and GJIC in stratified squamous epithelia. To address this question, we have used 3D-epithelial cell cultures (3D-EpCs), the only model supporting the productive HPV life cycle. We report a transcriptional downregulation of most epithelial Cx isoforms except Cx45 in HPV-replicating epithelia. At the protein level, HPV replication results in a reduction of Cx43 expression while that of Cx45 increases and displays a topological shift toward the cell membrane. To quantify GJIC, we pioneered quantitative gap-fluorescence loss in photobleaching (FLIP) assay in 3D-EpCs, which allowed us to show that the reprogramming of Cx landscape in response to HPV replication translates into accelerated GJIC in living epithelia. Supporting the pathophysiological relevance of our observations, the HPV-associated Cx43 and Cx45 expression pattern was confirmed in human cervical biopsies harboring HPV. In conclusion, the reprogramming of Cx expression and distribution in HPV-replicating epithelia fosters accelerated GJIC, which may participate in epithelial homeostasis and host immunosurveillance.


Asunto(s)
Carcinoma de Células Escamosas , Infecciones por Papillomavirus , Humanos , Conexinas/genética , Conexinas/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Virus del Papiloma Humano , Uniones Comunicantes/metabolismo , Epitelio , Comunicación Celular/fisiología , Transformación Celular Neoplásica
3.
Biomed Pharmacother ; 159: 114296, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36701988

RESUMEN

Ovarian cancer persists to be the most lethal gynecological malignancy, demanding rigorous treatments involving radio-chemotherapy that trigger toxicity and consequently mortality among patients. An improved understanding of the disease progression may pioneer curative therapies. Mouse epithelial ovarian cancer cell lines, ID8 and ID8-VEGF (overexpressing VEGF) were intraperitoneally injected in C57BL/6 female mice to develop a Syngeneic Ovarian cancer mouse model. It was observed that ID8-VEGF cells were able to induce aggressive tumor growth in mice compared to ID8 cells. Furthermore, results of the current in vitro study comparing ID8 and ID8-VEGF demonstrated that highly tumorigenic ID8-VEGF had reduced gap junctional intercellular communication (GJIC) due to intracellular Connexin 43 (Cx43) expression. Additionally, ID8 cells with reduced tumorigenic capability expressed significant GJIC. Furthermore, loss of GJIC in ID8-VEGF cells induced shorter tunneling nanotube formations, while ID8 cells develops longer tunneling nanotube to maintain cellular crosstalk. The administration of a pharmacological drug 4-phenylbutyrate (4PBA) ensured the restoration of GJIC in both the ovarian cancer cell lines. Additionally, 4PBA treatment significantly inhibited the migration of ovarian cancer cell lines and tumor formation in ovarian cancer mice models. In summary, the 4PBA-mediated restoration of GJIC suppressed migration (in vitro) and tumorigenesis (in vivo) of ovarian cancer cells. The present study suggests that Cx43 assembled GJIC and its supportive signaling pathways are a prospective target for restricting ovarian cancer progression.


Asunto(s)
Conexina 43 , Neoplasias Ováricas , Humanos , Femenino , Ratones , Animales , Conexina 43/metabolismo , Factor A de Crecimiento Endotelial Vascular , Ratones Endogámicos C57BL , Comunicación Celular/fisiología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Movimiento Celular/fisiología , Carcinogénesis
4.
J Biol Chem ; 299(2): 102836, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36572185

RESUMEN

Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine ß-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (delayed brain tumor) upon MHV-A59 infection. Critically, delayed brain tumor cells transfected to express exogenous ERp29 were less susceptible to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where ß-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.


Asunto(s)
Susceptibilidad a Enfermedades , Retículo Endoplásmico , Interacciones Microbiota-Huesped , Chaperonas Moleculares , Virus de la Hepatitis Murina , Animales , Ratones , Astrocitoma/patología , Astrocitoma/virología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/virología , Comunicación Celular , Línea Celular Tumoral , Conexina 43/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Uniones Comunicantes/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Virus de la Hepatitis Murina/metabolismo , Transporte de Proteínas , Transfección
5.
J Cell Commun Signal ; 16(3): 361-376, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35781670

RESUMEN

Connexins (Cx) are primary components of gap junctions that selectively allow molecules to be exchanged between adjacent cells, regulating multiple cellular functions. Along with their channel forming functions, connexins play a variety of roles in different stages of tumorigenesis and their roles in tumor initiation and progression is isoform- and tissue-specific. While Cx26 and Cx43 were downregulated during breast tumorigenesis, Cx32 was accumulated in the cytoplasm of the cells in lymph node metastasis of breast cancers and Cx32 was further upregulated in metastasis. Cx32's effect on cell proliferation, gap junctional communication, hemichannel activity, cellular motility and epithelial-to-mesenchymal transition (EMT) were investigated by overexpressing Cx32 in Hs578T and MCF7 breast cancer cells. Additionally, the expression and localization of Cx26 and Cx43 upon Cx32 overexpression were examined by Western blot and immunostaining experiments, respectively. We observed that MCF7 cells had endogenous Cx32 while Hs578T cells did not and when Cx32 was overexpressed in these cells, it caused a significant increase in the percentages of Hs578T cells at the S phase in addition to increasing their proliferation. Further, while Cx32 overexpression did not induce hemichannel activity in either cell, it decreased gap junctional communication between Hs578T cells. Additionally, Cx32 was mainly observed in the cytoplasm in both cells, where it did not form gap junction plaques but Cx32 overexpression reduced Cx43 levels without affecting Cx26. Moreover, migration and invasion potentials of Hs578T and migration in MCF7 were reduced upon Cx32 overexpression. Finally, the protein level of mesenchymal marker N-cadherin decreased while epithelial marker ZO-1 and E-cadherin increased in Hs578T cells. We observed that Cx32 overexpression altered cell proliferation, communication, migration and EMT in Hs578T, suggesting a tumor suppressor role in these cells while it had minor effects on MCF7 cells.

6.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35008913

RESUMEN

Although inherited GJA1 (encoding Cx43) gene mutations most often lead to oculodentodigital dysplasia and related disorders, four variants have been linked to erythrokeratodermia variabilis et progressiva (EKVP), a skin disorder characterized by erythematous and hyperkeratotic lesions. While two autosomal-dominant EKVP-linked GJA1 mutations have been shown to lead to augmented hemichannels, the consequence(s) of keratinocytes harboring a de novo P283L variant alone or in combination with a de novo T290N variant remain unknown. Interestingly, these variants reside within or adjacent to a carboxy terminus polypeptide motif that has been shown to be important in regulating the internalization and degradation of Cx43. Cx43-rich rat epidermal keratinocytes (REKs) or Cx43-ablated REKs engineered to express fluorescent protein-tagged P283L and/or T290N variants formed prototypical gap junctions at cell-cell interfaces similar to wildtype Cx43. Dye coupling and dye uptake studies further revealed that each variant or a combination of both variants formed functional gap junction channels, with no evidence of augmented hemichannel function or induction of cell death. Tracking the fate of EKVP-associated variants in the presence of the protein secretion blocker brefeldin A, or an inhibitor of protein synthesis cycloheximide, revealed that P283L or the combination of P283L and T290N variants either significantly extended Cx43 residency on the cell surface of keratinocytes or delayed its degradation. However, caution is needed in concluding that this modest change in the Cx43 life cycle is sufficient to cause EKVP, or whether an additional underlying mechanism or another unidentified gene mutation is contributing to the pathogenesis found in patients. This question will be resolved if further patients are identified where whole exome sequencing reveals a Cx43 P283L variant alone or, in combination with a T290N variant, co-segregates with EKVP across several family generations.


