Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Environ Sci Pollut Res Int ; 31(42): 54938-54949, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39215924

RESUMEN

Greenhouse gas (GHG) emissions, particularly anthropogenic emissions, are the primary drivers of climate change. The cultivation of microalgae represents a highly promising strategy for mitigating atmospheric GHG levels. The growth characteristics and GHG mitigation capabilities of Tetradesmus obliquus PF3 were investigated in domestic wastewater at a thermal power plant. The maximum cell density and productivity were 1.52 ± 0.01 g L-1 and 0.33 ± 0.01 g L-1 day-1, respectively. Utilizing a serial configuration of two reactors, the elimination efficiency of NO and CO2 attained values of 78 ± 4% and 14 ± 4%, respectively. NO concentration at the outlet was less than 24.6 ± 2.9 mg m-3, meeting the latest Chinese discharge limits. Besides, the recovery efficiency of NO and CO2 increased to 77 ± 8% and 2.24 ± 0.04%, respectively, compared to that of the single reactor (40 ± 3%, 0.9 ± 0.0%). A removal efficiency of over 90% was achieved for TN and TP in domestic wastewater. The concentrations of COD (76.5 mg L-1), NH4+-N (0.9 mg L-1), TN(6.31 mg L-1), and TP (0.35 mg L-1) in effluent were below the thresholds of 100 mg L-1, 25 mg L-1, none data, and 3 mg L-1, respectively, complying with the Chinese Discharge Standard (Class II criteria set forth) for Municipal Wastewater Treatment Plants Pollutants. The harvested biomass exhibited a high content of carbohydrates and proteins, making it a viable feedstock for biofuels and bio-fertilizers. Our results demonstrate that Tetradesmus obliquus PF3-based flue gas treatment technology can simultaneously realize GHG removal, wastewater bio-remediation, and biomass recovery.


Asunto(s)
Dióxido de Carbono , Microalgas , Aguas Residuales , Aguas Residuales/química , Óxido Nítrico , Gases de Efecto Invernadero
2.
Sci Total Environ ; 948: 174992, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047831

RESUMEN

With the clarification of the CO2 abatement targets and pathways, the management and control of non-CO2 greenhouse gases (GHGs) have been widely emphasized. As the potent GHGs restricted by the Kyoto Protocol, methane (CH4) and sulfur hexafluoride (SF6) emissions contribute to a significant and increasing share of the total global GHG emissions, resulting in a continuous impact on the environment. Hence, the abatement of CH4 and SF6, the potent GHGs, is a matter of urgency. This paper focuses on recent advances in abatement of lean CH4 and SF6 waste gas. Firstly, a systematic review of abatement technologies for lean CH4 is presented, and two methods, namely, pressure swing adsorption and catalytic combustion, are emphasized. Additionally, the current status of four mainstream methods such as adsorption separation, thermal (catalytic) degradation, photocatalytic degradation, and non-thermal plasma degradation, as well as emerging technologies for SF6 abatement are summarized, and the inherent shortcomings and industrialization potentials of each technology are analyzed from multiple perspectives. This review demonstrates that, under dual-carbon target, existing abatement technologies are inadequate to meet the complex and diverse demands of the power and coal industries. There are many drawbacks for lean CH4 abatement technologies such as high investment in utilization devices, low processing capacity, high operating cost and requirement of high CH4 concentration. Degradation technologies for SF6 waste gas also suffer from low energy efficiency, high investment in catalytic degradation devices, and secondary pollution of degradation products. Based on this, two large-scale processing schemes with high feasibility are proposed. Finally, the current research hotspots, challenges, and future directions are put forward. This review aims to contribute some new perspectives to the abatement efforts of non-CO2 GHGs, so that the dual-carbon target can be realized as soon as possible.

3.
Sci Rep ; 14(1): 14992, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951540

RESUMEN

This study investigates methane emissions from the livestock sector, representing by enteric fermentation and manure management, in Egypt from 1989 to 2021, focusing on spatial and temporal variations at the governorate level. Utilizing IPCC guidelines and emission factors, methane emissions were estimated for dairy and non-dairy cattle, buffalo, sheep and goat, poultry, and other livestock categories. Results reveal fluctuating emission patterns over the study period, with notable declines in certain governorates such as Kafr El-Sheikh and Red Sea, attributed to reductions in livestock populations. However, increasing trends were observed overall, driven by population growth in other regions. Hotspots of methane emissions were identified in delta governorates like Behera and Sharkia, as well as agriculturally rich regions including Menia and Suhag. While livestock populations varied between regions, factors such as water availability, climatic conditions, and farming practices influenced distribution. Notably, cluster analysis did not reveal regional clustering among governorates, suggesting emissions changes were not dependent on specific geographic or climatic boundaries. Manure management accounted for only 5-6% of total emissions, with emissions at their lowest in the last three years due to population declines. Despite the highest livestock populations being sheep and goats, emissions from enteric fermentation and manure management were highest from buffalo and cattle. This study underscores the importance of accurate data collection and adherence to IPCC recommendations for estimating GHG emissions, enabling the development of targeted mitigation strategies to address climate change challenges in the livestock sector.


Asunto(s)
Gases de Efecto Invernadero , Ganado , Metano , Animales , Egipto , Metano/análisis , Metano/metabolismo , Gases de Efecto Invernadero/análisis , Estiércol/análisis , Bovinos , Ovinos , Monitoreo del Ambiente/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-38877191

RESUMEN

Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.

5.
Water Res ; 258: 121802, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38796914

RESUMEN

Rice paddies are globally important sources of methane emissions and also active regions for methane consumption. However, the impact of fluctuating groundwater levels on methane cycling has received limited attention. In this study, we delved into the activity and microbial mechanisms underlying anaerobic oxidation of methane (AOM) in paddy fields. A comprehensive approach was employed, including 13C stable isotope assays, inhibition experiments, real-time quantitative reverse transcription PCR, metagenomic sequencing, and binning technology. Geochemical profiles revealed the abundant coexistence of both methane and electron acceptors in the groundwater table fluctuation (GTF) zone, at a depth of 40-60 cm. Notably, the GTF zone exhibited the highest rate of AOM, potentially linked to the reduction of iron oxides and nitrate. Within this zone, Candidatus Methanoperedens (belonging to the ANME-2d group) dominated the Archaea population, accounting for a remarkable 85.4 %. Furthermore, our results from inhibition experiments, RT-qPCR, and metagenome-assembled genome (MAG) analysis highlighted the active role of Ca. Methanoperedens GTF50 in the GTF zone. This microorganism could independently mediate AOM process through the intriguing "reverse methanogenesis" pathway. Considering the similarity in geochemical conditions across different paddy fields, it is likely that Ca. Methanoperedens-mediated AOM is prevalent in the GTF zones.


Asunto(s)
Agua Subterránea , Metano , Oryza , Oxidación-Reducción , Metano/metabolismo , Agua Subterránea/química , Agua Subterránea/microbiología , Anaerobiosis , Archaea/genética , Archaea/metabolismo
6.
Heliyon ; 10(8): e29356, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644898

RESUMEN

Landfills play a key role as greenhouse gas (GHGs) emitters, and urgently need assessment and management plans development to swiftly reduce their climate impact. In this context, accurate emission measurements from landfills under different climate and management would reduce the uncertainty in emission accounting. In this study, more than one year of long-term high-frequency data of CO2 and CH4 fluxes were collected in two Italian landfills (Giugliano and Case Passerini) with contrasting management (gas recovery VS no management) using eddy covariance (EC), with the aim to i) investigate the relation between climate drivers and CO2 and CH4 fluxes at different time intervals and ii) to assess the overall GHG balances including the biogas extraction and energy recovery components. Results indicated a higher net atmospheric CO2 source (5.7 ± 5.3 g m2 d-1) at Giugliano compared to Case Passerini (2.4 ± 4.9 g m2 d-1) as well as one order of magnitude higher atmospheric CH4 fluxes (6.0 ± 5.7 g m2 d-1 and 0.7 ± 0.6 g m2 d-1 respectively). Statistical analysis highlighted that fluxes were mainly driven by thermal variables, followed by water availability, with their relative importance changing according to the time-interval considered. The rate of change in barometric pressure (dP/dt) influenced CH4 patterns and magnitude in the classes ranging from -1.25 to +1.25 Pa h-1, with reduction when dP/dt > 0 and increase when dP/dt < 0, whilst a clear pattern was not observed when all dP/dt classes were analyzed. When including management, the total atmospheric GHG balance computed for the two landfills of Giugliano and Case Passerini was 174 g m2 d-1 and 79 g m2 d-1 respectively, of which 168 g m2 d-1 and 20 g m2 d-1 constituted by CH4 fluxes.

7.
Sci Total Environ ; 921: 171036, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38373449

RESUMEN

findings are presented from an investigation to improve understanding of the environmental risks associated with developing an unconventional-hydrocarbons industry in the UK. The EQUIPT4RISK project, funded by UK Research Councils, focused on investigations around Preston New Road (PNR), Fylde, Lancashire, and Kirby Misperton Site A (KMA), North Yorkshire, where operator licences to explore for shale gas by hydraulic fracturing (HF) were issued in 2016, although exploration only took place at PNR. EQUIPT4RISK considered atmospheric (greenhouse gases, air quality), water (groundwater quality) and solid-earth (seismicity) compartments to characterise and model local conditions and environmental responses to HF activities. Risk assessment was based on the source-pathway-receptor approach. Baseline monitoring of air around the two sites characterised the variability with meteorological conditions, and isotopic signatures were able to discriminate biogenic methane (cattle) from thermogenic (natural-gas) sources. Monitoring of a post-HF nitrogen-lift (well-cleaning) operation at PNR detected the release of atmospheric emissions of methane (4.2 ± 1.4 t CH4). Groundwater monitoring around KMA identified high baseline methane concentrations and detected ethane and propane at some locations. Dissolved methane was inferred from stable-isotopic evidence as overwhelmingly of biogenic origin. Groundwater-quality monitoring around PNR found no evidence of HF-induced impacts. Two approaches for modelling induced seismicity and associated seismic risk were developed using observations of seismicity and operational parameters from PNR in 2018 and 2019. Novel methodologies developed for monitoring include use of machine learning to identify fugitive atmospheric methane, Bayesian statistics to assess changes to groundwater quality, a seismicity forecasting model seeded by the HF-fluid injection rate and high-resolution monitoring of soil-gas methane. The project developed a risk-assessment framework, aligned with ISO 31000 risk-management principles, to assess the theoretical combined and cumulative environmental risks from operations over time. This demonstrated the spatial and temporal evolution of risk profiles: seismic and atmospheric impacts from the shale-gas operations are modelled to be localised and short-lived, while risk to groundwater quality is longer-term.

8.
Sci Total Environ ; 915: 170161, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38232847

RESUMEN

China faces a dual challenge of improving air quality and reducing greenhouse gas (GHG) emissions. Stringent clean air actions gradually narrow the end-of-pipe (EOP) pollution control potential. Meanwhile, pursuing carbon peaking will reduce air pollution and health risks. However, the impact on air quality and health gains in individual Chinese provinces has not been assessed with a specific focus on local policies. Here, typical shared socio-economic pathways (SSPs) and local policies (i.e., business as usual, BAU; end-of-pipe controls, EOP; co-control mitigation, CCM) are combined to set three scenarios (i.e., BAU-SSP3, EOP-SSP4, CCM-SSP1). Under these three scenarios, we couple the Low Emissions Analysis Platform (LEAP) model, an air quality model and health risk assessment methodology to evaluate the characteristics of carbon peaking in Fujian Province. PM2.5 air quality and impacts on public health are assessed, using the metric of the deaths attributable to PM2.5 pollution (DAPP). The results show that energy-related CO2 emissions will only peak before 2030 in the CCM-SSP1 scenario. In this context, air pollutant emission pathways reveal that mitigation is limited under the EOP-SSP4 scenario, necessitating further mitigation under the CCM-SSP1 scenario. The annual average PM2.5 level is projected to be 16.5 µg·m-3 in 2035 with a corresponding decrease in DAPP of 297 (95 % confidence intervals: 217-308) compared with that of 2020. Despite the significant improvements in PM2.5 air quality and health gains under the CCM-SSP1 scenario, reaching the 5 µg·m-3 target of the World Health Organization (WHO) remains difficult. Furthermore, population aging will require stronger PM2.5 mitigation to enhance health gains. This study provides a valuable reference for other developing regions to co-control air pollution and GHGs.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/análisis , Carbono/análisis , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , China
9.
Glob Chall ; 7(12): 2300184, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38094866

RESUMEN

This study offers a comprehensive analysis of the distribution, evolution, and driving factors of CO2 emissions from 1990 to 2016 at multiple spatial scales. Utilizing 26 indicators encompassing various facets of CO2 emissions, it is employed principal component analysis (PCA) and empirical orthogonal functions (EOFs) to identify the dominant characteristics of global CO2 emissions. This model retained three core components, accounting for 93% of the global CO2 variation, reflecting emission trajectories and associated economic metrics, such as Gross domestic product (GDP). The analysis differentiated the effects of these components based on countries' economic standings. Using a novel aggregated index, significant national contributors to global CO2 emissions are pinpointed. Notably, the leading contributors are found among developed nations (e.g., the United States, Canada, Japan), Gulf states (e.g., Saudi Arabia, Qatar), and emerging economies (e.g., China, Brazil, Mexico). Furthermore, these results highlight that shifts in global CO2 emissions over the past 30 years are predominantly influenced by factors like industrial emissions and GDP. Results also demonstrate a distinct relationship between a country's CO2 emissions and its physical and socioeconomic factors. Specifically, the nation's coastline length, population density in coastal regions, and the diversity of its climatic conditions significantly influence its carbon footprint.

10.
Huan Jing Ke Xue ; 44(12): 6680-6691, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098394

RESUMEN

As an important component of urban green spaces, greenhouse gas uptake or emissions from urban lawns cannot be ignored. However, studies of greenhouse gas fluxes from subtropical urban lawns are relatively sparse. The static chamber-gas chromatography method was applied to monitor the ground-air exchange fluxes of various greenhouse gases(CO2, CH4, N2O, and CO) in typical urban lawns of Hangzhou City. Our results showed that the average fluxes had significant seasonal cycles but ambiguous diurnal variations. The grassland and the soil(naked soil without vegetation coverage) acted as sources of atmospheric N2O, with the average fluxes of (0.66±0.17) and (0.58±0.20) µg·(m2·min)-1 for N2O, respectively; however, they were also sinks of CH4 and CO, with the average fluxes of (-0.21±0.078) and (-0.26±0.10) µg·(m2·min)-1 for CH4 and (-6.36±1.28) and (-6.55±1.69) µg·(m2·min)-1 for CO, respectively. The average CO2emission fluxes of urban grassland and soil were(5.28±0.75) and (4.83±0.91) mg·(m2·min)-1, respectively. The correlation analysis indicated that the CO2 and N2O fluxes of grassland and soil were negatively correlated with precipitation, whereas the CH4 and CO fluxes were positively correlated with it. There was no significant correlation between grassland CH4 fluxes and soil temperature, and N2O fluxes had a significant negative correlation with soil temperature; the other greenhouse gas fluxes showed a significant positive correlation with soil temperature. In addition, the seasonal variation in CO2 (R2=0.371 and 0.314) and N2O(R2=0.371 and 0.284) fluxes from both grassland and soil was affected by precipitation, whereas CO fluxes (R2=0.290 and 0.234) were mainly driven by soil temperature compared with the other greenhouse gases.

11.
J Environ Manage ; 348: 119295, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827072

RESUMEN

The emission of nitrous oxide (N2O), one of the main greenhouse gases, which contributes significantly to global warming, is a major challenge in modern agriculture. The effects of land use systems on N2O emissions are the result of multiple variables, whose interactions need to be better understood. In this sense, this study analyzed the possible effects of different soil managements, crop rotations and sequences, as well as edaphoclimatic factors causing N2O emissions from soils in the Cerrado biome (scrubland). The following four land-use systems were evaluated: 1) No-tillage cultivation with biennial crop rotations and sequences: legume-grass and alternating grass-legume crops in the second season - NT-SS/MP; 2) No-tillage with biennial rotations and sequences: grass-legume and alternating second crop of legume-grass - NT-MP/SS; 3) Conventional planting with disc harrow and biennial legume-grass rotation-CT-S/M; and 4) Native Cerrado (CE), no agricultural land use. The legume and grass species, planted in the two no-tillage treatments were soybean, followed by sorghum BRS3.32 (Sorghum bicolor (L.) Moench) (SS), and maize, followed by pigeon pea (Cajanus cajan) (MP). Nitrous oxide emissions were evaluated for 25 months (October 2013 to October 2015), and the results were grouped in annual, total, growing and non-growing seasons, as well as yield-scaled N2O emissions. The mean N2O fluxes were 24.14, 15.71, 32.49 and 1.87 µg m-2 h-1 in the NT-SS/MP, NT-MP/SS, CT-S/M and Cerrado areas respectively. Cumulative N2O fluxes over the total evaluation period from the systems NT-SS/MP, NT-MP/SS, CT-S/M and CE, respectively, were 3.47, 2.29, 4.87 and 0.26 kg ha-1. A correlation between N2O fluxes and the environmental variables was observed, with the exception of water-filled pore space (WFPS), but N2O peaks were associated with WFPS values of >65%. In the 2014-2015 growing season, yield-scaled N2O emissions from NT-MP/SS were lower than from CT-S/M. A multi-factor approach indicated that conventional management with main season soybean or maize and no alternating crop sequence intensifies soil N2O emissions in the Cerrado.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Óxido Nitroso/análisis , Agricultura/métodos , Estaciones del Año , Productos Agrícolas , Zea mays , Verduras , Glycine max , Fertilizantes/análisis
12.
Toxics ; 11(9)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37755737

RESUMEN

Nowadays, climate change and atmospheric pollution are two of humanity's most significant challenges. Greenhouse gases (GHGs) are responsible for climate change, and they create effects that are mostly irreversible. Therefore, monitoring and reducing such emissions are compulsory for the preservation of the environment for future generations. The European Union took action in this direction. The article presents the evolution of the total GHGs trend, from 1990 to 2021, in the EU countries and their associates. Trend analysis and grouping of the countries using different clustering techniques are performed. The analysis of the existence of greenhouse gases (GHGs) series' trend, in 30 countries from Europe, showed that the GHG emissions decreased from 1990 to 2021 in only 17 countries. The annual series, built using the data reported by each country each year, does not present a specific trend. After grouping the countries in clusters by k-means and hierarchical clustering, the representative series for the annual recorded values in the 30 studied countries, called Regional series (RegS), is built using series selected from the cluster with the highest number of elements. The same algorithm provides the Representative Temporal series (TempS), which selects specific years after clustering the annual GHG series.

13.
Sci Total Environ ; 905: 167180, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37734599

RESUMEN

Changes in the soil environment caused by winter warming is affecting the carbon and nitrogen cycles of seasonal freeze-thaw farmland soil. A field experiment was conducted in a seasonal freeze-thaw farmland soil of northeast China to investigate the effects caused from different levels of warming (W1 + 1.77 °C, W2 + 0.69 °C and C + 0 °C) on soil carbon and nitrogen dynamics, microbial biomass and greenhouse gases fluxes. During the early and middle winter, the contents of all kinds of soil carbon and nitrogen (Ammonium, nitrate, total nitrogen, dissolved organic carbon, readily oxidizable organic carbon and soil organic carbon) tended to increase with the increase of warming level, while during the late winter, their contents under different temperature treatments roughly present trend of W2 ≥C > W1. Except for the late thawing period, warming increased the contents of soil microbial biomass carbon and nitrogen, during the late thawing period, with the increase of warming level, MBC and MBN decreased significantly. Warming would stimulate the release of greenhouse gases from soil. But due to the differences of soil environmental conditions in each period and soil nutrient dynamics under different treatments, which made the effects of different levels of warming on soil GHGs fluxes in different periods are different. Our study suggested that low-level warming improved the availability of soil carbon and nitrogen, increased the contents of microbial biomass and greenhouse gas emissions. However, although high-level winter warming showed a similar phenomenon in the early and middle winter to the low-level warming, during the late winter, high-level warming increased soil nutrients loss and broke the seasonal coupling relationship between crop nutrient acquisition and soil microbial nutrient supply, and even led to the adaptation of soil CO2 release to it. This is of great significance for exploring the carbon and nitrogen cycle mechanisms of global terrestrial ecosystem.


Asunto(s)
Gases de Efecto Invernadero , Nitrógeno/análisis , Suelo , Ecosistema , Carbono/análisis , Granjas , Estaciones del Año , Dióxido de Carbono/análisis , Óxido Nitroso/análisis
14.
Mar Environ Res ; 191: 106147, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37611376

RESUMEN

The estuaries provide the key pathway for travelling carbon across the land-ocean interfaces and behave as both source and sink of greenhouse gases (GHGs) in water-atmosphere systems. The sink-source characteristics of estuaries for GHGs vary spatially. The primary driving factors are adjacent ecologies (agriculture, aquaculture, etc.) and proximities to the sea. To study the sink-source characteristics of estuaries for GHGs (methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2)), the water samples were collected from 53 different locations in the estuaries for estimation of dissolved GHGs concentration and air-water GHGs exchanges. The locations represent five zones (Zone I, II, III, IV and V) based on the type and degradation status of mangroves (degraded and undisturbed), anthropogenic activities, and distance from the sea. Zone I, III, V represents to the degraded mangroves far from sea, whereas, Zone II, IV surrounded by undisturbed mangroves and nearer to sea. The average dissolved CH4 concentrations were higher in the estuaries which were adjacent to degraded mangroves (154.4 nmol L-1) than undisturbed mangroves (81.7 nmol L-1). Further, the average dissolved N2O concentrations were 48% higher in the estuaries nearer to degraded mangroves than that of undisturbed ones. Among the degraded mangrove sites, the dissolved CO2 concentrations were higher at Zone I (30.1 µmol L-1) followed by Zone III and IV, whereas in undisturbed sites, it was higher in Zone IV (22.3 µmol L-1) than Zone II (17.6 µmol L-1). Among the 53 locations, 36, 51 and 33 locations acted as a sink (negative value of exchanges) for CH4, N2O and CO2, respectively. The higher sink potential for CH4 was recorded to those estuaries adjacent to undisturbed mangroves (-791.69 µmol m-2 d-1) than the degraded ones (-23.18 µmol m-2 d-1). Similarly, the average air-water N2O and CO2 exchanges were more negative in the estuaries which were nearer to undisturbed mangroves indicating higher sink potential. The pH, and salinity of the estuary water were negatively correlated with air-water CH4 and N2O exchanges, whereas those were positively correlated with CO2 exchanges. Significantly lower dissolved GHGs and air-water GHGs exchange was observed in the estuaries adjacent to the undisturbed mangrove as compared to the degraded mangrove. The reason behind higher sink behaviours of estuaries nearer to undisturbed mangroves are higher intrusion of seawater, less nutrient availability, higher salinity, low carbon contents and alkaline pH compared to estuaries adjacent to degraded mangroves and far from sea.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Estuarios , Humedales , Dióxido de Carbono/análisis , Monitoreo del Ambiente , Agua , Metano/análisis , India
15.
Bioresour Technol ; 385: 129476, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37429551

RESUMEN

Nitrite-driven anaerobic methane oxidation (N-damo) is a promising biological process to achieve carbon-neutral wastewater treatment solutions, aligned with the sustainable development goals. Here, the enzymatic activities in a membrane bioreactor highly enriched in N-damo bacteria operated at high nitrogen removal rates were investigated. Metaproteomic analyses, with a special focus on metalloenzymes, revealed the complete enzymatic route of N-damo including their unique nitric oxide dismutases. The relative protein abundance evidenced that "Ca. Methylomirabilis lanthanidiphila" was the predominant N-damo species, attributed to the induction of its lanthanide-binding methanol dehydrogenase in the presence of cerium. Metaproteomics also disclosed the activity of the accompanying taxa in denitrification, methylotrophy and methanotrophy. The most abundant functional metalloenzymes from this community require copper, iron, and cerium as cofactors which was correlated with the metal consumptions in the bioreactor. This study highlights the usefulness of metaproteomics for evaluating the enzymatic activities in engineering systems to optimize microbial management.


Asunto(s)
Compuestos de Amonio , Metaloproteínas , Desnitrificación , Metano/metabolismo , Nitrógeno/metabolismo , Anaerobiosis , Bacterias/metabolismo , Nitritos/metabolismo , Oxidación-Reducción , Reactores Biológicos/microbiología , Metaloproteínas/metabolismo , Compuestos de Amonio/metabolismo
16.
Bioresour Technol ; 384: 129319, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315620

RESUMEN

Microbial community is the primary driver causing the greenhouse gas emissions in composting. Thus, regulating the microbial communities is a strategy to reduce them. Here, two different siderophores (enterobactin and putrebactin) were added, which could bind and translocate iron by specific microbes, to regulate the composting communities. The results showed that adding enterobactin enriched Acinetobacter and Bacillus with specific receptors by 6.84-fold and 6.78-fold. It promoted carbohydrate degradation and amino acid metabolism. This resulted in a 1.28-fold increase in humic acid content, as well as a 14.02% and 18.27% decrease in CO2 and CH4 emissions, respectively. Meanwhile, adding putrebactin boosted the microbial diversity by 1.21-fold and enhanced potential microbial interactions by 1.76-fold. The attenuated denitrification process led to a 1.51-fold increase in the total nitrogen content and a 27.47% reduction in N2O emissions. Overall, adding siderophores is an efficient strategy to reduce greenhouse gas emissions and promote the compost quality.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Sideróforos , Enterobactina , Metano/análisis , Nitrógeno/análisis , Suelo/química , Óxido Nitroso/análisis , Dióxido de Carbono/análisis , Estiércol
17.
Natl Acad Sci Lett ; : 1-4, 2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37363283

RESUMEN

Any country may win the war, but the nature not even being a party, is always at looser end. The war ends up with great loss to environment, nature, natural resources and humanity. War-time military operations, mock drill or domestic assignments like insurgencies, riots, violence, etc., have irreversible and paramount impact on concentration of greenhouse gases (CO2, CH4, NOx etc.), suspended particulate matter, ecological footprint and climate change. With the invention of newer weapons of mass destruction of biological, chemical or mechanical nature, the chances of losing the humanity and life support system from blue planet are more pronounced. The existence of life on mother earth is in great danger speaking loudly to stop the war or war will stop us. Our today's actions will leave its signature on ecosystem health and life quality in future. Climate change is silently galloping number of species from the planet. Being nonpathogenic, it cannot be treated through vaccination but can easily overcome by adopting eco-friendly life style. World needs solution-oriented, transdisciplinary science-based social movement for improving the planetary health.

18.
Environ Sci Pollut Res Int ; 30(18): 51491-51503, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36809623

RESUMEN

It is generally accepted that China is a significant cause of global warming and other climate change consequences. This paper applies panel cointegration tests and autoregressive distributed lag (ARDL) techniques to investigate the interactions among energy policy, technological innovation, economic development, trade openness, and sustainable development using panel data from China from 1990 to 2020. Results explain that renewable energy policy and technology innovation are negatively associated with sustainable development. However, research shows that energy use significantly increases both short-term and long-term environmental damage. The findings show that economic growth has a lasting impact on the environment by distorting it. The findings recommend that politicians and government officials hold the key to attaining a green and clean environment by focusing on developing the proper energy policy mix, urban planning, and pollution prevention without compromising economic growth.


Asunto(s)
Dióxido de Carbono , Política Pública , Dióxido de Carbono/análisis , Invenciones , Energía Renovable , Desarrollo Económico , China
19.
Environ Res ; 224: 115529, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822534

RESUMEN

Although the composting of lignocellulosic biomass is an emerging waste-to-wealth approach towards organic waste management and circular economy, it still has some environmental loopholes that must be addressed to make it more sustainable and reliable. The significant difficulties encountered when composting lignocellulosic waste biomass are consequently discussed in this study, as well as the advances in science that have been achieved throughout time to handle these problems in a sustainable manner. It discusses an important global concern, the emission of greenhouse gases during the composting process which limits its applicability on a broader scale. Furthermore, it discusses in detail, how different organic minerals and biological additives modify the physiochemical and biological characteristics of compost, aiming at developing eco-friendly compost with minimum odor, greenhouse gases emission and an optimum C/N ratio. It brings novel insights by demonstrating the effect of additives on the microbial enzymes and their pathways involved in the degradation of lignocellulosic biomass. This review also highlights the limitations of the application of additives in composting and suggests possible ways to overcome these limitations in the future for the sustainable and eco-friendly management of agricultural waste. The present review concludes that the use of additives in the co-composting of lignocellulosic biomass can be a viable remedy for the ongoing issues with the management of lignocellulosic waste.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Biomasa , Lignina , Suelo
20.
Environ Technol ; 44(21): 3196-3214, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35302920

RESUMEN

It is imperative to design and operate sustainable solid waste management (SWM) systems in cities based on the results of waste amount and characterization study (WACS). In this work, WACS was conducted and results were used to design an SWM system for an intermediate city of Pakistan. The study revealed that about 110 tons of solid waste per day is generated with a per capita rate of 0.337 kg/day. Around 51.2% of mixed municipal solid waste (MSW) is organic in nature and its non-scientific disposal is resulting in higher greenhouse gas (GHG) emissions. It was also found that more than 80% of valuables are taken away by the informal sector during the transfer of MSW from the generation source to the dumping site. Ultimate analyses showed that the moisture content (MC) and carbon to nitrogen (C:N) ratio were 64.23% and 51.14%, respectively. Proximate analysis revealed that moisture and calorific values were 57 % and 3505 BTU/lb., respectively. Based on these results, a material sorting facility (MSF) was proposed, with an estimated investment cost of US $3.64 million. However, the efficiency of the existing collection system is limited to 32 % only. In order to improve the collection efficiency (>90 %), an additional investment of US $1.638 million was estimated with an operations and maintenance (O&M) cost of US $19.25 per ton. Existing non-scientific MSW disposal practices contribute 32,079.61 CO2e tons/year of GHG emissions. The proposed MSF followed by composting is estimated to reduce GHG emissions by 38% to 19,722.38 CO2e tons/year.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Residuos Sólidos/análisis , Ciudades , Pakistán , Efecto Invernadero , Eliminación de Residuos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA