Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e37311, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296044

RESUMEN

ST6GAL2, a member of the sialoglycosyltransferase family, primarily localizes within the cellular Golgi apparatus. However, the role of the ST6GAL2 gene in skeletal muscle growth and development remains elusive. In this study, the impact of the ST6GAL2 gene on the proliferation, differentiation, and apoptosis of primary chicken myoblasts at the cellular level was investigated. Quantitative fluorescent PCR was used to measure the expression levels of genes. Subsequently, using gene knockout mice, we assessed its effects on skeletal muscle growth and development in vivo. Our findings reveal that the ST6GAL2 gene promotes the expression of cell cycle and proliferation-related genes, including CCNB2 and PCNA, and apoptosis-related genes, such as Fas and Caspase-9. At the individual level, double knockout of ST6GAL2 inhibited the formation of both fast and slow muscle fibers in the quadriceps, extensor digitorum longus, and tibial anterior muscle, while promoting their formation in the gastrocnemius and soleus. These results collectively demonstrate that the ST6GAL2 gene facilitates the proliferation, apoptosis, and fusion processes of primary chicken myoblasts. Additionally, it promotes the enlargement of cross-sectional muscle fiber areas and regulates the formation of fast and slow muscle fibers at the individual level, albeit inhibiting muscle fusion. This study provides valuable insights into the role of the ST6GAL2 gene in promoting proliferation of skeletal muscle.

2.
Int J Biol Macromol ; 278(Pt 4): 135196, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39256125

RESUMEN

In neurological diseases, the regulation of autophagy plays a crucial role in their pathology, particularly the relationship between autophagy and hepatic encephalopathy (HE) which merits detailed investigation. Glycosphingolipids are abundant and broadly functional in the nervous system and are closely associated with autophagy. However, the specific link and mechanisms between glycosphingolipids and autophagy in HE remain unclear. This study aims to explore the impact of glycosphingolipid changes on the autophagy in HE and its potential mechanisms. Utilizing lectin microarrays, we observed elevated expression levels of α2-3 sialylated glycosphingolipid in the brain tissue of HBV transgenic mice and ammonia-induced astrocyte models, suggesting that the increase in α2-3 sialylated glycosphingolipid is related to HE. Further research revealed that the increased expression of α2-3 sialylated glycosphingolipid, mediated by ST3GAL2, affects autophagy by regulating the autophagy initiation complex Vps34-Beclin-1. In summary, our research not only comprehensively reveals the changes in brain glycosphingolipid during HBV-related HE but also elucidates the interactions and regulatory mechanisms between α2-3 sialylated glycosphingolipid and autophagy. This study provides a new perspective on understanding the pathogenesis of HE and offers novel theories and targets for future research and treatment strategies.


Asunto(s)
Autofagia , Glicoesfingolípidos , Encefalopatía Hepática , Sialiltransferasas , Animales , Encefalopatía Hepática/metabolismo , Encefalopatía Hepática/patología , Ratones , Glicoesfingolípidos/metabolismo , Sialiltransferasas/metabolismo , Sialiltransferasas/genética , Ratones Transgénicos , Encéfalo/metabolismo , Encéfalo/patología , Humanos , beta-Galactosida alfa-2,3-Sialiltransferasa , Astrocitos/metabolismo , Masculino
3.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559078

RESUMEN

Glycosylation is a hallmark of cancer biology, and altered glycosylation influences multiple facets of melanoma growth and progression. To identify glycosyltransferases, glycans, and glycoproteins essential for melanoma maintenance, we conducted an in vivo growth screen with a pooled shRNA library of glycosyltransferases, lectin microarray profiling of benign nevi and melanoma patient samples, and mass spectrometry-based glycoproteomics. We found that α-2,3 sialyltransferases ST3GAL1 and ST3GAL2 and corresponding α-2,3-linked sialosides are upregulated in melanoma compared to nevi and are essential for melanoma growth in vivo and in vitro. Glycoproteomics revealed that glycoprotein targets of ST3GAL1 and ST3GAL2 are enriched in transmembrane proteins involved in growth signaling, including the amino acid transporter Solute Carrier Family 3 Member 2 (SLC3A2/CD98hc). CD98hc suppression mimicked the effect of ST3GAL1 and ST3GAL2 silencing, inhibiting melanoma cell proliferation. We found that both CD98hc protein stability and its pro-survival effect in melanoma are dependent upon α-2,3 sialylation mediated by ST3GAL1 and ST3GAL2. In summary, our studies reveal that α-2,3-sialosides functionally contribute to melanoma maintenance, supporting ST3GAL1 and ST3GAL2 as novel therapeutic targets in these tumors.

4.
Heliyon ; 10(8): e28543, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628704

RESUMEN

Objective: Individual differences were observed in the clinical efficacy of Botulinum toxin A (BoNT-A) in the treatment of the primary Meige syndrome. Our study aimed to explore the potential associations between the clinical efficacy of BoNT-A in the treatment of the primary Meige syndrome and variants of SNAP25, SV2C and ST3GAL2, which are involving in the translocation of the BoNT-A in vivo. Methods: Patients with the primary Meige syndrome treated with BoNT-A were enrolled. Clinical efficacy was evaluated by the maximum improvement rate of motor symptoms and the duration of efficacy. Variants of SNAP25, SV2C and ST3GAL2 were obtained by Sanger sequencing. Another cohort diagnosed with primary cervical dystonia was also enrolled in the replication stage. Results: Among the 104 primary Meige syndrome patients, 80 patients (76.9%) had a good efficacy (the maximum improvement rate of motor symptoms ≥30%) and 24 (23. 1%) had a poor (the maximum improvement rate of motor symptoms <30%). As to the duration of efficacy, 52 patients (50.0%) had a long duration of efficacy (≥4 months), and 52 (50.0%) had a short (<4 months). In terms of primary Meige syndrome, SNAP25 rs6104571 was found associating with the maximum improvement rate of motor symptoms (Genotype: P = 0.02, OR = 0.26; Allele: P = 0.013, OR = 0.29), and SV2C rs31244 was found associating with the duration of efficacy (Genotype: P = 0.024, OR = 0.13; Allele: P = 0.012, OR = 0.13). Besides, we also conducted the association analyses between the variants and BoNT-A-related adverse reactions. Although, there was no statistical difference between the allele of SV2C rs31244 and BoNT-A-related adverse reactions, there was a trend (P = 0.077, OR = 2.56). In the replication stage, we included 39 patients with primary cervical dystonia to further expanding the samples' size. Among the 39 primary cervical dystonia patients, 25 patients (64.1%) had a good efficacy (the maximum improvement rate of motor symptoms ≥50%) and 14 (35.9%) had a poor (the maximum improvement rate of motor symptoms <50%). As to the duration of efficacy, 32 patients (82.1%) had a long duration of efficacy (≥6 months), and 7 (17.9%) had a short (<6 months). Integrating primary Meige syndrome and primary cervical dystonia, SV2C rs31244 was still found associating with the duration of efficacy (Genotype: P = 0.002, OR = 0. 23; Allele: P = 0.001, OR = 0. 25). Conclusion: In our study, SNAP25 rs6104571 was associated with the maximum improvement rate of motor symptoms in patients with primary Meige syndrome treated with BoNT-A, and patients carrying this variant had a lower improvement rate of motor symptoms. SV2C rs31244 was associated with duration of treatment in patients with primary Meige syndrome treated with BoNT-A and patients carrying this variant had a shorter duration of treatment. Patients with primary Meige syndrome carrying SV2C rs31244 G allele have an increase likelihood of BoNT-A-related adverse reactions. Involving 39 patients with primary cervical dystonia, the results further verify that SV2C rs31244 was associated with duration of treatment and patients carrying this variant had a shorter duration of treatment.