Asunto(s)
Conexina 43/química , Conexina 43/genética , Eritroqueratodermia Variable/genética , Mutación/genética , Animales , Colorantes , Retículo Endoplásmico/metabolismo , Uniones Comunicantes/metabolismo , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Proteolisis , Ratas
7.
Biochim Biophys Acta Mol Cell Res ; 1869(2): 119175, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34863793

RESUMEN

Connexin 43 (Cx43)-mediated gap junction intercellular communication (GJIC) plays a crucial role in the pathology and physiology of joint tissues. Transforming growth factor-ß2 (TGF-ß2), one of the potent regulatory factors in chondrocytes, plays a key role in the regulation of cell cycle and development of joint diseases. However, it is still unknown how TGF-ß2 mediates GJIC in chondrocytes. The aim of this study was to explore the potential mechanism by which TGF-ß2 regulates GJIC in chondrocytes. CCK-8 assays and scratch assays were performed to define the role of TGF-ß2 on cell proliferation and migration. The scrape loading/dye transfer assay and scanning electron microscopy (SEM) were used to verify the effect of TGF-ß2 on GJIC between chondrocytes. qPCR was performed to analyse the expression of genes in the gap junction protein family in chondrocytes. The expression of the Cx43 protein and phosphorylated Smad3 (p-Smad3) was evaluated by western blot assay. Immunofluorescence staining was used to explore p-Smad3 signalling pathway activation and Cx43 distribution. From these experiments, we found that the Cx43 protein was the most highly expressed member of the gap junction protein family in chondrocytes. We also found that TGF-ß2 facilitated cell-to-cell communication in chondrocytes by upregulating Cx43 expression in chondrocytes. Finally, we found that TGF-ß2 activated Smad3 signalling and promoted the nuclear aggregation of p-Smad3. Inhibition experiments by SIS3 also confirmed that TGF-ß2-mediated GJIC through p-Smad3 signalling. For the first time, this study confirmed that TGF-ß2 could regulate the formation of Cx43-mediated GJIC in chondrocytes via the canonical p-Smad3 signalling pathway.


Asunto(s)
Comunicación Celular , Condrocitos/metabolismo , Conexina 43/metabolismo , Uniones Comunicantes/fisiología , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Animales , Proliferación Celular , Condrocitos/citología , Condrocitos/efectos de los fármacos , Conexina 43/genética , Uniones Comunicantes/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal , Proteína smad3/genética
8.
Tissue Barriers ; 10(1): 1962698, 2022 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-34355641

RESUMEN

In spite of clinical advancements and improved diagnostic techniques, breast cancers are the leading cause of cancer-associated deaths in women worldwide. Although 70% of early breast cancers can be cured, there are no efficient therapies against metastatic breast cancers. Several factors including connexins and gap junctions play roles in breast tumorigenesis. Connexins are critical for cellular processes as a linkage between connexin mutations and hereditary disorders demonstrated their importance for tissue homeostasis. Further, alterations in their expression, localization and channel activities were observed in many cancers including breast cancer. Both channel-dependent and independent functions of connexins were reported in initiation and progression of cancers. Unlike initial reports suggesting tumor suppressor functions, connexins and gap junctions have stage, context and isoform dependent effects in breast cancers similar to other cancers. In this review, we tried to describe the current understanding of connexins in tumorigenesis specifically in breast cancers.


Asunto(s)
Neoplasias de la Mama , Conexinas , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Comunicación Celular , Conexinas/genética , Conexinas/metabolismo , Femenino , Uniones Comunicantes/genética , Uniones Comunicantes/metabolismo , Uniones Comunicantes/patología , Humanos , Transducción de Señal
9.
Mol Cell Biochem ; 476(7): 2623-2632, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33660186

RESUMEN

In many types of tumor cells, cell communication via gap junction is decreased or missing. Therefore, cancer cells acquire unique cytosolic environments that differ from those of normal cells. This study assessed the differences in microRNA (miRNA) expression between cancer and normal cells. MicroRNA microarray analysis revealed five miRNAs that were highly expressed in normal astrocytes compared with that in C6 gliomas. To determine whether these miRNAs could pass through gap junctions, connexin 43 was expressed in C6 glioma cells and co-cultured with normal astrocytes. The co-culture experiment showed the possibility that miR-152-3p and miR-143-3p propagate from normal astrocytes to C6 glioma in connexin 43-dependent and -independent manners, respectively. Moreover, we established C6 glioma cells that expressed miR-152-3p or miR-143-3p. Although the proliferation of these miRNA-expressing C6 glioma cells did not differ from that of empty vectors introduced in C6 glioma cells, cell migration and invasion were significantly decreased in C6 glioma cells expressing miR-152-3p or miR-143-3p. These results suggest the possibility that miRNA produced by normal cells attenuates tumor progression through connexin 43-dependent and -independent mechanisms.


Asunto(s)
Astrocitos/metabolismo , Conexina 43/metabolismo , Glioma/metabolismo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Animales , Línea Celular Tumoral , Conexina 43/genética , Glioma/genética , Células HEK293 , Humanos , Ratones , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Neoplásico/genética , Ratas
10.
Biomolecules ; 10(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003547

RESUMEN

 Gap junctions (GJs) are intercellular channels that connect adjacent cells electrically and metabolically. The iodide-yellow fluorescent protein (I-YFP) gap junctional intercellular communication (GJIC) assay is a recently developed method with high sensitivity. HeLa cells have been widely used as GJ-deficient cells for GJ-related research. Herein, we present evidence showing that HeLa cells have functional GJs comprising connexin (Cx) 45 using the I-YFP GJ assay and CRISPR/Cas9 system. We conducted the I-YFP GJIC assay in HeLa cells, which revealed a weak level of GJIC that could not be detected by the Lucifer yellow scrape-loading assay. The mRNA expression of GJB5 (Cx31.1), GJA1 (Cx43), and GJC1 (Cx45) was detected in HeLa cells by RT-PCR analysis. Knocking out GJC1 (Cx45) abolished GJIC, as analyzed by the I-YFP assay and dual whole-cell patch-clamp assay. These results suggest that HeLa cells express Cx45-based GJs and that the I-YFP GJIC assay can be used for cells with weak GJIC, such as Cx45-expressing HeLa cells. Further, GJC1 (Cx45)-knockout HeLa cells are more suitable as a GJ-null cell model for transfection experiments than wild-type HeLa cells. This experimental design was successfully applied to knock out Cx43 expression and GJIC in A549 lung cancer cells and can thus be used to identify major Cxs in other cell types and to establish GJ assay systems for different Cxs.


Asunto(s)
Comunicación Celular/genética , Conexina 43/genética , Conexinas/genética , Uniones Comunicantes/genética , Células A549 , Transporte Biológico/genética , Sistemas CRISPR-Cas/genética , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/patología
11.
Development ; 147(13)2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32541014

RESUMEN

The gap junction protein Connexin 43 (Cx43) contributes to cell fate decisions that determine the location of fin ray joints during regeneration. Here, we provide insights into how Cx43, expressed medially, influences changes in gene expression in lateral skeletal precursor cells. Using the Gap27 peptide inhibitor specific to Cx43, we show that Cx43-gap junctional intercellular communication (GJIC) influences Cx43-dependent skeletal phenotypes, including segment length. We also demonstrate that Cx43-GJIC influences the expression of the Smp/ß-catenin pathway in the lateral skeletal precursor cells, and does not influence the Sema3d pathway. Moreover, we show that the cx43lh10 allele, which has increased Cx43 protein levels, exhibits increased regenerate length and segment length. These phenotypes are rescued by Gap27, suggesting that increased Cx43 is responsible for the observed Cx43 phenotypes. Finally, our findings suggest that inhibition of Cx43 hemichannel activity does not influence Cx43-dependent skeletal phenotypes. These data provide evidence that Cx43-GJIC is responsible for regulating cell fate decisions associated with appropriate joint formation in the regenerating fin.


Asunto(s)
Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Aletas de Animales/metabolismo , Animales , Comunicación Celular/fisiología , Conexinas/metabolismo , Oligopéptidos/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
12.
Biol Trace Elem Res ; 193(1): 195-203, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30887282

RESUMEN

The gap junction protein plays an important role in the bone formation and alteration of these proteins leading to cause bone development. Aim to determine the effects of different concentration of fluoride on gap-junctional intercellular communication (GJIC) related genes and proteins in the rats' osteoblast cells. We treated the osteoblast cells with various concentrations (0, 0.01, 0.1, 0.5, and 1.0 mM) NaF for 24 and 72 h. We used the scrape loading and dye transfer technique to research the intracellular connectivity. Moreover, the mRNA expression levels of connexin 43 (Cx43), connexin45 (Cx45), collagen I, and osteocalcin (OCN) were analyzed by qRT-PCR, the protein expression levels of connexin43 (Cx43) were analyzed by western blotting and immunofluorescence. Our results suggested that the osteoblast proliferations were decreased in the 0.5 and 1 mM NaF groups, after 24 and 72 treatments. The scrape loading and dye transfer experiment showed that the GJIC were increased in the 0.01 mM NaF group and decreased in the 0.5 and 1 mM NaF groups. In addition, the mRNA expressions of Cx43, Cx45, and OCN, and the protein expressions of Cx43 were increased in the 0.01 mM NaF group and decreased in the 0.5 and 1 mM NaF groups. In summary, these results suggest that the low concentration NaF is good for the GJIC, but the high concentration NaF damages the GJIC.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Fluoruros/farmacología , Uniones Comunicantes/metabolismo , Osteoblastos/metabolismo , Animales , Células Cultivadas , Conexina 43/biosíntesis , Conexinas/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Osteocalcina/biosíntesis , Ratas
13.
Toxicol In Vitro ; 58: 224-229, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30946969

RESUMEN

Perfluorodecanoic acid (PFDA) is a synthetic perfluorinated compound, which has been reported to exert adverse effects on somatic cells. However, its effects on germ cells have not been studied to date. The aim of the present study was to analyze the effects of PFDA on the viability, intracellular calcium levels and gap junction intercellular communication (GJIC) during porcine oocyte maturation in vitro. PFDA negatively impacted oocyte viability (medium lethal concentration, LC50 = 7.8 µM) and maturation (medium inhibition of maturation, IM50 = 3.8 µM). Oocytes exposed to 3.8 µM PFDA showed higher levels of intracellular calcium relative to control oocytes. In addition, GJIC among the cumulus cells and the oocyte was disrupted. The effects of PFDA on oocyte calcium homeostasis and intercellular communication seem to be responsible for the inhibition of oocyte maturation and oocyte death. In addition, since the deleterious effects of PFDA on oocyte viability, maturation and GJIC are significantly stronger than the previously reported effects of another widely used perfluorinated compound (Perfluorooctane sulfonate) in the same model, the use of PFDA in consumer products is questioned.


Asunto(s)
Ácidos Decanoicos/toxicidad , Fluorocarburos/toxicidad , Oocitos/efectos de los fármacos , Animales , Calcio/metabolismo , Comunicación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células del Cúmulo/efectos de los fármacos , Células del Cúmulo/fisiología , Femenino , Uniones Comunicantes/efectos de los fármacos , Oocitos/fisiología , Porcinos
14.
Connect Tissue Res ; 60(5): 477-486, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30897973

RESUMEN

Purposes: Gap junction intercellular communication (GJIC) exhibits a key role in maintaining the homeostasis of articular cartilage. Connexin43 (Cx43) protein is predominant in the structures that form gap junctions. We aim to determine the potential underlying mechanisms of TGF-ß1 (Transforming growth factor-ß1)-regulated cell communication in chondrocytes. Materials and methods: After exposure of chondrocytes to recombinant TGF-ß1, quantitative real-time PCR was used to detect expression levels of Cx43 mRNA. Western blot analysis was used to check Cx43 and mitogen-activated protein kinase (MAPK) family components. Immunofluorescence staining was performed to confirm ERK-MAPK pathway activation and Cx43 protein distribution. MAPK inhibitors (ERK inhibitor U0126, JNK inhibitor SP 600125 and P38 inhibitor SP 203580) were applied to verify the specificity effects of ERK-MAPK pathway. GJIC between chondrocytes were evaluated using Scrape loading/dye transfer (SLDT) assay. Results: It was first found that TGF-ß1modulatedthe Cx43protein expressions and its sub-cellular distribution. TGF-ß1 promoted gap junction intercellular communication (GJIC) formations in chondrocytes, especially in a higher cell intensity. ERK-MAPK signaling pathway was activated in TGF-ß1-mediated gap junctions among chondrocytes. Furthermore, the inhibitor of ERK attenuated the increases of Cx43 expressions and functional gap junction formations induced by TGF-ß1, while cross-talk between ERK-MAPK and Smad signal pathways exists shown in the process. Conclusions: This study provides evidence to show the importance of the ERK-MAPK pathway in TGF-ß1-mediated Cx43 expression and functional gap junction formation.


Asunto(s)
Condrocitos/metabolismo , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Comunicación Celular , Proliferación Celular , Activación Enzimática , Ratones Endogámicos C57BL , Proteínas Smad/metabolismo
15.
J Biomol Tech ; 30(1): 1-6, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30723387

RESUMEN

This protocol was developed to assess communication in tumor cells and to provide a dependable and standardized assay for the in vitro determination of gap junction function. The method is noninvasive; in this method, the cell population under study is divided such that 1 fraction is loaded with a lipophilic cell plasma membrane permeable dye, calcein acetoxymethyl ester, that is hydrolyzed upon cellular uptake by cytoplasmic esterases to yield calcein, a fluorescent and membrane-impermeable molecule. The other fraction is loaded with 1,1'-dioctadecyl-3,3,3',3' tetramethylindodicarbocyanine perchlorate (DiD)/1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [Dil; DilC18(3)], which is a lipophilic membrane dye that diffuses laterally to stain the entire cell membrane, is impermeable, and attains an orange-red fluorescence upon incorporation into membranes. The 2 fractions are mixed and incubated under coculture conditions. Calcein with MW 890 kD is transferred to the DiD/DiI-stained cells through gap junctions. The assessment of this uptake is made with confocal imaging and quantitated using flow cytometry. Cell lines representing cancer of the breast as well as a nontransformed cell line developed from the buccal mucosa were analyzed for gap junction competency. Confocal imaging with acquisition at specific time points during the in vitro treatment and flow cytometry gave a qualitative and quantitative analysis of the passage of molecules through the gap junctions. Here, the method has been combined to obtain images as well as quantitation and is a simple and effective approach in assessing the functional competency of gap junction in epithelial cells.


Asunto(s)
Citometría de Flujo , Uniones Comunicantes/metabolismo , Microscopía Confocal , Cadherinas/metabolismo , Comunicación Celular/fisiología , Línea Celular , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/fisiología , Técnicas de Cocultivo , Conexinas/metabolismo , Células Epiteliales/enzimología , Fluoresceínas/análisis , Fluoresceínas/química , Colorantes Fluorescentes/análisis , Humanos , Factores de Tiempo
16.
Differentiation ; 105: 33-44, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30599359

RESUMEN

Gap junctional intercellular communication (GJIC) is important for maintaining the pluripotency of mouse embryonic stem cells (mESC). However, human ESC (hESC) have a high level of connexin (Cx) molecules with unknown function. In this study, we found that the major Cx molecule, Cx43, was highly expressed in undifferentiated hESC. It was down-regulated upon spontaneously differentiation by embryoid body formation and induced differentiation along ectoderm, mesoderm and extraembryonic lineages, but up-regulated along endoderm differentiation. The knockdown of Cx43 and GJIC had no effect on the maintenance of hESC, as demonstrated by no morphological changes and similar expression levels of pluripotent markers (OCT4, NANOG, SSEA-3 and SSEA-4) and early differentiation markers (KRT8 and KRT18). Meanwhile, Cx43 knock down had no effect on endodermal markers (SOX17, FOXA2 and CXCR4) expression when hESC were differentiating into definitive endoderm lineage. On the contrary, it led to lower levels of mesodermal markers (CD56, CD34 and PDGFR-α) when cells were undergoing mesoderm differentiation. When compared to control, Cx43 knockdown led to higher attachment rate, HCG secretion and cell invasion of the hESC derived trophoblastic cells. Cx43 knockdown also resulted in up-regulated expressions of placental hormone (ß-hCG) and implantation related genes (LIFR, CDH5, LEP, PGF, TGFBR2). Our study suggested that Cx43 and GJIC had no effect on the undifferentiated growth of hESC but affected specific lineage differentiation.


Asunto(s)
Diferenciación Celular , Conexina 43/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Comunicación Celular , Línea Celular , Linaje de la Célula , Células Cultivadas , Células Madre Embrionarias Humanas/citología , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trofoblastos/citología , Trofoblastos/efectos de los fármacos
17.
J Biomed Sci ; 26(1): 8, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642339

RESUMEN

Connexin, a four-pass transmembrane protein, contributes to assembly of gap junctions among neighboring cells and thus facilitates gap junctional intercellular communication (GJIC). Traditionally, the roles of connexins were thought to mediate formation of hemichannels and GJIC assembly for transportation of ions and small molecules. Many studies have observed loss of GJIC, due to reduced expression or altered cytoplasmic localization of connexins, in primary tumor cells. Connexins are generally considered tumor-suppressive. However, recent studies of clinical samples suggested a different role of connexins in that expression levels and membrane localization of connexins, including Connexin 43 (Cx43, GJA1) and Connexin 26 (Cx26, GJB2), were found to be enhanced in metastatic lesions of cancer patients. Cx43- and Cx26-mediated GJIC was found to promote cancer cell migration and adhesion to the pulmonary endothelium. Regulatory circuits involved in the induction of connexins and their functional effects have also been reported in various types of cancer. Connexins expressed in stromal cells were correlated with metastasis and were implicated in regulating metastatic behaviors of cancer cells. Recent studies have revealed that connexins can contribute to cellular phenotypes via multiple ways, namely 1) GJIC, 2) C-terminal tail-mediated signaling, and 3) cell-cell adhesion during gap junction formation. Both expression levels and the subcellular localization could participate determining the functional roles of connexins in cancer. Compounds targeting connexins were thus tested as potential therapeutics intervening metastasis or chemoresistance. This review focuses on the recent findings in the correlation between the expression of connexins and patients' prognosis, their roles in metastasis and chemoresistance, as well as the implications and concerns of using connexin-targeting drugs as anti-metastatic therapeutics. Overall, connexins may serve as biomarkers for cancer prognosis and as therapeutic targets for intervening metastasis and chemoresistance.


Asunto(s)
Antineoplásicos/farmacología , Conexinas/metabolismo , Resistencia a Antineoplásicos , Metástasis de la Neoplasia/tratamiento farmacológico , Humanos , Metástasis de la Neoplasia/diagnóstico , Pronóstico
18.
Environ Toxicol ; 34(1): 92-98, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30277307

RESUMEN

Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acid family of compounds. Due to the presence of strong carbon-fluorine bonds, it is practically nonbiodegradable and highly persistent in the environment. PFOA has been detected in the follicular fluid of women, and positively associated with reduced fecundability and infertility. However, there are no reports concerning the experimental evaluation of PFOA on oocyte toxicity in mammals. The aim of the present study was to determine if PFOA is able to induce oxidative stress in fetal ovaries and cause apoptosis in oocytes in vitro. In addition, since inhibition of the gap junction intercellular communication (GJIC) by PFOA has been demonstrated in liver cells in vivo and in vitro, the effect of PFOA on the GJIC between the oocyte and its supportive cumulus cells was studied. Results show that PFOA induced oocyte apoptosis and necrosis in vitro (medium lethal concentration, LC50 = 112.8 µM), as evaluated with Annexin-V-Alexa 508 in combination with BOBO-1 staining. Reactive oxygen species (ROS) levels, as assessed by DCFH-DA, increased significantly in fetal ovaries exposed to » LC50 (28.2 µM, a noncytotoxic and relevant occupational exposure concentration) and LC50 PFOA ex vivo. This perfluorinated compound also caused the blockage of GJIC in cumulus cells-oocyte complexes (COCs) obtained from female mice exposed in vivo, as evaluated by calcein transfer from cumulus cells to the oocyte. The ability of PFOA of disrupting the GJIC in COCs, generating ROS in the fetal ovary and causing apoptosis and necrosis in mammal's oocytes, might account for the reported association between increasing maternal plasma concentrations of PFOA with reduced fertility in women.


Asunto(s)
Apoptosis/efectos de los fármacos , Caprilatos/farmacología , Comunicación Celular/efectos de los fármacos , Fluorocarburos/farmacología , Uniones Comunicantes/efectos de los fármacos , Ovario/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Femenino , Fluoresceínas/metabolismo , Uniones Comunicantes/metabolismo , Ratones , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oocitos/fisiología , Ovario/fisiología
19.
Cell Prolif ; 52(2): e12544, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30444057

RESUMEN

OBJECTIVES: Connexin-mediated functional gap junction intercellular communication (GJIC) has a vital role in development, homeostasis and pathology. Transforming growth factor-ß1 (TGF-ß1), as one of the most vital factors in chondrocytes, promotes cartilage precursor cell differentiation and chondrocyte proliferation, migration and metabolism. However, how TGF-ß1 mediates GJIC in chondrocytes remains unclear. This study aims to determine the influence of TGF-ß1 on GJIC in mouse chondrocytes and its underlying mechanism. METHODS: qPCR and mRNA microarray were used to verify the expression of genes in the TGF-ß and connexin families in cartilage and chondrocytes. A scrape loading/dye transfer assay was performed to explore GJIC. Western blot analysis was used to detect connexin43 (Cx43) and Smad signalling components. Immunofluorescence staining was performed to characterize protein distribution. RESULTS: The TGF-ß1 mRNA was the highest expressed member of the TGFß super family in cartilage. TGF-ß1 promoted functional GJIC through increased expression of Cx43. TGF-ß1-mediated GJIC required the participation of TGF-ß type I receptor. TGF-ß1 activated Smad3 and Smad4 signalling to facilitate their nuclear translocation. The Smad3 and Smad4 signalling proteins bound to the promoter of Gja1 and thus initiated Cx43 gene expression. CONCLUSIONS: For the first time, these results revealed a vital role of TGF-ß1 in cell-cell communication in chondrocytes via gap junction formation. We describe the regulatory mechanism, the involvement of TGF-ß type I receptor and the nuclear translocation of Smad3/4.


Asunto(s)
Condrocitos/metabolismo , Uniones Comunicantes/metabolismo , Transducción de Señal , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Cultivadas , Condrocitos/ultraestructura , Uniones Comunicantes/ultraestructura , Ratones Endogámicos C57BL
20.
Biochim Biophys Acta Mol Cell Res ; 1865(10): 1423-1436, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30031898

RESUMEN

Chronic exposure to Arsenic pollution in ground water is one of the largest environmental health disasters in the world. The toxicity of trivalent Arsenicals primarily happens due to its interaction with sulfhydryl groups in proteins. Arsenic binding to the protein can change the conformation of the protein and alter its interactions with other proteins leading to tissue damage. Therefore, much importance has been given to the studies of Arsenic bound proteins, for the purpose of understanding the origins of toxicity and to explore therapeutics. Here we study the dynamic effect of Arsenic on Connexin 43 (Cx43), a protein that forms the gap junctions, whose alteration deeply perturbs the cell-to-cell communication vital for maintaining tissue homeostasis. In silico molecular modelling and in vitro studies comparing Arsenic treated and untreated conditions show distinct results. Gap junction communication is severely disrupted by Arsenic due to reduced availability of unaltered Cx43 in the membrane bound form. In silico and Inductively Coupled Plasma Mass Spectrometry studies revealed the interaction of Arsenic to the Cx43 preferably occurs through surface exposed cysteines, thereby capping the thiol groups that form disulfide bonds in the tertiary structure. This leads to disruption of Cx43 oligomerization, and altered Cx43 is incompetent for transportation to the membrane surface, often forming aggregates primarily localizing in the endoplasmic reticulum. Loss of functional Cx43 on the cell surface have a deleterious effect on cellular homeostasis leading to selective vulnerability to cell death and tissue damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA