RESUMEN
The success of chemotherapy regimens in patients with non-small cell lung cancer (NSCLC) could be restricted at least in part by cancer stem cells (CSC) niches within the tumor microenvironment (TME). CSC express CD133, CD44, CD47, and SOX2, among other markers and factors. Analysis of public data revealed that high expression of hyaluronan (HA), the main glycosaminoglycan of TME, correlated positively with CSC phenotype and decreased disease-free interval in NSCLC patients. We aimed to cross-validate these findings on human and murine lung cancer cells and observed that CD133 + CSC differentially expressed higher levels of HA, HAS3, ABCC5, SOX2, and CD47 (p < 0.01). We modulated HA expression with 4-methylumbelliferone (4Mu) and detected an increase in sensitivity to paclitaxel (Pa). We evaluated the effect of 4Mu + chemotherapy on survival, HA metabolism, and CSC profile. The combination of 4Mu with Pa reduced the clonogenic and tumor-forming ability of CSC. Pa-induced HAS3, ABCC5, SOX2, and CD47 expression was mitigated by 4Mu. Pa + 4Mu combination significantly reduced in vivo tumor growth, enhancing animal survival and restoring the CSC profile in the TME to basal levels. Our results suggest that HA is involved in lung CSC phenotype and chemosensitivity, and its modulation by 4Mu improves treatment efficacy to inhibit tumor progression.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Ácido Hialurónico , Himecromona , Neoplasias Pulmonares , Células Madre Neoplásicas , Paclitaxel , Microambiente Tumoral , Ácido Hialurónico/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Ratones , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Himecromona/farmacología , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patologíaRESUMEN
BACKGROUND: There is a paucity of real-world epidemiological data on patients with mucopolysaccharidoses (MPS) in Latin America. This real-world study assessed the disease burden, management patterns and multidisciplinary clinical approaches for MPS-IVA and MPS-VI patients in Latin America (Colombia, Ecuador, Mexico, Peru). METHODS: Data were collected from physicians/specialists experienced in treating MPS patients between April-June 2020, via an online patient-diary survey. RESULTS: Overall, 29 physicians/specialists participated in this study. Data from 98 patients were analyzed (MPS-IVA, 71 patients and MPS-VI, 27 patients). Mean age for MPS-IVA patients was 17.5 years and for MPS-VI patients was 11.6 years, and the majority were females (52% and 78%, respectively). MPS-IVA and VI patients presented a high absenteeism from school (55% and 37%, respectively; <18 years age) and workplace (78% and 100%, respectively; >18 years age), indicating an impact of the disease on some aspects of the patients' quality of life. The onset of the first symptom occurred at the age of 3.1 years for MPS-IVA patients and at 1 year for MPS-VI, with delay in diagnosis (3.5-3.9 years from symptom onset) and enzyme replacement therapy (ERT) initiation (1.1-3.6 years from diagnosis). ERT interruptions were observed for MPS-IVA (48%) and MPS-VI patients (44%), with non-availability of medication recorded as the main reason for non-adherence (46% and 60% patients, respectively). ERT showed noticeable treatment benefits in MPS-IVA/VI patients, with stabilization/reduction in complications or the number of surgeries. A multidisciplinary clinical team approach was used for patient management. CONCLUSION: The disease burden for MPS-IVA/VI was high in Latin America, with consistent management, treatment and socio-demographic trends throughout the region.
RESUMEN
Large amounts of by-products are generated during fish processing. The study aimed to assess whether tilapia scales are a potential source for obtaining glycosaminoglycans, as well as to determine their anticoagulant and cytotoxic/antiproliferative activities, against different tumor lines. The glycosaminoglycans were extracted, purified, and fractionated. The fractions that indicated the presence of uronic acid and sulfated GAGs were characterized by electrophoresis, NMR, and degree of sulfation (DS). The extraction process using the papain enzyme had a yield of 0.86%. Fraction V (FV) revealed the presence of chondroitin sulfate chains CS-A and CS-C, with DS of 0.146. FV demonstrated anticoagulant potential, as it was able to increase aPTT time. FV showed a cytotoxic effect for HTC metabolizing cells at 24, 48, and 72 h. However, it did not show activity for neuroblastoma cells in any of the evaluated times. The results indicate that the tilapia scales are a possible source for obtaining chondroitin sulfate, with potential use as anticoagulant and cytotoxic/antitumor.
Asunto(s)
Cíclidos , Tilapia , Animales , Anticoagulantes/farmacología , Sulfatos de Condroitina , GlicosaminoglicanosRESUMEN
BACKGROUND AIMS: Fourier Transform Infrared Micro-spectroscopy (FTIRM) is an emerging tool that obtains images with biochemical information of samples that are too small to be chemically analyzed by conventional Fourier transform infrared (FTIR) spectroscopy techniques. So, the central objective of this project was to study the biochemical similarity between articular and cultured chondrocytes by chemometric analysis from FTIRM. METHODS: Nine samples of knee articular cartilage were obtained; each sample was divided into two fragments, one portion was used for FTIRM characterization in situ, and from another part, chondrocytes were obtained to be cultured (in vitro), which were subjected to an FTIRM to characterize their biomolecular components. The FTIRM spectra were normalized, and the second derivative was calculated. From these data, principal component analysis (PCA) and a chemometric comparison between in situ and cultured chondrocytes were carried out. Finally, the biochemical mapping was conducted obtaining micro-FTIR imaging. RESULTS: FTIRM spectra of in situ and in vitro chondrocytes were obtained, and different biomolecules were detected, highlighting lipids, proteins, glycosaminoglycans, collagen, and aggrecan. Despite slight differences in the FTIR spectra, the PCA proved the organic similarity between in situ chondrocytes and cultured chondrocytes, which was also observed in the analysis of the ratios related to the degradation of the articular cartilage and collagen. In the same way, the ability of the FTIRM to characterize the molecular biodistribution was demonstrated. CONCLUSION: The biochemical composition and biodistribution analysis using FTIRM have been useful for comparing cultured chondrocytes and in situ chondrocytes.
RESUMEN
Morquio A disease (Mucopolysaccharidosis type IVA, MPS IVA) is one of the 11 mucopolysaccharidoses (MPSs), a heterogeneous group of inherited lysosomal storage disorders (LSDs) caused by deficiency in enzymes need to degrade glycosaminoglycans (GAGs). Morquio A is characterized by a decrease in N-acetylgalactosamine-6-sulfatase activity and subsequent accumulation of keratan sulfate and chondroitin 6-sulfate in cells and body fluids. As the pathophysiology of this LSD is not completely understood and considering the previous results of our group concerning oxidative stress in Morquio A patients receiving enzyme replacement therapy (ERT), the aim of this study was to investigate oxidative stress parameters in Morquio A patients at diagnosis. It was studied 15 untreated Morquio A patients, compared with healthy individuals. The affected individuals presented higher lipid peroxidation, assessed by urinary 15-F2t-isoprostane levels and no protein damage, determined by sulfhydryl groups in plasma and di-tyrosine levels in urine. Furthermore, Morquio A patients showed DNA oxidative damage in both pyrimidines and purines bases, being the DNA damage positively correlated with lipid peroxidation. In relation to antioxidant defenses, affected patients presented higher levels of reduced glutathione (GSH) and increased activity of glutathione peroxidase (GPx), while superoxide dismutase (SOD) and glutathione reductase (GR) activities were similar to controls. Our findings indicate that Morquio A patients present at diagnosis redox imbalance and oxidative damage to lipids and DNA, reinforcing the idea about the importance of antioxidant therapy as adjuvant to ERT, in this disorder.
RESUMEN
Mucopolysaccharidosis I (MPS I) is a congenital disorder caused by the deficiency of α-l-iduronidase (IDUA), with the accumulation of glycosaminoglycans (GAGs) in the CNS. Although GAG toxicity is not fully understood, previous works suggest a GAG-induced alteration in neuronal membrane composition. This study is aimed to evaluate the levels and distribution of gangliosides and cholesterol in different brain regions (cortex, cerebellum, hippocampus and hypothalamus) in a model using IDUA knockout (KO) mice (C57BL/6). Lipids were extracted with chloroform-methanol and then total gangliosides and cholesterol were determined, followed by ganglioside profile analyses. While no changes in cholesterol content were observed, the results showed a tissue dependent ganglioside alteration in KO mice: a total ganglioside increase in cortex and cerebellum, and a selective presence of GM3, GM2 and GD3 gangliosides in the hippocampus and hypothalamus. To elucidate this, we evaluated gene expression of ganglioside synthesis (GM3, GD3 and GM2/GD2 synthases) and degradation of (Neuraminidase1) enzymes in the cerebellum and hippocampus by RT-sq-PCR. The results obtained with KO mice showed a reduced expression of GD3 and GM2/GD2 synthases and Neuraminidase1 in cerebellum; and a decrease in GM2/GD2 synthase and Neuraminidase1 in the hippocampus. These data suggest that the observed ganglioside changes result from a combined effect of GAGs on ganglioside biosynthesis and degradation.
Asunto(s)
Corteza Cerebral/metabolismo , Gangliósido G(M1)/metabolismo , Expresión Génica , Lípidos de la Membrana/metabolismo , Mucopolisacaridosis I/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cerebelo/metabolismo , Corteza Cerebral/patología , Colesterol/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis I/patología , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Neuraminidasa/genética , Neuraminidasa/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismoRESUMEN
Hunter disease or mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disorder caused by the deficit of the enzyme iduronate-2-sulfatase (IDS), involved in the catabolism of the glycosaminoglycans heparan and dermatan sulfate. Our aim was to search for molecular defects in the promoter region of the IDS gene in patients with previous biochemical diagnosis of MPS II and after we sequenced the whole IDS coding region and the exon/intron boundaries without detecting any pathogenic mutations. Screening of the promoter region of four patients detected in two of them a 178 bp deletion and in the other two a single nucleotide substitution 818 bp upstream of the coding region. The latter had never been described before in MPS II patients and it turned out to be a polymorphism. Our experience suggests that MPS II patients with no mutations detected in the IDS coding region should be screened in the promoter region of the gene. Findings will hopefully help to clarify the relationship between genotype and phenotype and will be useful for the correct molecular diagnosis of Hunter patients and the identification of female carriers, the latter particularly important for genetic counseling.