5.
J Inflamm Res ; 17: 565-580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318244

RESUMEN

Purpose: ST6 Beta-Galactoside Alpha-2,6-Sialyltransferase 2 (ST6GAL2), a member of the sialic acid transferase family, is differentially expressed in diverse cancers. However, it remains poorly understood in tumorigenesis and impacts on immune cell infiltration (ICI) in hepatocellular carcinoma (HCC). Patients and Methods: Herein, the expression, diagnosis, prognosis, functional enrichment, genetic alterations, immune characteristics, and targeted drugs of ST6GAL2 in HCC were researched by conducting bioinformatics analysis, in vivo, and in vitro experiments. Results: ST6GAL2 was remarkably decreased in HCC compared to non-tumor tissues, portending a poor prognosis associated with high DNA methylation levels. Functional enrichment and GSVA analyses revealed that ST6GAL2 might function through the extracellular matrix, PI3K-Akt signaling pathways, and tumor inflammation signature. We found that ST6GAL2 expression was proportional to ICI, immunostimulator, and immune subtypes. ST6GAL2 expression first increased and then decreased during the progression of liver inflammation to HCC. The dysfunctional experiment indicated that ST6GAL2 might exert immunosuppressive effects during HCC progression through regulating ICI. Several broad-spectrum anticancer drugs were obtained by drug sensitivity prediction analysis of ST6GAL2. Conclusion: In conclusion, ST6GAL2 was a reliable prognostic biomarker strongly associated with ICI, and could be a potential immunotherapeutic target for HCC.

6.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139047

RESUMEN

Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.


Asunto(s)
Calcio , Neocórtex , Sialiltransferasas , beta-Galactosida alfa-2,3-Sialiltransferasa , Animales , Ratones , Calbindina 2/metabolismo , Calbindinas/metabolismo , Calcio/metabolismo , Gangliósidos/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Mamíferos/metabolismo , Ratones Noqueados , Mutación , Neocórtex/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , beta-Galactosida alfa-2,3-Sialiltransferasa/genética , beta-Galactosida alfa-2,3-Sialiltransferasa/metabolismo
7.
Biomolecules ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37892153

RESUMEN

Psoriasis is a complex disease that nowadays is considered not only a dermatosis but a kind of systemic disorder associated with many accompanying diseases. Metabolic complications leading to cardiovascular incidences are the cause of increased mortality in psoriatic patients. Galectins (gal) are beta-galactoside-binding lectins that exert different functions, including engagement in metabolic processes. Our aim was to assess the concentrations of gal-1, 2 and 12 in psoriatics, to establish their potential clinical implications, including in metabolic complications. Plasma galectins were assessed by ELISA in 60 psoriatic patients and 30 controls without dermatoses and a negative family history of psoriasis. Plasma concentrations of all galectins were significantly higher in patients than controls (gal-1 with p < 0.001, gal-2 and 12 with p < 0.05). There were no correlations between galectins concentrations and psoriasis severity in PASI or disease duration (p > 0.05). Gal-1 and 12 were significantly negatively correlated with GFR (p < 0.05, p < 0.01, respectively) and gal-2 with HDL (p < 0.05). Gal-2 was significantly positively correlated with CRP (p < 0.05) and gal-12 with fasting glucose (p < 0.01). Based on the results and given the reported role of galectins in metabolic disorders we may conclude that gal-1, 2 and 12 could be potentially engaged in metabolic complications in psoriatics, most probably in atherosclerosis. Gal-2 could be perhaps further investigated as a marker of metabolically induced inflammation in psoriasis, gal-1 and gal-12 as predictors of renal impairment in psoriatics due to metabolic disorders. Potentially, gal-12 could be considered in the future as a marker of carbohydrate metabolism disorders in psoriatics.


Asunto(s)
Enfermedades Metabólicas , Psoriasis , Humanos , Galectina 3/metabolismo , Galectinas/metabolismo , Galectina 2
8.
Front Mol Biosci ; 9: 1058602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452458

RESUMEN

Prion diseases are a group of fatal neurodegenerative diseases caused by misfolding of the normal cellular form of the prion protein or PrPC, into a disease-associated self-replicating state or PrPSc. PrPC and PrPSc are posttranslationally modified with N-linked glycans, in which the terminal positions occupied by sialic acids residues are attached to galactose predominantly via α2-6 linkages. The sialylation status of PrPSc is an important determinant of prion disease pathogenesis, as it dictates the rate of prion replication and controls the fate of prions in an organism. The current study tests whether a knockout of ST6Gal1, one of the two mammalian sialyltransferases that catalyze the sialylation of glycans via α2-6 linkages, reduces the sialylation status of PrPSc and alters prion disease pathogenesis. We found that a global knockout of ST6Gal1 in mice significantly reduces the α2-6 sialylation of the brain parenchyma, as determined by staining with Sambucus Nigra agglutinin. However, the sialylation of PrPSc remained stable and the incubation time to disease increased only modestly in ST6Gal1 knockout mice (ST6Gal1-KO). A lack of significant changes in the PrPSc sialylation status and prion pathogenesis is attributed to the redundancy in sialylation and, in particular, the plausible involvement of a second member of the sialyltransferase family that sialylate via α2-6 linkages, ST6Gal2.

9.
Biotechnol Biofuels Bioprod ; 15(1): 94, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104808

RESUMEN

Manufacturing fuels and chemicals from cellulose materials is a promising strategy to achieve carbon neutralization goals. In addition to the commonly used enzymatic hydrolysis by cellulase, rapid pyrolysis is another way to degrade cellulose. The sugar obtained by fast pyrolysis is not glucose, but rather its isomer, levoglucosan (LG). Here, we revealed that both levoglucosan kinase activity and the transportation of levoglucosan are bottlenecks for LG utilization in Saccharomyces cerevisiae, a widely used cell factory. We revealed that among six heterologous proteins that had levoglucosan kinase activity, the 1,6-anhydro-N-acetylmuramic acid kinase from Rhodotorula toruloides was the best choice to construct levoglucosan-utilizing S. cerevisiae strain. Furthermore, we revealed that the amino acid residue Q341 and W455, which were located in the middle of the transport channel closer to the exit, are the sterically hindered barrier to levoglucosan transportation in Gal2p, a hexose transporter. The engineered yeast strain expressing the genes encoding the 1,6-anhydro-N-acetylmuramic acid kinase from R. toruloides and transporter mutant Gal2pQ341A or Gal2pW455A consumed ~ 4.2 g L-1 LG in 48 h, which is the fastest LG-utilizing S. cerevisiae strain to date.

10.
Am J Cancer Res ; 12(1): 280-302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141018

RESUMEN

Tumor cells have a modified glycosylation profile that promotes their evolution and/or their maintenance in the tumor. Sialylation is a type of glycosylation that is often altered in cancers. RNA-Seq database analysis revealed that the sialyltransferase gene ST3GAL2 is significantly overexpressed at all stages of colorectal cancer (CRC). ST3GAL2 sialylates both glycoproteins and glycolipids. The aim of this work was to investigate the involvement of ST3GAL2 in CRC. Using the HT29 tumor cell line derived from a stage II of CRC, we decreased the expression of ST3GAL2 by specific shRNA, and then characterized these cells by performing functional tests. We found that ST3GAL2 knock down (KD) significantly decreases tumor cell proliferation, cell migration and invasiveness properties in vitro. The cell cycle of these cells is affected with a change in cell cycle distribution and an increase of cell apoptosis. The effect of ST3GAL2 KD was then studied in vivo, following xenografts into nude mice, in which the tumor progression was significantly reduced. This work demonstrates that ST3GAL2 is a major player in the behavior of colorectal tumor cells, by modifying the sialylation state of glycoproteins and glycolipids which remain to be specifically identified.

11.
Eur J Pharmacol ; 917: 174731, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973950

RESUMEN

Skeletal muscle is a principal tissue involved in energy expenditure and glucose metabolism. Although the results of our and other studies show that spexin could decrease food intake and obesity, the specific metabolic effect of spexin on glucose metabolism of skeletal muscle is still unclear. The aim of this study is to investigate whether spexin might mitigate obesity-induced insulin resistance in skeletal muscles and to explore its underlying mechanisms. The high fat diet-fed mice were treated with 50 µg/kg/d spexin for 21 consecutive days, and the differentiated myotubes of L6 were treated with spexin (200, 400, 800 nM) in the absence or presence of M871 (800 nM) for 12 h respectively. Besides, the galanin type 2 (GAL2) receptor knockdown myotubes were treated with 800 nM spexin for 12 h in this study. The present findings showed that spexin reversed hyperglycemia and glucose intolerance as well as insulin intolerance and insulin resistance in the mice fed with high fat diet. Furthermore, spexin markedly augmented the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) expression and deacetylation, and further triggered glucose transporter 4 (GLUT4) expression and trafficking in myotubes through p38 mitogen-activated protein kinase (P38MAPK) and protein kinase B (AKT) activation. More importantly, the elevation of glucose consumption related genes by spexin were abolished by GAL2 receptor antagonist or silencing of GAL2 receptor in myotubes. In conclusion, our findings provide a novel insight that spexin can protect against insulin resistance and increase glucose consumption in skeletal muscles mainly through activation of GAL2/GLUT4 signal pathway. Spexin might therefore be a novel therapeutic target for hyperglycemia and insulin resistance in clinic.


Asunto(s)
Resistencia a la Insulina
12.
FEMS Yeast Res ; 21(3)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33791789

RESUMEN

The hexose permease Gal2 of Saccharomyces cerevisiae is expressed only in the presence of its physiological substrate galactose. Glucose tightly represses the GAL2 gene and also induces the clearance of the transporter from the plasma membrane by ubiquitination and subsequent degradation in the vacuole. Although many factors involved in this process, especially those responsible for the upstream signaling, have been elucidated, the mechanisms by which Gal2 is specifically targeted by the ubiquitination machinery have remained elusive. Here, we show that ubiquitination occurs within the N-terminal cytoplasmic tail and that the arrestin-like proteins Bul1 and Rod1 are likely acting as adaptors for docking of the ubiquitin E3-ligase Rsp5. We further demonstrate that phosphorylation on multiple residues within the tail is indispensable for the internalization and possibly represents a primary signal that might trigger the recruitment of arrestins to the transporter. In addition to these new fundamental insights, we describe Gal2 mutants with improved stability in the presence of glucose, which should prove valuable for engineering yeast strains utilizing complex carbohydrate mixtures present in hydrolysates of lignocellulosic or pectin-rich biomass.


Asunto(s)
Citoplasma/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Ubiquitinación , Proteínas de Transporte de Monosacáridos/genética , Fosforilación , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Ubiquitina/metabolismo
13.
J Int Med Res ; 49(2): 300060520976864, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33535865

RESUMEN

OBJECTIVE: This study aimed to investigate the expression of O-linked glycoprotein glycans in tissue of patients with cholangiocarcinoma compared with adjacent normal tissue. METHODS: Sixty patients with cholangiocarcinoma were included in the study. Permethylated O-linked glycans from intrahepatic cholangiocarcinoma tissue and adjacent normal tissue were analyzed using nano-spray ionization-linear ion trap mass spectrometry. Histochemistry of peanut agglutinin lectin was used for detection and localization of galactose (Gal) 1, N-acetyl-galactosamine (GalNAc) 1. RESULTS: O-linked glycans from patients with cholangiocarcinoma were composed of di- to hexa-saccharides with a terminal galactose and sialic acids (N-acetylneuraminic acid [NeuAc]). A total of eight O-linked glycan structures were detected. Gal1GalNAc1 and Gal2 N-acetyl-glucosamine 1 GalNAc1 expression was significantly higher in tissue from patients with cholangiocarcinoma compared with adjacent normal tissue, while NeuAc1Gal1GalNAc1 expression was significantly lower. High Gal1GalNAc1 expression was significantly associated with the late stage of cholangiocarcinoma (stages II-IV), lymphatic invasion, and vascular invasion. CONCLUSION: Our study shows expression of O-linked glycans in progression of cholangiocarcinoma and highlights the association of Gal1GalNAc1 with lymphatic and vascular invasion of cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Conductos Biliares Intrahepáticos , Humanos , Fenotipo , Polisacáridos
14.
Glycobiology ; 31(5): 557-570, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242079

RESUMEN

Sialic acids are unique sugars with negative charge and exert various biological functions such as regulation of immune systems, maintenance of nerve tissues and expression of malignant properties of cancers. Alpha 2,6 sialylated N-glycans, one of representative sialylation forms, are synthesized by St6gal1 or St6gal2 gene products in humans and mice. Previously, it has been reported that St6gal1 gene is ubiquitously expressed in almost all tissues. On the other hand, St6gal2 gene is expressed mainly in the embryonic and perinatal stages of brain tissues. However, roles of St6gal2 gene have not been clarified. Expression profiles of N-glycans with terminal α2,6 sialic acid generated by St6gal gene products in the brain have never been directly studied. Using conventional lectin blotting and novel sialic acid linkage-specific alkylamidationmass spectrometry method (SALSA-MS), we investigated the function and expression of St6gal genes and profiles of their products in the adult mouse brain by establishing KO mice lacking St6gal1 gene, St6gal2 gene, or both of them (double knockout). Consequently, α2,6-sialylated N-glycans were scarcely detected in adult mouse brain tissues, and a majority of α2,6-sialylated glycans found in the mouse brain were O-linked glycans. The majority of these α2,6-sialylated O-glycans were shown to be disialyl-T antigen and sialyl-(6)T antigen by mass spectrometry analysis. Moreover, it was revealed that a few α2,6-sialylated N-glycans were produced by the action of St6gal1 gene, despite both St6gal1 and St6gal2 genes being expressed in the adult mouse brain. In the future, where and how sialylated O-linked glycoproteins function in the brain tissue remains to be clarified.


Asunto(s)
Encéfalo/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Sialiltransferasas/genética , Animales , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sialiltransferasas/deficiencia , Sialiltransferasas/metabolismo , beta-D-Galactósido alfa 2-6-Sialiltransferasa
15.
Mater Today Bio ; 8: 100080, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33205040

RESUMEN

New strategies for immune modulation have shown real promise in regenerative medicine as well as the fight against autoimmune diseases, allergies, and cancer. Dendritic cells (DCs) are gatekeepers of the immune system and their ability in shaping the adaptive immune responses makes DCs ideal targets for immune modulation. Carbohydrates are abundant in different biological systems and are known to modulate DC phenotype and function. However, how simple monosaccharides instruct DC function is less well understood. In this study, we used a combinatorial array of immobilized monosaccharides to investigate how they modulate DC phenotype and function and crucially the impact of such changes on downstream adaptive immune responses. Our data show that a selection of monosaccharides significantly suppress lipopolysaccharide-induced DC activation as evidenced by a reduction in CD40 expression, IL-12 production, and indoleamine 2,3-dioxygenase activity, while inducing a significant increase in IL-10 production. These changes are indicative of the induction of an anti-inflammatory or regulatory phenotype in DCs, which was further confirmed in DC-T cell co-cultures where DCs cultured on the 'regulatory' monosaccharide-coated surfaces were shown to induce naïve T cell polarization toward regulatory phenotype. Our data also highlighted a selection of monosaccharides that are able to promote mixed Treg and Th17 cell differentiation, a T cell phenotype expected to be highly immune suppressive. These data show the potential immunomodulatory effects of immobilized monosaccharides in priming DCs and skewing T cell differentiation toward an immune-regulatory phenotype. The ability to fine-tune immune responses using these simple carbohydrate combinations (e.g. as coatings for existing materials) can be utilized as novel tools for immune modulation with potential applications in regenerative medicine, implantable medical devices, and wound healing where reduction of inflammatory responses and maintaining immune homeostasis are desirable.

16.
Artículo en Inglés | MEDLINE | ID: mdl-32478054

RESUMEN

Co-utilization of xylose and glucose from lignocellulosic biomass is an economically feasible bioprocess for chemical production. Many strategies have been implemented for efficiently assimilating xylose which is one of the predominant sugars of lignocellulosic biomass. However, there were few reports about engineering Saccharomyces cerevisiae for carotenoid production from xylose-glucose mixtures. Herein, we developed a platform for facilitating carotenoid production in S. cerevisiae by fermentation of xylose-glucose mixtures. Firstly, a xylose assimilation pathway with mutant xylose reductase (XYL1m), xylitol dehydrogenase (XYL2), and xylulokinase (XK) was constructed for utilizing xylose. Then, introduction of phosphoketolase (PK) pathway, deletion of Pho13 and engineering yeast hexose transporter Gal2 were conducted to improve carotenoid yields. The final strain SC105 produced a 1.6-fold higher production from mixed sugars than that from glucose in flask culture. In fed-batch fermentation with continuous feeding of mixed sugars, carotenoid production represented a 2.6-fold higher. To the best of our knowledge, this is the first report that S. cerevisiae was engineered to utilize xylose-glucose mixtures for carotenoid production with a considerable high yield. The present study exhibits a promising advantage of xylose-glucose mixtures assimilating strain as an industrial carotenoid producer from lignocellulosic biomass.

17.
Methods Mol Biol ; 2132: 55-63, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32306314

RESUMEN

S-nitrosylation, which involves the coupling of an NO group to the reactive thiol of Cys residue(s) in a polypeptide, is an important posttranslational modification detected in a variety of proteins. Here, we present the S-nitrosylation of recombinant galectin-2 (Gal-2) using S-nitrosocysteine and the measurement of the molecular ratio of S-nitrosylation of Cys residues in the Gal-2 protein.


Asunto(s)
Cisteína/análogos & derivados , Galectina 2/genética , Proteínas Recombinantes/química , S-Nitrosotioles/análisis , Cisteína/análisis , Cisteína/química , Cisteína/metabolismo , Galectina 2/química , Galectina 2/metabolismo , Humanos , Modelos Moleculares , Óxido Nítrico/metabolismo , Conformación Proteica , Ingeniería de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo
18.
Onco Targets Ther ; 13: 903-914, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32099394

RESUMEN

OBJECTIVE: Breast cancer is one of the most common and serious types of cancer, with a particularly unfavorable prognosis. Although dysregulation of ß-galactoside α 2,6-sialyltransferase 2 (ST6GAL2) has been observed in multiple cancers, the mechanism involved remains to be clarified. In this study, we focused on the potential function of ST6GAL2 in the regulation of breast cancer. METHODS: Flow cytometry and CCK-8 were used to measure markers of the cell cycle proliferation, adhesion, and invasion. Real-time PCR and immunohistochemistry analysis were used to detect the expression levels of ST6GAL2 in breast cancer tissues. Western blot was used to analyze the expression level of genes correlated with focal adhesion and metastasis pathways in breast cancer cells. RESULTS: ST6GAL2 expression levels were higher in breast cancer tissues as compared to healthy tissues. ST6GAL2 expression was associated with tumor stage, survival time, and estrogen receptor (ER)/progesterone receptor (PR)/human epidermal growth factor receptor 2 (HER2) status of breast cancer patients. Silence of ST6GAL2 inhibited cancer progression by arresting cell cycle progression at G0/G1 phase and inhibiting cell adhesion and invasion. ST6GAL2 was positively correlated with focal adhesion and metastasis pathways, and its downregulation inhibited the expression of ICAM-1, VCAM-1, CD24, MMP2, MMP9, and CXCR4. CONCLUSION: These findings indicated that ST6GAL2 might serve as a useful potential target for treatment of breast cancer.

19.
Reprod Sci ; 27(1): 278-289, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32046393

RESUMEN

Ganglioside GT1b is well-known for its role in cytokine production and in activating epidermal growth factor receptor (EGFR)-mediated signaling pathways in cancer cells. However, there are no reports that clearly elucidate the role of GT1b in EGFR-mediated signaling pathways in porcine oocytes during the process of in vitro maturation (IVM). In this study, we investigated the role of GT1b in EGFR-mediated activation of the ERK1/2 pathway in porcine cumulus-oocyte complexes (COCs) at 44 h of IVM. Our data show that expression of the ST3GAL2 protein significantly increased in porcine COCs at 44 h irrespective of treatment with EGF. Meiotic maturation and mRNA levels of factors (HAS2, TNFAIP6, and PTX3) related to cumulus cell expansion significantly increased in COCs treated with 2 µM GT1b during IVM in the absence of EGF. They also increased in COCs treated with EGF/GT1b as compared to that in the other groups. Interestingly, protein levels of EGFR, phospho-EGFR, ERK1/2, and phospho-ERK1/2 dramatically increased in COCs treated with EGF/GT1b. Moreover, the rate of fertilization and the developmental competence of blastocyst were significantly higher in EGF/GT1b-treated COCs. Taken together, these results suggest that exogenous GT1b improves meiotic maturation and cumulus cell expansion in porcine COCs via activation of EGFR-mediated ERK1/2 signaling.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células del Cúmulo/efectos de los fármacos , Receptores ErbB/metabolismo , Gangliósidos/farmacología , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Células del Cúmulo/metabolismo , Técnicas de Maduración In Vitro de los Oocitos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Oocitos/metabolismo , Porcinos
20.
EMBO J ; 39(6): e102214, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32030804

RESUMEN

Spinal cord microglia contribute to nerve injury-induced neuropathic pain. We have previously demonstrated that toll-like receptor 2 (TLR2) signaling is critical for nerve injury-induced activation of spinal cord microglia, but the responsible endogenous TLR2 agonist has not been identified. Here, we show that nerve injury-induced upregulation of sialyltransferase St3gal2 in sensory neurons leads to an increase in expression of the sialylated glycosphingolipid, GT1b. GT1b ganglioside is axonally transported to the spinal cord dorsal horn and contributes to characteristics of neuropathic pain such as mechanical and thermal hypersensitivity. Spinal cord GT1b functions as an TLR2 agonist and induces proinflammatory microglia activation and central sensitization. Pharmacological inhibition of GT1b synthesis attenuates nerve injury-induced spinal cord microglia activation and pain hypersensitivity. Thus, the St3gal2-GT1b-TLR2 axis may offer a novel therapeutic target for the treatment of neuropathic pain.


Asunto(s)
Gangliósidos/metabolismo , Neuralgia/terapia , Traumatismos de los Nervios Periféricos/terapia , Transducción de Señal , Receptor Toll-Like 2/agonistas , Animales , Gangliósidos/antagonistas & inhibidores , Regulación de la Expresión Génica , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuralgia/etiología , Traumatismos de los Nervios Periféricos/etiología , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Médula Espinal/metabolismo , Receptor Toll-Like 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA