Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273928

RESUMEN

Glycoside hydrolases (GHs), enzymes that break down glycosidic bonds in carbohydrates and between carbohydrates and non-carbohydrates, are prevalent in plants, animals, microorganisms, and other organisms. The tomato is a significant crop that contains the GH17 gene family. However, its role in tomatoes has yet to be fully investigated. In this study, we identified 43 GH17 genes from the tomato genome, distributed unevenly across 12 chromosomes. We further analyzed their gene structure, phylogenetic relationships, promoter elements, and expression patterns. The promoter element analysis indicated their potential roles in response to biotic and abiotic stresses as well as phytohormone effects on growth and development. The expression studies across different tomato tissues revealed that 10 genes were specifically expressed in floral organs, with SlA6 prominently expressed early during bud formation. By using CRISPR/Cas9 gene-editing technology, SlA6 knockout plants were generated. Phenotypic characterization showed that pollen viability, pollen tube germination, fruit weight, and seed number were significantly reduced in the Sla6 mutant, but the soluble solids content (TSS) was significantly higher in the Sla6 mutant, suggesting that SlA6 affects pollen development and fruit quality.

2.
Planta ; 258(6): 116, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946063

RESUMEN

MAIN CONCLUSION: Each ß-1,3-glucanase with antifungal activity or yeast lytic activity hydrolyzes different structures of ß-1,3-glucans in the fungal cell wall, respectively. Plants express several glycoside hydrolases that target chitin and ß-glucan in fungal cell walls and inhibit pathogenic fungal infection. An antifungal ß-1,3-glucanase was purified from gazyumaru (Ficus microcarpa) latex, designated as GlxGluA, and the corresponding gene was cloned and expressed in Escherichia coli. The sequence shows that GlxGluA belongs to glycoside hydrolase family 17 (GH17). To investigate how GlxGluA acts to degrade fungal cell wall ß-glucan, it was compared with ß-1,3-glucanase with different substrate specificities. We obtained recombinant ß-1,3-glucanase (designated as CcGluA), which belongs to GH64, from the bacterium Cellulosimicrobium cellulans. GlxGluA inhibited the growth of the filamentous fungus Trichoderma viride but was unable to lyse the yeast Saccharomyces cerevisiae. In contrast, CcGluA lysed yeast cells but had a negligible inhibitory effect on the growth of filamentous fungi. GlxGluA degraded the cell wall of T. viride better than CcGluA, whereas CcGluA degraded the cell wall of S. cerevisiae more efficiently than GlxGluA. These results suggest that the target substrates in fungal cell walls differ between GlxGluA (GH17 class I ß-1,3-glucanase) and CcGluA (GH64 ß-1,3-glucanase).


Asunto(s)
Ficus , beta-Glucanos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanos/metabolismo , Ficus/metabolismo , Látex/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/análisis , Glicósido Hidrolasas/metabolismo , Hongos/metabolismo , Bacterias/metabolismo , Pared Celular/metabolismo
3.
Cell Surf ; 8: 100073, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35079668

RESUMEN

GH16 chitin transferases, GH17 ß-1,3-glucan transferases, and GH72 ß-1,3-glucan/lichenin transferases are important fungal cell wall crosslinking enzymes. The Neurospora crassa genome encodes three genes from the GH17 gene family and five members in the GH16 subfamily 18 and 19 fungal chitin transferases. We created deletion mutants lacking all three GH17 genes and determined that they had wild type morphology and are more sensitive to cell wall perturbation reagents than the wild type. We also created deletion mutants lacking all five GH16 subfamily 18 and 19 genes and found that they had wild type morphology and are more sensitive to cell wall perturbation reagents than the wild type. We conclude that GH16 and GH17 enzymes play roles in cell wall biogenesis. In N. crassa, GH72 enzymes have been reported to be lichenin transferases, while in other fungi they have been shown to be the ß-1,3-glucan transferases. Neurospora triple GH72 deletions give rise to a tight colonial morphology, sensitivity to cell wall perturbation reagents, and release of cell wall proteins into the medium. To ask if GH72 and GH17 enzymes might be redundant in N. crassa, we created sextuple mutants lacking the three GH72 genes and the three GH17 genes and found that they were indistinguishable from the GH72 triple mutant. We also found that a recombinant GH72 enzyme is able to form a lichenin-enzyme intermediate demonstrating that GH72 enzymes are lichenin transferases. The N. crassa GH72 enzymes are lichenin transferases and are not redundant with the GH17 ß-1,3-glucan transferases.

4.
Physiol Mol Biol Plants ; 27(7): 1423-1436, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34366587

RESUMEN

Glycoside hydrolase (GH, EC 3.2.1) is a group of enzymes that hydrolyzes glycosidic bonds and play a role in the hydrolysis and synthesis of sugars in living organisms. Vitis vinifera is an important fruit crop and it harbors GH17 gene family however, their function in grapes has not been systematically investigated. In this study, a total of 870 GH17 genes were identified from 14 plant species and their structural domain, sequence alignment, phylogenetic tree, collinear analysis, with the expression profiles of VviGH17 gene family was performed. The promoter analysis of VviGH17 gene showed the presence of cis-acting elements, which are responsive to plant growth and development. In addition, elements for plant hormones were found that are triggered in response to abiotic/biological stress. Transcriptomic data led to the identification of several VviGH17 genes, which are associated with bud dormancy and in response to abiotic stress. Transcript analysis was carried out for some of the selected VviGH17 genes RT-qPCR. VviGH17-16 and VviGH17-30 genes were differentially expressed during bud dormancy, fruit development and different abiotic stresses. Moreover, VviGH17-37 and VviGH17-44 were differentially expressed at fruit development, in response to abiotic stress. In addition, subcellular localization predicts that the VviGH17-16, VviGH17-30, and VviGH17-37 genes were located in the cell membrane, while VviGH17-44 gene was located in the vacuole. In conclusion, our study led to the identification of several GH17s and their probable role in development and stress. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01014-1.

5.
Mol Plant Pathol ; 20(12): 1710-1721, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31603622

RESUMEN

To facilitate infection, pathogens deploy a plethora of effectors to suppress basal host immunity induced by exogenous microbe-associated or endogenous damage-associated molecular patterns (DAMPs). In this study, we have characterized family 17 glycosyl hydrolases of the tomato pathogen Cladosporium fulvum (CfGH17) and studied their role in infection. Heterologous expression of CfGH17-1 to 5 by potato virus X in different tomato cultivars showed that CfGH17-1 and CfGH17-5 enzymes induce cell death in Cf-0, Cf-1 and Cf-5 but not in Cf-Ecp3 tomato cultivars or tobacco. Moreover, CfGH17-1 orthologues from other phytopathogens, including Dothistroma septosporum and Mycosphaerella fijiensis, also trigger cell death in tomato. CfGH17-1 and CfGH17-5 are predicted to be ß-1,3-glucanases and their enzymatic activity is required for the induction of cell death. CfGH17-1 hydrolyses laminarin, a linear 1,3-ß-glucan with 1,6-ß linkages. CfGH17-1 expression is down-regulated during the biotrophic phase of infection and up-regulated during the necrotrophic phase. Deletion of CfGH17-1 in C. fulvum did not reduce virulence on tomato, while constitutive expression of CfGH17-1 decreased virulence, suggesting that abundant presence of CfGH17-1 during biotrophic growth may release a DAMP that activates plant defence responses. Under natural conditions CfGH17-1 is suggested to play a role during saprophytic growth when the fungus thrives on dead host tissue, which is in line with its high levels of expression at late stages of infection when host tissues have become necrotic. We suggest that CfGH17-1 releases a DAMP from the host cell wall that is recognized by a yet unknown host plant receptor.


Asunto(s)
Ascomicetos/enzimología , Cladosporium/enzimología , N-Glicosil Hidrolasas/metabolismo , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Ascomicetos/patogenicidad , Muerte Celular , Cladosporium/patogenicidad , Células Vegetales
6.
Front Plant Sci ; 5: 212, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904609

RESUMEN

Colonization of the land by plants required major modifications in cellular structural composition and metabolism. Intercellular communication through plasmodesmata (PD) plays a critical role in the coordination of growth and cell activities. Changes in the form, regulation or function of these channels are likely linked to plant adaptation to the terrestrial environments. Constriction of PD aperture by deposition of callose is the best-studied mechanism in PD regulation. Glycosyl hydrolases family 17 (GHL17) are callose degrading enzymes. In Arabidopsis this is a large protein family, few of which have been PD-localized. The objective here is to identify correlations between evolution of this protein family and their role at PD and to use this information as a tool to predict the localization of candidates isolated in a proteomic screen. With this aim, we studied phylogenetic relationship between Arabidopsis GHL17 sequences and those isolated from fungi, green algae, mosses and monocot representatives. Three distinct phylogenetic clades were identified. Clade alpha contained only embryophytes sequences suggesting that this subgroup appeared during land colonization in organisms with functional PD. Accordingly, all PD-associated GHL17 proteins identified so far in Arabidopsis thaliana and Populus are grouped in this 'embryophytes only' phylogenetic clade. Next, we tested the use of this knowledge to discriminate between candidates isolated in the PD proteome. Transient and stable expression of GFP protein fusions confirmed PD localization for candidates contained in clade alpha but not for candidates contained in clade beta. Our results suggest that GHL17 membrane proteins contained in the alpha clade evolved and expanded during land colonization to play new roles, among others, in PD regulation.

7.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 329-41, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531467

RESUMEN

Endogenous glycosylated Hev b 2 (endo-ß-1,3-glucanase) from Hevea brasiliensis is an important latex allergen that is recognized by IgE antibodies from patients who suffer from latex allergy. The carbohydrate moieties of Hev b 2 constitute a potentially important IgE-binding epitope that could be responsible for its cross-reactivity. Here, the structure of the endogenous isoform II of Hev b 2 that exhibits three post-translational modifications, including an N-terminal pyroglutamate and two glycosylation sites at Asn27 and at Asn314, is reported from two crystal polymorphs. These modifications form a patch on the surface of the molecule that is proposed to be one of the binding sites for IgE. A structure is also proposed for the most important N-glycan present in this protein as determined by digestion with specific enzymes. To analyze the role of the carbohydrate moieties in IgE antibody binding and in human basophil activation, the glycoallergen was enzymatically deglycosylated and evaluated. Time-lapse automated video microscopy of basophils stimulated with glycosylated Hev b 2 revealed basophil activation and degranulation. Immunological studies suggested that carbohydrates on Hev b 2 represent an allergenic IgE epitope. In addition, a dimer was found in each asymmetric unit that may reflect a regulatory mechanism of this plant defence protein.


Asunto(s)
Antígenos de Plantas/química , Basófilos/efectos de los fármacos , Celulasa/química , Hevea/química , Inmunoglobulina E/química , Proteínas de Plantas/química , Secuencia de Aminoácidos , Antígenos de Plantas/inmunología , Antígenos de Plantas/aislamiento & purificación , Antígenos de Plantas/farmacología , Prueba de Desgranulación de los Basófilos , Basófilos/citología , Basófilos/inmunología , Sitios de Unión , Secuencia de Carbohidratos , Células Cultivadas , Celulasa/inmunología , Celulasa/aislamiento & purificación , Celulasa/farmacología , Cristalografía por Rayos X , Ácido Glutámico/metabolismo , Glicosilación , Humanos , Inmunoglobulina E/inmunología , Hipersensibilidad al Látex/inmunología , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/inmunología , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Imagen de Lapso de Tiempo
8.
J Exp Bot ; 65(7): 1699-712, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24368502

RESUMEN

The tiny vascular axis of the embryo emerges post-embryonically as an elaborate and critical infrastructure, pervading the entire plant system. Its expansive nature is especially impressive in trees, where growth and development continue for extended periods. While the shoot apical meristem (SAM) orchestrates primary morphogenesis, the vascular system is mapped out in its wake in the provascular cylinder, situated just below the emerging leaf primordia and surrounding the rib meristem. Formation of leaf primordia and provascular tissues is incompatible with the harsh conditions of winter. Deciduous trees of boreal and temperate climates therefore enter a survival mode at the end of the season. However, to be competitive, they need to maximize their growth period while avoiding cellular frost damage. Trees achieve this by monitoring photoperiod, and by timely implementation of a survival strategy that schedules downstream events, including growth cessation, terminal bud formation, dormancy assumption, acquisition of freezing tolerance, and shedding of leaves. Of central importance are buds, which contain an embryonic shoot that allows shoot development and elongation in spring. The genetic and molecular processes that drive the cycle in synchrony with the seasons are largely elusive. Here, we review what is known about the signals and signal conduits that are involved, the processes that are initiated, and the developmental transitions that ensue in a terminal bud. We propose that addressing dormancy as a property of the SAM and the bud as a unique shoot type will facilitate our understanding of winter dormancy.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/genética , Latencia en las Plantas , Proteínas de Plantas/genética , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Populus/crecimiento & desarrollo , Estaciones del Año , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA