Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 97, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961325

RESUMEN

BACKGROUND: Pancreatic cancer (PC) is one of the most malignant cancers with highly aggressiveness and poor prognosis. N6-methyladenosine (m6A) have been indicated to be involved in PC development. Glucan Branching Enzyme 1 (GBE1) is mainly involved in cell glycogen metabolism. However, the function of GBE1 and Whether GBE1 occurs m6A modification in PC progression remains to be illustrated. METHODS: The clinical prognosis of GBE1 was analyzed through online platform. The expression of GBE1 was obtained from online platform and then verified in normal and PC cell lines. Lentivirus was used to generated GBE1 stable-overexpression or knockdown PC cells. Cell Counting Kit (CCK-8), colony formation assay, sphere formation assay and flow cytometry assay were conducted to analyze cell proliferation and stemness ability in vitro. Subcutaneous and orthotopic mouse models were used to verify the function of GBE1 in vivo. RNA immunoprecipitation (RIP) assay, RNA stability experiment and western blots were conducted to explore the molecular regulation of GBE1 in PC. RESULTS: GBE1 was significantly upregulated in PC and associated with poor prognosis of PC patients. Functionally, GBE1 overexpression facilitated PC cell proliferation and stemness-like properties, while knockdown of GBE1 attenuated the malignancy of PC cells. Importantly, we found the m6A modification of GBE1 RNA, and WTAP and IGF2BP3 was revealed as the m6A regulators to increase GBE1 mRNA stability and expression. Furthermore, c-Myc was discovered as a downstream gene of GBE1 and functional rescue experiments showed that overexpression of c-Myc could rescue GBE1 knockdown-induced PC cell growth inhibition. CONCLUSIONS: Our study uncovered the oncogenic role of GBE1/c-Myc axis in PC progression and revealed WTAP/IGF2BP3-mediated m6A modification of GBE1, which highlight the potential application of GBE1 in the targeted therapy of PC.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-myc , Proteínas de Unión al ARN , Regulación hacia Arriba , Humanos , Proliferación Celular/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Línea Celular Tumoral , Animales , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Ratones , Regulación hacia Arriba/genética , Ratones Desnudos , Pronóstico
2.
J Clin Med ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38592052

RESUMEN

Background and Objectives: Inherited metabolic disorders (IMDs) are a group of genetic disorders characterized by defects in enzymes or transport proteins involved in metabolic processes. These defects result in an abnormal accumulation of metabolites and thus interfere with the body's metabolism. A variety of IMDs exist and differential diagnosis is often challenging. Our objective was to gain insight into the genetic basis of IMDs and the correlations between specific genetic mutations and clinical presentations in patients admitted at various hospitals in the Madinah region of the Kingdom of Saudi Arabia. Material and Methods: Whole exome sequencing (WES) has emerged as a powerful tool for diagnosing IMDs and allows for the identification of disease-causing genetic mutations in individuals suspected of IMDs. This ensures accurate diagnosis and appropriate management. WES was performed in four families with multiple individuals showing clinical presentation of IMDs. Validation of the variants identified through WES was conducted using Sanger sequencing. Furthermore, various computational analyses were employed to uncover the disease gene co-expression and metabolic pathways. Results: Exome variant data analysis revealed missense variants in the BTD (c.1270G > C), ASL (c.1300G > T), GBE1 (c.985T > G) and AGL (c.113C > G) genes. Mutations in these genes are known to cause IMDs. Conclusions: Thus, our data showed that exome sequencing, in conjunction with clinical and biochemical characteristics and pathological hallmarks, could deliver an accurate and high-throughput outcome for the diagnosis and sub-typing of IMDs. Overall, our findings emphasize that the integration of WES with clinical and pathological information has the potential to improve the diagnosis and understanding of IMDs and related disorders, ultimately benefiting patients and the medical community.

3.
Mol Genet Metab Rep ; 39: 101069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38516405

RESUMEN

Background: Glycogen Storage disease type 4 (GSD4), a rare disease caused by glycogen branching enzyme 1 (GBE1) deficiency, affects multiple organ systems including the muscles, liver, heart, and central nervous system. Here we report a GSD4 patient, who presented with severe hepatosplenomegaly and cardiac ventricular hypertrophy. GBE1 sequencing identified two variants: a known pathogenic missense variant, c.1544G>A (p.Arg515His), and a missense variant of unknown significance (VUS), c.2081T>A (p. Ile694Asn). As a liver transplant alone can exacerbate heart dysfunction in GSD4 patients, a precise diagnosis is essential for liver transplant indication. To characterize the disease-causing variant, we modeled patient-specific GBE1 deficiency using CRISPR/Cas9 genome-edited induced pluripotent stem cells (iPSCs). Methods: iPSCs from a healthy donor (iPSC-WT) were genome-edited by CRISPR/Cas9 to induce homozygous p.Ile694Asn in GBE1 (iPSC-GBE1-I694N) and differentiated into hepatocytes (iHep) or cardiomyocytes (iCM). GBE1 enzyme activity was measured, and PAS-D staining was performed to analyze polyglucosan deposition in these cells. Results: iPSCGBE1-I694N differentiated into iHep and iCM exhibited reduced GBE1 protein level and enzyme activity in both cell types compared to iPSCwt. Both iHepGBE1-I694N and iCMGBE1-I694N showed polyglucosan deposits correlating to the histologic patterns of the patient's biopsies. Conclusions: iPSC-based disease modeling supported a loss of function effect of p.Ile694Asn in GBE1. The modeling of GBE1 enzyme deficiency in iHep and iCM cell lines had multi-organ findings, demonstrating iPSC-based modeling usefulness in elucidating the effects of novel VUS in ultra-rare diseases.

4.
Front Neurol ; 14: 1261125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033781

RESUMEN

Inadequate glycogen branching enzyme 1 (GBE1) activity results in different forms of glycogen storage disease type IV, including adult polyglucosan body disorder (APBD). APBD is clinically characterized by adult-onset development of progressive spasticity, neuropathy, and neurogenic bladder and is histologically characterized by the accumulation of structurally abnormal glycogen (polyglucosan bodies) in multiple cell types. How insufficient GBE1 activity causes the disease phenotype of APBD is poorly understood. We hypothesized that proteomic analysis of tissue from GBE1-deficient individuals would provide insights into GBE1-mediated pathobiology. In this discovery study, we utilized label-free LC-MS/MS to quantify the proteomes of lymphoblasts from 3 persons with APBD and 15 age- and gender-matched controls, with validation of the findings by targeted MS. There were 531 differentially expressed proteins out of 3,427 detected between APBD subjects vs. controls, including pronounced deficiency of GBE1. Bioinformatic analyses indicated multiple canonical pathways and protein-protein interaction networks to be statistically markedly enriched in APBD subjects, including: RNA processing/transport/translation, cell cycle control/replication, mTOR signaling, protein ubiquitination, unfolded protein and endoplasmic reticulum stress responses, glycolysis and cell death/apoptosis. Dysregulation of these processes, therefore, are primary or secondary factors in APBD pathobiology in this model system. Our findings further suggest that proteomic analysis of GBE1 mutant lymphoblasts can be leveraged as part of the screening for pharmaceutical agents for the treatment of APBD.

5.
Neuromuscul Disord ; 33(9): 98-105, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37598009

RESUMEN

Glycogen storage disease type IV (GSD IV) is caused by mutations in the glycogen branching enzyme 1 (GBE1) gene and is characterized by accumulation of polyglucosan bodies in liver, muscle and other tissues. We report three cases with neuromuscular forms of GSD IV, none of whom had polyglucosan bodies on muscle biopsy. The first case had no neonatal problems and presented with delayed walking. The other cases presented at birth: one with arthrogryposis, hypotonia, and respiratory distress, the other with talipes and feeding problems. All developed a similar pattern of axial weakness, proximal upper limb weakness and scapular winging, and much milder proximal lower limb weakness. Our cases expand the phenotypic spectrum of neuromuscular GSD IV, highlight that congenital myopathy and limb girdle weakness can be caused by mutations in GBE1, and emphasize that GSD IV should be considered even in the absence of characteristic polyglucosan bodies on muscle biopsy.


Asunto(s)
Artrogriposis , Enfermedad del Almacenamiento de Glucógeno Tipo IV , Recién Nacido , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo IV/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo IV/genética , Hipotonía Muscular , Glucanos
6.
Neuromuscul Disord ; 33(2): 148-152, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36628840

RESUMEN

Adult polyglucosan body disease (APBD) is caused by bi-allelic pathogenic variants in GBE1 and typically shows middle age onset urinary symptoms followed by progressive gait disturbances and possibly cognitive decline. Here we present a Belgian cohort of four patients from three families showing both classical and atypical signs of APBD. By clinical phenotyping, detailed neuroimaging of both central nervous system and skeletal muscle, genetic and biochemical testing, we confront our findings with the classical presentation of adult polyglucosan body disease and emphasize the importance of a multidisciplinary approach when diagnosing these patients.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno , Enfermedades del Sistema Nervioso , Persona de Mediana Edad , Adulto , Humanos , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/patología , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Enfermedades del Sistema Nervioso/genética , Sistema Nervioso Central , Músculo Esquelético/patología
7.
Neuropathol Appl Neurobiol ; 49(1): e12865, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36456471

RESUMEN

AIMS: Adult polyglucosan body disease (APBD) is a progressive neurogenetic disorder caused by 1,4-alpha-glucan branching enzyme 1 (GBE1) mutation with an accumulation of polyglucosan bodies (PBs) in the central and peripheral nervous systems as a pathological hallmark. Here, we report two siblings in a family with a GBE1 mutation with prominent frontotemporal lobar degeneration with TAR DNA-binding protein 43 (FTLD-TDP) and ageing-related tau astrogliopathy (ARTAG) copathologies with PBs in the central nervous system. METHODS: Whole-genome sequencing (WGS) followed by Sanger sequencing (SS) was performed on three affected and two unaffected siblings in a pedigree diagnosed with familial frontotemporal dementia. Out of the affected siblings, autopsies were conducted on two cases, and brain samples were used for biochemical and histological analyses. Brain sections were stained with haematoxylin and eosin and immunostained with antibodies against ubiquitin, tau, amyloid ß, α-synuclein, TDP-43 and fused in sarcoma (FUS). RESULTS: A novel single nucleotide deletion in GBE1, c.1280delG, was identified, which is predicted to result in a reading frameshift, p.Gly427Glufs*9. This variant segregated with disease in the family, is absent from population databases and is predicted to cause loss of function, a known genetic mechanism for APBD. The affected siblings showed a greater than 50% decrease in GBE protein levels. Immunohistochemical analysis revealed widespread FTLD-TDP (type A) and ARTAG pathologies as well as PBs in the brains of two affected siblings for whom an autopsy was performed. CONCLUSIONS: This is the first report of a family with several individuals with a FTD clinical phenotype and underlying copathologies of APBD, FTLD-TDP and ARTAG with a segregating GBE1 loss-of-function mutation in affected siblings. The finding of copathologies of APBD and FTLD-TDP suggests these processes may share a disease mechanism resulting from this GBE1 mutation.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Sistema de la Enzima Desramificadora del Glucógeno , Humanos , Demencia Frontotemporal/patología , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Péptidos beta-Amiloides/metabolismo , Degeneración Lobar Frontotemporal/patología , Encéfalo/patología , Mutación , Proteínas de Unión al ADN/metabolismo , Proteínas tau/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo
8.
Front Genet ; 13: 1033944, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425069

RESUMEN

Glycogen storage disease type IV (GSD IV), caused by a mutation in the glycogen branching enzyme 1 (GBE1) gene, is a rare metabolic disorder with an autosomal recessive inheritance that involves the liver, neuromuscular, and cardiac systems. Here, we reported a case of familial GSD IV induced by novel compound heterozygous mutations in GBE1. The proband (at age 1) and her younger brother (at age 10 months) manifested hepatosplenomegaly, liver dysfunction, and growth retardation at onset, followed by progressive disease deterioration to liver cirrhosis with liver failure. During the disease course, the proband presented rare intractable asymptomatic hypoglycemia. The liver pathology was in line with GSD IV. Both cases carried pathogenic compound heterozygous mutations in GBE1 mutations, i.e., a missense mutation (c.271T>A, p. W91R) in exon 2 and a deletion mutation in partial exons 3-7. Both mutations are first reported. The internationally pioneered split-liver transplantation was performed during progression to end-stage liver disease, and the patients had normal liver function and blood glucose after. This study broadens the mutation spectrum of the GBE1 gene and the phenotypic spectrum of GSD IV.

9.
Front Genet ; 13: 992406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176296

RESUMEN

Purpose: Glycogen storage disease type IV (GSD IV) has historically been divided into discrete hepatic (classic hepatic, non-progressive hepatic) and neuromuscular (perinatal-congenital neuromuscular, juvenile neuromuscular) subtypes. However, the extent to which this subtype-based classification system accurately captures the landscape of phenotypic variation among GSD IV patients has not been systematically assessed. Methods: This study synthesized clinical data from all eligible cases of GSD IV in the published literature to evaluate whether this disorder is better conceptualized as discrete subtypes or a clinical continuum. A novel phenotypic scoring approach was applied to characterize the extent of hepatic, neuromuscular, and cardiac involvement in each eligible patient. Results: 146 patients met all inclusion criteria. The majority (61%) of those with sufficient data to be scored exhibited phenotypes that were not fully consistent with any of the established subtypes. These included patients who exhibited combined hepatic-neuromuscular involvement; patients whose phenotypes were intermediate between the established hepatic or neuromuscular subtypes; and patients who presented with predominantly cardiac disease. Conclusion: The application of this novel phenotypic scoring approach showed that-in contrast to the traditional subtype-based view-GSD IV may be better conceptualized as a multidimensional clinical continuum, whereby hepatic, neuromuscular, and cardiac involvement occur to varying degrees in different patients.

10.
Neurotherapeutics ; 19(3): 982-993, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35347645

RESUMEN

Adult polyglucosan body disease (APBD) and Lafora disease (LD) are autosomal recessive glycogen storage neurological disorders. APBD is caused by mutations in the glycogen branching enzyme (GBE1) gene and is characterized by progressive upper and lower motor neuron dysfunction and premature death. LD is a fatal progressive myoclonus epilepsy caused by loss of function mutations in the EPM2A or EPM2B gene. These clinically distinct neurogenetic diseases share a common pathology. This consists of time-dependent formation, precipitation, and accumulation of an abnormal form of glycogen (polyglucosan) into gradually enlarging inclusions, polyglucosan bodies (PBs) in ever-increasing numbers of neurons and astrocytes. The growth and spread of PBs are followed by astrogliosis, microgliosis, and neurodegeneration. The key defect in polyglucosans is that their glucan branches are longer than those of normal glycogen, which prevents them from remaining in solution. Since the lengths of glycogen branches are determined by the enzyme glycogen synthase, we hypothesized that downregulating this enzyme could prevent or hinder the generation of the pathogenic PBs. Here, we pursued an adeno-associated virus vector (AAV) mediated RNA-interference (RNAi) strategy. This approach resulted in approximately 15% reduction of glycogen synthase mRNA and an approximately 40% reduction of PBs across the brain in the APBD and both LD mouse models. This was accompanied by improvements in early neuroinflammatory markers of disease. This work represents proof of principle toward developing a single lifetime dose therapy for two fatal neurological diseases: APBD and LD. The approach is likely applicable to other severe and common diseases of glycogen storage.


Asunto(s)
Enfermedad de Lafora , MicroARNs , Animales , Modelos Animales de Enfermedad , Glucanos , Glucógeno , Enfermedad del Almacenamiento de Glucógeno , Glucógeno Sintasa/genética , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Enfermedad de Lafora/terapia , Ratones , Enfermedades del Sistema Nervioso , Enfermedades Neuroinflamatorias
11.
J Neurol ; 269(6): 2854-2861, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34999962

RESUMEN

Adult polyglucosan body disease (APBD) is a rare but probably underdiagnosed autosomal recessive neurodegenerative disorder due to pathogenic variants in GBE1. The phenotype is characterized by neurogenic bladder dysfunction, spastic paraplegia, and axonal neuropathy. Additionally, cognitive symptoms and dementia have been reported in APBD but have not been studied systematically. Using exome sequencing, we identified two previously unreported bi-allelic missense GBE1 variants in a patient with severe memory impairment along with the typical non-cognitive symptoms. We were able to confirm a reduction of GBE1 activity in blood lymphocytes. To characterize the neuropsychological profile of patients suffering from APBD, we conducted a systematic review of cognitive impairment in this rare disease. Analysis of 24 cases and case series (in total 58 patients) showed that executive deficits and memory impairment are the most common cognitive symptoms in APBD.


Asunto(s)
Disfunción Cognitiva , Enfermedad del Almacenamiento de Glucógeno , Enfermedades del Sistema Nervioso , Disfunción Cognitiva/genética , Enfermedad del Almacenamiento de Glucógeno/genética , Humanos , Mutación Missense
12.
Am J Hum Genet ; 108(7): 1301-1317, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34038740

RESUMEN

Human C2orf69 is an evolutionarily conserved gene whose function is unknown. Here, we report eight unrelated families from which 20 children presented with a fatal syndrome consisting of severe autoinflammation and progredient leukoencephalopathy with recurrent seizures; 12 of these subjects, whose DNA was available, segregated homozygous loss-of-function C2orf69 variants. C2ORF69 bears homology to esterase enzymes, and orthologs can be found in most eukaryotic genomes, including that of unicellular phytoplankton. We found that endogenous C2ORF69 (1) is loosely bound to mitochondria, (2) affects mitochondrial membrane potential and oxidative respiration in cultured neurons, and (3) controls the levels of the glycogen branching enzyme 1 (GBE1) consistent with a glycogen-storage-associated mitochondriopathy. We show that CRISPR-Cas9-mediated inactivation of zebrafish C2orf69 results in lethality by 8 months of age due to spontaneous epileptic seizures, which is preceded by persistent brain inflammation. Collectively, our results delineate an autoinflammatory Mendelian disorder of C2orf69 deficiency that disrupts the development/homeostasis of the immune and central nervous systems.


Asunto(s)
Encefalitis/genética , Enfermedades Mitocondriales/genética , Animales , Evolución Biológica , Sistemas CRISPR-Cas , Línea Celular , Encefalitis/mortalidad , Femenino , Genes Recesivos , Glucógeno/metabolismo , Humanos , Inflamación/genética , Masculino , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/mortalidad , Linaje , Convulsiones/genética , Convulsiones/mortalidad , Pez Cebra/genética
13.
Neurotherapeutics ; 18(2): 1414-1425, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33830476

RESUMEN

Many adult and most childhood neurological diseases have a genetic basis. CRISPR/Cas9 biotechnology holds great promise in neurological therapy, pending the clearance of major delivery, efficiency, and specificity hurdles. We applied CRISPR/Cas9 genome editing in its simplest modality, namely inducing gene sequence disruption, to one adult and one pediatric disease. Adult polyglucosan body disease is a neurodegenerative disease resembling amyotrophic lateral sclerosis. Lafora disease is a severe late childhood onset progressive myoclonus epilepsy. The pathogenic insult in both is formation in the brain of glycogen with overlong branches, which precipitates and accumulates into polyglucosan bodies that drive neuroinflammation and neurodegeneration. We packaged Staphylococcus aureus Cas9 and a guide RNA targeting the glycogen synthase gene, Gys1, responsible for brain glycogen branch elongation in AAV9 virus, which we delivered by neonatal intracerebroventricular injection to one mouse model of adult polyglucosan body disease and two mouse models of Lafora disease. This resulted, in all three models, in editing of approximately 17% of Gys1 alleles and a similar extent of reduction of Gys1 mRNA across the brain. The latter led to approximately 50% reductions of GYS1 protein, abnormal glycogen accumulation, and polyglucosan bodies, as well as ameliorations of neuroinflammatory markers in all three models. Our work represents proof of principle for virally delivered CRISPR/Cas9 neurotherapeutics in an adult-onset (adult polyglucosan body) and a childhood-onset (Lafora) neurological diseases.


Asunto(s)
Encéfalo/metabolismo , Glucanos/metabolismo , Enfermedad del Almacenamiento de Glucógeno/genética , Glucógeno Sintasa/genética , Glucógeno/metabolismo , Enfermedad de Lafora/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades Neuroinflamatorias/genética , ARN Mensajero/metabolismo , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Edición Génica , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/terapia , Enfermedad de Lafora/metabolismo , Enfermedad de Lafora/terapia , Ratones , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/terapia , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/terapia , Prueba de Estudio Conceptual
14.
Front Oncol ; 11: 781344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155189

RESUMEN

Glycogen branching enzyme (GBE1) is a critical gene that participates in regulating glycogen metabolism. However, the correlations between GBE1 expression and the prognosis and tumor-associated macrophages in lung adenocarcinoma (LUAD) also remain unclear. Herein, we firstly analyzed the expression level of GBE1 in LUAD tissues and adjacent lung tissues via The Cancer Genome Atlas (TCGA) database. The effect of GBE1 on prognosis was estimated by utilizing TCGA database and the PrognoScan database. The relationships between the clinical characteristics and GBE1 expression were evaluated via TCGA database. We then investigated the relationships between GBE1 and infiltration of immune cells in LUAD by utilizing the CIBERSORT algorithm and Tumor Immune Estimation Resource (TIMER) database. In addition, we used a tissue microarray (TMA) containing 92 LUAD tissues and 88 adjacent lung tissues with immunohistochemistry staining to verify the association between GBE1 expression and clinical characteristics, as well as the immune cell infiltrations. We found the expression level of GBE1 was significantly higher in LUAD tissues. High expression of GBE1 was associated with poorer overall survival (OS) in LUAD. In addition, high expression of GBE1 was correlated with advanced T classification, N classification, M classification, TNM stage, and lower grade. Moreover, GBE1 was positively correlated with infiltrating levels of CD163+ tumor-associated macrophages in LUAD. In conclusion, the expression of GBE1 is associated with the prognosis and CD163+ tumor-associated macrophage infiltration in LUAD, suggesting that it has potential to be prognostic and immunological biomarkers in LUAD.

15.
J Inherit Metab Dis ; 44(3): 534-543, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33141444

RESUMEN

Adult polyglucosan body disease (APBD) represents a complex autosomal recessive inherited neurometabolic disorder due to homozygous or compound heterozygous pathogenic variants in GBE1 gene, resulting in deficiency of glycogen-branching enzyme and secondary storage of glycogen in the form of polyglucosan bodies, involving the skeletal muscle, diaphragm, peripheral nerve (including autonomic fibers), brain white matter, spinal cord, nerve roots, cerebellum, brainstem and to a lesser extent heart, lung, kidney, and liver cells. The diversity of new clinical presentations regarding neuromuscular involvement is astonishing and transformed APBD in a key differential diagnosis of completely different clinical conditions, including axonal and demyelinating sensorimotor polyneuropathy, progressive spastic paraparesis, motor neuronopathy presentations, autonomic disturbances, leukodystrophies or even pure myopathic involvement with limb-girdle pattern of weakness. This review article aims to summarize the main clinical, biochemical, genetic, and diagnostic aspects regarding APBD with special focus on neuromuscular presentations.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/fisiopatología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Adulto , Encéfalo/patología , Enfermedad del Almacenamiento de Glucógeno/patología , Humanos , Músculo Esquelético/patología , Enfermedades del Sistema Nervioso/patología , Nervios Periféricos/patología , Fenotipo , Médula Espinal/patología
16.
Mol Genet Metab Rep ; 24: 100601, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32455116

RESUMEN

Glycogen storage disease type IV (GSD IV) is a rare inborn metabolic disorder characterized by the accumulation of amylopectin-like glycogen in the liver or other organs. The hepatic subtype may appear normal at birth but rapidly develops to liver cirrhosis in infancy. Liver pathological findings help diagnose the hepatic form of the disease, supported by analyses of enzyme activity and GBE1 gene variants. Pathology usually shows periodic acid-Schiff (PAS) positive hepatocytes resistant to diastase. We report two cases of hepatic GSD IV with pathology showing PAS positive hepatocytes that were mostly digested by diastase, which differ from past cases. Gene analysis was critical for the diagnosis. Both cases were found to have the same variants c.288delA (p.Gly97GlufsTer46) and c.1825G > A (p.Glu609Lys). These findings suggest that c.1825G > A variant might be a common variant in the non-progressive hepatic form of GSD IV.

17.
Mol Genet Metab Rep ; 23: 100580, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32257815

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is associated with dietary folate deficiency and mutations in genes required for one­carbon metabolism. However, the mechanism through which this occurs is unclear. To improve our understanding of this link, we investigated liver morphology, metabolism and fuel storage in adult mice with a hypomorphic mutation in the gene methionine synthase reductase (Mtrr gt ). MTRR enzyme is a key regulator of the methionine and folate cycles. The Mtrr gt mutation in mice was previously shown to disrupt one­carbon metabolism and cause a wide-spectrum of developmental phenotypes and late adult-onset macrocytic anaemia. Here, we showed that livers of Mtrr gt/gt female mice were enlarged compared to control C57Bl/6J livers. Histological analysis of these livers revealed eosinophilic hepatocytes with decreased glycogen content, which was associated with down-regulation of genes involved in glycogen synthesis (e.g., Ugp2 and Gsk3a genes). While female Mtrr gt/gt livers showed evidence of reduced ß-oxidation of fatty acids, there were no other associated changes in the lipidome in female or male Mtrr gt/gt livers compared with controls. Defects in glycogen storage and lipid metabolism often associate with disruption of mitochondrial electron transfer system activity. However, defects in mitochondrial function were not detected in Mtrr gt/gt livers as determined by high-resolution respirometry analysis. Overall, we demonstrated that adult Mtrr gt/gt female mice showed abnormal liver morphology that differed from the NAFLD phenotype and that was accompanied by subtle changes in their hepatic metabolism and fuel storage.

18.
Mol Cancer ; 18(1): 108, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31221150

RESUMEN

BACKGROUND: Changes in glycogen metabolism is an essential feature among the various metabolic adaptations used by cancer cells to adjust to the conditions imposed by the tumor microenvironment. Our previous study showed that glycogen branching enzyme (GBE1) is downstream of the HIF1 pathway in hypoxia-conditioned lung cancer cells. In the present study, we investigated whether GBE1 is involved in the immune regulation of the tumor microenvironment in lung adenocarcinoma (LUAD). METHODS: We used RNA-sequencing analysis and the multiplex assay to determine changes in GBE1 knockdown cells. The role of GBE1 in LUAD was evaluated both in vitro and in vivo. RESULTS: GBE1 knockdown increased the expression of chemokines CCL5 and CXCL10 in A549 cells. CD8 expression correlated positively with CCL5 and CXCL10 expression in LUAD. The supernatants from the GBE1 knockdown cells increased recruitment of CD8+ T lymphocytes. However, the neutralizing antibodies of CCL5 or CXCL10 significantly inhibited cell migration induced by shGBE1 cell supernatants. STING/IFN-I pathway mediated the effect of GBE1 knockdown for CCL5 and CXCL10 upregulation. Moreover, PD-L1 increased significantly in shGBE1 A549 cells compared to those in control cells. Additionally, in LUAD tumor tissues, a negative link between PD-L1 and GBE1 was observed. Lastly, blockade of GBE1 signaling combined with anti-PD-L1 antibody significantly inhibited tumor growth in vivo. CONCLUSIONS: GBE1 blockade promotes the secretion of CCL5 and CXCL10 to recruit CD8+ T lymphocytes to the tumor microenvironment via the IFN-I/STING signaling pathway, accompanied by upregulation of PD-L1 in LUAD cells, suggesting that GBE1 could be a promising target for achieving tumor regression through cancer immunotherapy in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Perfilación de la Expresión Génica/métodos , Sistema de la Enzima Desramificadora del Glucógeno/genética , Neoplasias Pulmonares/patología , Análisis de Secuencia de ARN/métodos , Células A549 , Adenocarcinoma del Pulmón/genética , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Quimiocina CCL5/genética , Quimiocina CXCL10/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/genética , Proteínas de la Membrana/metabolismo , Trasplante de Neoplasias , Transducción de Señal
19.
Mol Genet Metab Rep ; 17: 31-37, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30228975

RESUMEN

BACKGROUND: Glycogen storage disease type IV (GSD IV), caused by GBE1 mutations, has a quite wide phenotypic variation. While the classic hepatic form and the perinatal/neonatal neuromuscular forms result in early mortality, milder manifestations include non-progressive form (NP-GSD IV) and adult polyglucosan body disease (APBD). Thus far, only one clinical case of a patient with compound heterozygous mutations has been reported for the molecular analysis of NP-GSD IV. This study aimed to elucidate the molecular basis in a NP-GSD IV patient via protein expression analysis and to obtain a clearer genotype-phenotype relationship in GSD IV. CASE PRESENTATION: A Japanese boy presented hepatosplenomegaly at 2 years of age. Developmental delay, neurological symptoms, and cardiac dysfunction were not apparent. Observation of hepatocytes with periodic acid-Schiff-positive materials resistant to diastase, coupled with resolution of hepatosplenomegaly at 8 years of age, yielded a diagnosis of NP-GSD IV. Glycogen branching enzyme activity was decreased in erythrocytes. At 13 years of age, he developed epilepsy, which was successfully controlled by carbamazepine. MOLECULAR ANALYSIS: In this study, we identified compound heterozygous GBE1 mutations (p.Gln46Pro and p.Glu609Lys). The branching activities of the mutant proteins expressed using E. coli were examined in a reaction with starch. The result showed that both mutants had approximately 50% activity of the wild type protein. CONCLUSION: This is the second clinical report of a NP-GSD IV patient with a definite molecular elucidation. Based on the clinical and genotypic overlapping between NP-GSD IV and APBD, we suggest both are in a continuum.

20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-691431

RESUMEN

Objective To investigate the expression of glucogen branching enzyme 1 (GBE1) in hypoxic lung cancer tissues and cells, to evaluate its significance for hypoxia tolerance in lung cancer and to explore its mechanism of apoptosis of lung cancer. Methods Data of 20 patients with hypoxic lung cancer and normoxia lung cancer tissue microarray were downloaded through the GEO database, GCBI was used to screen the differential genes for GO and KEGG pathway analysis. In vitro culture of A549 cells was cultured and transfected with siGEBl for knock down or GBE1 for overexpression. After hypoxia treatment, cell viability was analyzed using MTT assay. Western blot and real-time PCR were used to detect the expression of apoptosis-related genes. Results The data from 20 cases of lung cancer specimens showed that 206 genes displayed differences, and the GBE1 was the most significant, GO and KEGG pathway analysis found that the differential gene involved in cell cycle, cell metabolism and other multiple access. The expression of GBE1 in A549 cells after hypoxia treatment was significantly increased, and GBE1 could significantly enhance the expression of apoptosis-related genes in A549 cells after hypoxia treatment. Over-expression of GBE1 could inhibit the expression of apoptosis-related genes. Conclusion GBE1 may be a potential marker of hypoxia tolerance in lung cancer, this study provide a reference for further study of hypoxia tolerance mechanism of lung cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA