RESUMEN
Muscimol (3) is a psychoactive isoxazole present in various Amanita mushrooms, along with ibotenic acid and muscarine. It is structurally related to GABA and acts as a GABAA agonist with great affinity. Muscimol use dates back to Siberian shamanic cultures as an entheogen, where it was ingested orally to exert psychoactive effects. Although not approved for clinical use, its potential and use as a research tool in neuroscience is of immense value, with 3H-muscimol being used as a radioligand in GABA receptor research. Since its discovery in the early 60s, many research groups have worked on the synthesis of the compound. Recent research suggests the potential use of muscimol in neuropathic pain relief and other potential uses are also being studied. In this review, we will cover the history, chemistry, pharmacology and overall importance of the compound.
Asunto(s)
Agonistas de Receptores de GABA-A , Muscimol , Neurociencias , Animales , Humanos , Agonistas de Receptores de GABA-A/farmacología , Agonistas de Receptores de GABA-A/química , Historia del Siglo XX , Historia del Siglo XXI , Muscimol/química , Muscimol/farmacología , Neurociencias/historia , Neurociencias/métodos , Técnicas de Química Sintética/historia , Técnicas de Química Sintética/métodosRESUMEN
Autism spectrum disorders (ASDs) are characterized by core behavioral symptoms in the domains of sociability, language/communication, and repetitive or stereotyped behaviors. Deficits in the prefrontal and hippocampal excitatory/inhibitory balance due to a functional loss of GABAergic interneurons are proposed to underlie these symptoms. Increasing the postsynaptic effects of GABA with compounds that selectively modulate GABAergic receptors could be a potential target for treating ASD symptoms. In addition, deficits in GABAergic interneurons have been linked to dopamine (DA) system dysregulation, and, despite conflicting evidence, abnormalities in the DA system activity may underly some ASD symptoms. Here, we investigated whether the positive allosteric modulator of α5-containing GABAA receptors (α5-GABAARs) SH-053-2'F-R-CH3 (10 mg/kg) attenuates behavioral abnormalities in rats exposed to valproic acid (VPA) in utero, an established risk factor for autism. We also evaluated if animals exposed to VPA in utero present changes in the ventral tegmental area (VTA) DA system activity using in vivo electrophysiology and if SH-053-2'F-R-CH3 could attenuate these changes. SH-053-2'F-R-CH3 was administered intraperitoneally 30 min before each behavioral test and electrophysiology. In utero VPA exposure caused male and female rats to present increased repetitive behavior (self-grooming) in early adolescence and deficits in social interaction in adulthood. Male, but not female VPA rats, also presented deficits in recognition memory as adults. SH-053-2'F-R-CH3 attenuated the impairments in sociability and cognitive function in male VPA-exposed rats without attenuating the decreased social interaction in females. Adult male and female VPA-exposed rats also showed an increased VTA DA neuron population activity, which was not changed by SH-053-2'F-R-CH3. Despite sex differences, our findings indicate that α5-GABAARs positive allosteric modulators may effectively attenuate some core ASD symptoms.
Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Receptores de GABA-A , Conducta Social , Ácido Valproico , Animales , Femenino , Ácido Valproico/farmacología , Ratas , Masculino , Embarazo , Receptores de GABA-A/efectos de los fármacos , Dopamina/metabolismo , Trastorno del Espectro Autista/inducido químicamente , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiopatología , Ratas Sprague-Dawley , Regulación Alostérica/efectos de los fármacos , Modelos Animales de Enfermedad , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/fisiopatologíaRESUMEN
Cinnamic alcohol (CA) is a phenylpropanoid found in the essential oil of the bark of the genus Cinnamomum spp. Schaeff. (Lauraceae Juss.), known as cinnamon. To evaluate the neuroprotective effect of CA and its possible mechanism of action on mice submitted to the pentylenetetrazole (PTZ) induced epileptic seizures model. Behavioral, neurochemical, histomorphometric and immunohistochemistry analysis were carried out. The administration of CA (50-200 mg/kg, i.p., 30 min prior to PTZ and 0.7-25 mg/kg, i.p., 60 min prior to PTZ) increased the latency to seizure onset and the latency to death. The effects observed with CA treatment at 60 min were partially reversed by pretreatment with flumazenil. Furthermore, neurochemical assays indicated that CA reduced the concentration of malondialdehyde and nitrite, while increasing the concentration of reduced glutathione. Finally, histomorphometric and immunohistochemistry analysis revealed a reduction in inflammation and an increase in neuronal preservation in the hippocampi of CA pre-treated mice. Taken together, the results suggest that CA seems to modulate the GABAA receptor, decrease oxidative stress, mitigate neuroinflammation, and reduce cell death processes.
Asunto(s)
Cinnamomum , Fármacos Neuroprotectores , Aceites Volátiles , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/aislamiento & purificación , Ratones , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Aceites Volátiles/aislamiento & purificación , Masculino , Cinnamomum/química , Pentilenotetrazol , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/prevención & control , Estrés Oxidativo/efectos de los fármacos , Propanoles/farmacologíaRESUMEN
Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.
RESUMEN
Epilepsy is a neurological disease with no defined cause, characterized by recurrent epileptic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phenylpropanoid compounds to predict biological activities. The LBVS were developed for the targets alpha- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel Ttype (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 compound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and significant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epilepsy.
Asunto(s)
Anticonvulsivantes , Epilepsia , Humanos , Epilepsia/tratamiento farmacológico , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/química , Simulación del Acoplamiento MolecularRESUMEN
INTRODUCTION: Propofol and midazolam are the main options for moderate sedation in clinical practice. In addition, these drugs are used to reduce intracranial pressure in cases of intracranial hypertension, and their use in these situations is guided by limited evidence. OBJECTIVE: To compare the effects of propofol and midazolam on intracranial pressure wave morphology in moderate sedation in patients undergoing upper digestive endoscopy. METHODS: Sixty patients were included in this study, being divided into two groups, propofol and midazolam group. Intracranial pressure was monitored during and after upper digestive endoscopy, using non-invasive monitoring equipment developed by the company Brain4care. Arterial pressure was measured before and after the exam. RESULTS: The propofol group had lower intracranial pressure (p=0.037) during moderate sedation compared to intracranial pressure after endoscopy and a significant decrease in systolic (p=0.0001) and diastolic pressure (p=0.001) after sedation. Midazolam, on the other hand, reduced systolic pressure (p=0.001), but didn't change the other parameters after the procedure. There wasn't a significant difference between the propofol and midazolam groups. CONCLUSION: There was no significant difference between the groups studied, however, analyses within the propofol and midazolam groups indicate that propofol, but not midazolam, causes changes in intracranial pressure in moderate sedation.
INTRODUÇÃO: O propofol e o midazolam são as principais opções para sedação moderada na prática clínica. Além disso, esses medicamentos são usados para reduzir a pressão intracraniana em casos de hipertensão intracraniana e seu uso nessas situações é orientado por evidências limitadas. OBJETIVO: Comparar os efeitos do propofol e do midazolam na morfologia da curva de pressão intracraniana na sedação moderada em pacientes submetidos à endoscopia digestiva alta. MÉTODOS: Sessenta pacientes foram incluídos nesse estudo, sendo divididos em dois grupos: propofol e midazolam. A pressão intracraniana foi monitorada durante e após a endoscopia digestiva alta, usando um equipamento de monitoramento não invasivo desenvolvido pela empresa Brain4care. A pressão arterial foi medida antes e depois do exame. RESULTADOS: O grupo do propofol apresentou pressão intracraniana mais baixa (p=0,037) durante a sedação moderada em comparação com a pressão intracraniana após a endoscopia, e uma diminuição significativa na pressão sistólica (p=0,0001) e diastólica (p=0,001) após a sedação. O midazolam, por outro lado, reduziu a pressão sistólica (p=0,001), mas não alterou os outros parâmetros após o procedimento. Não houve diferença significativa entre os grupos propofol e midazolam. CONCLUSÃO: Não houve diferença significativa entre os grupos estudados; entretanto, as análises dentro dos grupos de propofol e midazolam indicam que apenas o propofol causa alterações na pressão intracraniana em sedação moderada.
Asunto(s)
Humanos , Masculino , Femenino , Persona de Mediana Edad , Midazolam , Presión Intracraneal/efectos de los fármacos , Propofol , Sedación Consciente , Endoscopía del Sistema Digestivo , Receptores de GABA-ARESUMEN
The purpose of this study was to investigate the mechanisms underlying sex differences in the role of spinal α6-subunit containing GABAA (α6GABAA) receptors in rats with neuropathic pain. Intrathecal 2,5-dihydro-7-methoxy-2-(4-methoxyphenyl)-3H-pyrazolo [4,3-c] quinoline-3-one (PZ-II-029, positive allosteric modulator of α6GABAA receptors) reduced tactile allodynia in female but not in male rats with neuropathic pain. PZ-II-029 was also more effective in females than males in inflammatory and nociplastic pain. Ovariectomy abated the antiallodynic effect of PZ-II-029 in neuropathic rats, whereas 17ß-estradiol or 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), estradiol receptor-α agonist, restored the effect of PZ-II-029 in ovariectomized rats. Blockade of estradiol receptor-α, using MPP (1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride), prevented the effect of 17ß-estradiol on PZ-II-029-induced antiallodynia in ovariectomized neuropathic females. Nerve injury reduced α6GABAA receptor protein expression at the dorsal root ganglia (DRG) and spinal cord of intact and ovariectomized female rats. In this last group, reconstitution with 17ß-estradiol fully restored its expression in DRG and spinal cord. In male rats, nerve injury reduced α6GABAA receptor protein expression only at the spinal cord. Nerve injury enhanced estradiol receptor-α protein expression at the DRG in intact non-ovariectomized rats. However, ovariectomy decreased estradiol receptor-α protein expression at the DRG. In the spinal cord there were no changes in estradiol receptor-α protein expression. 17ß-estradiol restored estradiol receptor-α protein expression at the DRG and increased it at the spinal cord of neuropathic rats. These data suggest that 17ß-estradiol modulates the expression and function of the α6GABAA receptor through its interaction with estradiol receptor-α in female rats.
Asunto(s)
Estradiol , Neuralgia , Receptores de GABA-A , Médula Espinal , Animales , Femenino , Estradiol/farmacología , Receptores de GABA-A/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ratas , Masculino , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Ovariectomía , Ratas Sprague-Dawley , Caracteres Sexuales , Receptor alfa de Estrógeno/metabolismo , Pirazoles/farmacologíaRESUMEN
Indole alkaloids are the main bioactive molecules of the Gelsemium genus plants. Diverse reports have shown the beneficial actions of Gelsemium alkaloids on the pathological states of the central nervous system (CNS). Nevertheless, Gelsemium alkaloids are toxic for mammals. To date, the molecular targets underlying the biological actions of Gelsemium alkaloids at the CNS remain poorly defined. Functional studies have determined that gelsemine is a modulator of glycine receptors (GlyRs) and GABAA receptors (GABAARs), which are ligand-gated ion channels of the CNS. The molecular and physicochemical determinants involved in the interactions between Gelsemium alkaloids and these channels are still undefined. We used electrophysiological recordings and bioinformatic approaches to determine the pharmacological profile and the molecular interactions between koumine, gelsemine, gelsevirine, and humantenmine and these ion channels. GlyRs composed of α1 subunits were inhibited by koumine and gelsevirine (IC50 of 31.5 ± 1.7 and 40.6 ± 8.2 µM, respectively), while humantenmine did not display any detectable activity. The examination of GlyRs composed of α2 and α3 subunits showed similar results. Likewise, GABAARs were inhibited by koumine and were insensitive to humantenmine. Further assays with chimeric and mutated GlyRs showed that the extracellular domain and residues within the orthosteric site were critical for the alkaloid effects, while the pharmacophore modeling revealed the physicochemical features of the alkaloids for the functional modulation. Our study provides novel information about the molecular determinants and functional actions of four major Gelsemium indole alkaloids on inhibitory receptors, expanding our knowledge regarding the interaction of these types of compounds with protein targets of the CNS.
Asunto(s)
Alcaloides , Gelsemium , Animales , Gelsemium/química , Alcaloides/química , Extractos Vegetales/química , Alcaloides Indólicos/química , Ácido gamma-Aminobutírico , Mamíferos/metabolismoRESUMEN
BACKGROUND: The flavonoid chrysin produces rapid and long-lasting anxiolytic- and antidepressant-like effects in rats. However, it is not known whether low and high doses of chrysin produce differential anti-immobility effects through the Gamma-Aminobutyric Acid sub-type A (GABAA) receptor. The goal of this work was therefore to compare low and high doses of chrysin for their effects on depression-like behavior in a longitudinal study. Moreover, chrysin was compared with the serotonergic fluoxetine and Gamma-Aminobutyric Acid (GABA)ergic allopregnanolone, and its involvement with the GABAA receptor after chronic treatment was also investigated. METHODS: Male Wistar rats were assigned to five groups (n = 8 each): vehicle, 1 mg/kg chrysin, 5 mg/kg chrysin, 1 mg/kg fluoxetine, and 1 mg/kg allopregnanolone. In the first experiment, treatments were injected daily and the effects on locomotor activity and the forced swim test were evaluated at 0, 1, 14, and 28 days of treatment, and 48 h after the final treatment. In the second experiment, similar groups were treated for 28 days with injection of 1 mg/kg picrotoxin to investigate the role of the GABAA receptor. Depending on the experimental design, one- and two-way analysis of variance (ANOVA) tests were used for statistical analysis, with p < 0.05 set as the criteria for significance. RESULTS: In both experiments, the treatments did not alter locomotor activity. However, low and high doses of chrysin, allopregnanolone, and fluoxetine gradually produced antidepressant-like effects in the forced swim test, and maintained this effect for 48 h post-treatment, except with low dose chrysin. Picrotoxin blocked the antidepressant-like effects produced by low dose chrysin, but did not affect those produced by high dose chrysin, allopregnanolone, or fluoxetine. CONCLUSIONS: The differential antidepressant-like effects caused by low and high doses of chrysin are time-dependent. Low dose chrysin produces a rapid antidepressant-like effect, whereas high dose chrysin produces a delayed but sustained the effect, even 48 h after withdrawal. The effect with high dose chrysin was similar to that observed with allopregnanolone and fluoxetine. The mechanism for the antidepressant-like effect of low chrysin appears to be GABAergic, whereas the effect of high dose chrysin may involve other neurotransmission and neuromodulation systems related to the serotonergic system.
Asunto(s)
Fluoxetina , Receptores de GABA-A , Ratas , Masculino , Animales , Fluoxetina/farmacología , Pregnanolona , Ratas Wistar , Receptores de GABA , Picrotoxina , Estudios Longitudinales , Antidepresivos/farmacología , Flavonoides/farmacología , Ácido gamma-AminobutíricoRESUMEN
Rapid neuronal inhibition in the brain is mediated by γ-aminobutyric acid (GABA) activation of GABAA receptors. The GABRA5 gene, which encodes the α5 subunit of the GABAA receptor, has been implicated in an aggressive subgroup of medulloblastoma (MB), a type of pediatric brain tumor. However, the possible role of GABAA receptor subunits in glioma remains poorly understood. Here, we examined the expression of genes encoding GABAA receptor subunits in different types of glioma, and its possible association with patient prognosis assessed by overall survival (OS). Data were obtained from the French and The Cancer Genome Atlas Brain Lower Grade Glioma (TCGA-LGG) datasets and analyzed for expression of GABAA receptor subunit genes. OS was calculated using the Kaplan-Meier estimate. We found that genes GABRA2, GABRA3, GABRB3, GABRG1, and GABRG2 showed a significant association with OS, with higher gene expression indicating better prognosis. In patients with GBM, high expression of GABRA2 was associated with shorter OS, whereas, in contrast, higher levels of GABRB3 were associated with better prognosis indicated by longer OS. In patients with lower grade gliomas, GABRA3, GABRB3, GABRG1, and GABRG2, were associated with longer OS. High GABRB3 expression was related to longer survival when low grade glioma types were analyzed separately. Our results suggest an overall association between higher expression of most genes encoding GABAA receptor subunits and better prognosis in different types of glioma. Our findings support the possibility that down-regulation of GABAA receptors in glioma contributes to promoting tumor progression by reducing negative inhibition. These findings might contribute to further evaluation of GABAA receptors as a therapeutic target in glioma.
RESUMEN
We investigated the participation of the nucleus of the tractus solitarius (NTS) in tonicâclonic seizures and postictal antinociception control mediated by NMDA receptors, the role of NTS GABAergic interneurons and noradrenergic pathways from the locus coeruleus (LC) in these phenomena. The NTS-lateral nucleus reticularis paragigantocellularis (lPGi)-LC pathway was studied by evaluating neural tract tracer deposits in the lPGi. NMDA and GABAergic receptors agonists and antagonists were microinjected into the NTS, followed by pharmacologically induced seizures. The effects of LC neurotoxic lesions caused by DSP-4, followed by NTS-NMDA receptor activation, on both tonicâclonic seizures and postictal antinociception were also investigated. The NTS is connected to lPGi neurons that send outputs to the LC. Glutamatergic vesicles were found on dendrites and perikarya of GABAergic interneurons in the NTS. Both tonicâclonic seizures and postictal antinociception are partially dependent on glutamatergic-mediated neurotransmission in the NTS of seizing rats in addition to the integrity of the noradrenergic system since NMDA receptor blockade in the NTS and intrathecal administration of DSP-4 decrease the postictal antinociception. The GABAA receptor activation in the NTS decreases both seizure severity and postictal antinociception. These findings suggest that glutamatergic inputs to NTS-GABAergic interneurons, in addition to ascending and descending noradrenergic pathways from the LC, are critical for the control of both seizures and postictal antinociception.
Asunto(s)
Bencilaminas , Locus Coeruleus , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Locus Coeruleus/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Bulbo Raquídeo/metabolismo , Núcleo Solitario/metabolismo , Norepinefrina/metabolismo , Convulsiones/metabolismoRESUMEN
Gamma-aminobutyric acid (GABA) disinhibition in medial hypothalamus (MH) nuclei of rats elicits some defensive reactions that are considered panic attack-like behaviours. Recent evidence showed that the norepinephrine-mediated system modulates fear-related defensive behaviours organised by MH neurons at least in part via noradrenergic receptors recruitment on midbrain tegmentum. However, it is unknown whether noradrenergic receptors of the MH also modulate the panic attack-like reactions. The aim of this work was to investigate the distribution of noradrenergic receptors in MH, and the effects of either α1-, α2- or ß-noradrenergic receptors blockade in the MH on defensive behaviours elaborated by hypothalamic nuclei. Defensive behaviours were evaluated after the microinjection of the selective GABAA receptor antagonist bicuculline into the MH that was preceded by microinjection of either WB4101, RX821002, propranolol (α1-, α2- and ß-noradrenergic receptor selective antagonists, respectively), or physiological saline into the MH of male Wistar rats. The α1-, α2- and ß-noradrenergic receptors were found in neuronal perikarya of all MH nuclei, and the α2-noradrenergic receptor were also found on glial cells mainly situated in the ventrolateral division of the ventromedial hypothalamic nucleus. The α1- and ß-noradrenergic receptors blockade in the MH decreased defensive attention and escape reactions elicited by the intra-MH microinjections of bicuculline. These findings suggest that, despite the profuse distributions of α1-, α2- and ß-noradrenergic receptors in the MH, both α1- and ß-noradrenergic receptor- rather than α2-noradrenergic receptor-signalling in MH are critical for the neuromodulation of panic-like behaviour.
Asunto(s)
Trastorno de Pánico , Ratas , Masculino , Animales , Núcleo Hipotalámico Ventromedial , Bicuculina/farmacología , Ratas Wistar , Transmisión Sináptica , MicroinyeccionesRESUMEN
Zolpidem is a non-benzodiazepine hypnotic drug that works as a positive modulator of Gamma-Amino Butyric Acid-A (GABA-A) receptors, with high selectivity for α1 subunits. Given this selective binding, the drug has a strong hypnotic activity. Social isolation during the SARS-CoV-2 pandemic has contributed to increased rates of anxiety, depression, and insomnia. As a result, studies have pointed to a possible increase in the indiscriminate use of drugs with sedative effects, such as Zolpidem, during the pandemic. The aim of this work was to present prospective evidence that warns of the possibility of the abusive use of Zolpidem even after the pandemic. High rates of addiction to this drug have been reported around the world after the emergence of the coronavirus. Data from the National Survey on Drug Use and Health and from Medicaid support the continuing growth in prescription and indiscriminate use of Zolpidem during the pandemic and afterward. Therefore, there is enough evidence to support the indiscriminate use of this drug since the beginning of the pandemic. Rates of indiscriminate use of sedatives may continue to increase in the post-pandemic period, especially if strict control measures are not taken by health authorities.
RESUMEN
Besides its function as a local mediator of the immune response, histamine can play a role as a neurotransmitter and neuromodulator. Histamine actions are classically mediated through four different G protein-coupled receptor subtypes but non-classical actions were also described, including effects on many ligand-gated ion channels. Previous evidence indicated that histamine acts as a positive modulator on diverse GABAA receptor subtypes, such as GABAAα1ß2γ2, GABAAα2ß3γ2, GABAAα3ß3γ2, GABAAα4ß3γ2 and GABAAα5ß3γ2. Meanwhile, its effects on GABAAρ1 receptors, known to stand for tonic currents in retinal neurons, had not been examined before. The effects of histamine on the function of human homomeric GABAAρ1 receptors were studied here, using heterologous expression in Xenopus laevis oocytes followed by the electrophysiological recording of GABA-evoked Cl- currents. Histamine inhibited GABAAρ1 receptor-mediated responses. Effects were reversible, independent of the membrane potential, and strongly dependent on both histamine and GABA concentration. A rightward parallel shift in the concentration-response curve for GABA was observed in the presence of histamine, without substantial change in the maximal response or the Hill coefficient. Results were compatible with a competitive antagonism of histamine on the GABAAρ1 receptors. This is the first report of inhibitory actions exerted by histamine on an ionotropic GABA receptor.
Asunto(s)
Histamina , Receptores de GABA-A , Humanos , Animales , Receptores de GABA-A/metabolismo , Histamina/farmacología , Histamina/metabolismo , Receptores de GABA , Fenómenos Electrofisiológicos , Ácido gamma-Aminobutírico/farmacología , Ácido gamma-Aminobutírico/metabolismo , Xenopus laevis/metabolismo , Oocitos/metabolismoRESUMEN
RESUMEN El tratamiento de la catatonía considera habitualmente el uso de benzodiacepinas y, de fallar estas, se procede a la terapia electroconvulsiva. Sin embargo, las hipotéticas vías neurobiológicas implicadas en la catatonía postulan un efecto benéfico de fármacos gabaérgicos y bloqueadores de glutamato. Se presenta el caso clínico de una paciente mujer de 45 años de edad, con diagnóstico de esquizofrenia paranoide, que desarrolló un cuadro de estupor catatónico (sin respuesta a las benzodiacepinas) y varias complicaciones médicas; sin embargo, el cuadro mejoró rápidamente con la combinación de zolpidem, memantina y aripiprazol. De este modo, se registró un desenlace no logrado con la terapia estándar de benzodiacepinas. Se concluye que la combinación de medicamentos gabaérgicos y bloqueadores de glutamato puede ser utilizada beneficiosamente en casos de estupor catatónico que no logran responder al manejo usual con benzodiacepinas.
ABSTRACT Objective: The treatment of catatonia usually involves the use of benzodiazepines and, if these fail, electroconvulsive therapy is applied. Nevertheless, hypothetical neurobiological pathways involved in catatonia postulate beneficial effects of GABAergic drugs and glutamate blockers. Clinical case: A 45-year-old female patient, diagnosed with paranoid schizophrenia who developed a catatonic stupor (with no response to benzodiazepines) and various medical complications; however, the condition improved rapidly with the combination of zolpidem, memantine and aripiprazole. Result: A favorable outcome was obtained in this case, not achieved with the previous use of standard benzodiazepine therapy. Conclusions: The combination of GABAergic drugs and glutamate blockers can be beneficially implemented in cases of catatonic stupor that fail to respond to the usual management with benzodiazepines.
RESUMEN
The prevalence of anxiety is a significant public health problem, being the 24th leading cause of disability in individuals affected by this disorder. In this context, chalcones, a flavonoid subclass obtained from natural or synthetic sources, interact with central nervous system (CNS) receptors at the same binding site as benzodiazepines, the primary drugs used in the treatment of anxiety. Thus, our study investigates the anxiolytic effect of synthetic chalcones derived from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus Müll.Arg. in modulating anxiolytic activity via GABAergic and serotoninergic neurotransmission in an adult zebrafish model. Chalcones 1 and 2 were non-toxic to adult zebrafish and showed anxiolytic activity via GABAA receptors. Chalcone 2 also had its anxiolytic action reversed by the antagonist granisetron, indicating the participation of serotonergic receptors 5HTR3A/3B in the anxiolytic effect. In addition, molecular docking results showed that chalcones have a higher affinity for the GABAA receptor than DZP and binding in the same region of the DZP binding site, indicating a similar effect to the drug. Furthermore, the interaction of chalcones with GABAA and 5-HT3A receptors demonstrates the anxiolytic effect potential of these molecules.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Ansiolíticos , Chalconas , Animales , Adulto , Humanos , Ansiolíticos/farmacología , Ansiolíticos/química , Ansiolíticos/uso terapéutico , Pez Cebra/metabolismo , Chalconas/farmacología , Chalconas/química , Simulación del Acoplamiento Molecular , Receptores de GABA-A/metabolismo , Ácido gamma-AminobutíricoRESUMEN
Trigeminal neuropathic pain (TNP) is an intense pain condition characterized by hyperalgesia and allodynia; however, its neural mechanisms are not completely understood. Its management is complex, and studies that investigate its biochemical mechanisms are important for improving clinical approaches. This study aimed to evaluate the involvement of GABAergic, glutamatergic, and opioidergic systems and brain-derived neurotrophic factor (BDNF) levels in the TNP process in rats. TNP is induced by chronic constriction injury of the infraorbital nerve (CCI-ION). Nociceptive responses were evaluated using the facial von Frey test before and after the administration of GABAergic and opioidergic agonists and glutamatergic antagonists. The rats were divided into vehicle-treated control (C), sham-surgery (SS), and CCI-ION groups, and then subdivided into the vehicle (V)-treated SS-V and CCI-ION-V groups, SS-MK801 and CCI-ION-MK801, treated with the N-methyl-d-aspartate receptor selective antagonist MK801; SS-PB and CCI-ION-PB, treated with phenobarbital; SS-BZD and CCI-ION-BZD, treated with diazepam; SS-MOR and CCI-ION-MOR, treated with morphine. BDNF levels were evaluated in the cerebral cortex, brainstem, trigeminal ganglion, infraorbital branch of the trigeminal nerve, and serum. CCI-ION induced facial mechanical hyperalgesia. Phenobarbital and morphine reversed the hyperalgesia induced by CCI-ION, and the CCI-BZD group had an increased nociceptive threshold until 60 min. CCI-ION-GLU increased the nociceptive threshold at 60 min. Cerebral cortex and brainstem BDNF levels increased in the CCI-ION and SS groups. Only the CCI group presented high levels of BDNF in the trigeminal ganglion. Our data suggest the involvement of GABAergic, glutamatergic, and opioidergic systems and peripheral BDNF in the TNP process.
Asunto(s)
Neuralgia , Neuralgia del Trigémino , Animales , Ratas , Factor Neurotrófico Derivado del Encéfalo , Maleato de Dizocilpina , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Morfina/farmacología , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Fenobarbital/farmacología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Neuralgia del Trigémino/tratamiento farmacológico , Neuralgia del Trigémino/metabolismo , Neuronas GABAérgicas/metabolismo , Receptores Opioides/metabolismoRESUMEN
BACKGROUND: Epilepsy is a neurological disease affected by an imbalance of inhibitory and excitatory signaling in the brain. INTRODUCTION: In this disease, the targets are active in pathophysiology and thus can be used as a focus for pharmacological treatment. METHODS: Several studies demonstrated the antiepileptic effect of drugs acting on the following targets: N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-gated calcium channel (Cav), Gamma aminobutyric acid transporter type 1 (GAT1), voltage-gated sodium channels (Nav), voltage-gated potassium channel of the Q subfamily (KCNQ) and Gamma aminobutyric acid type A (GABAA) receiver. RESULTS: These studies highlight the importance of molecular docking. CONCLUSION: Quantitative Structure-Activity Relationship (QSAR) and computer aided drug design (CADD) in predicting of possible pharmacological activities of these targets.
Asunto(s)
Epilepsia , Humanos , Simulación del Acoplamiento Molecular , Epilepsia/tratamiento farmacológico , Receptores AMPA/fisiología , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Ácido gamma-Aminobutírico/uso terapéuticoRESUMEN
Gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. It is produced by interneurons and recycled by astrocytes. In neurons, GABA activates the influx of Cl- via the GABAA receptor or efflux or K+ via the GABAB receptor, inducing hyperpolarization and synaptic inhibition. In astrocytes, the activation of both GABAA and GABAB receptors induces an increase in intracellular Ca2+ and the release of glutamate and ATP. Connexin 43 (Cx43) hemichannels are among the main Ca2+-dependent cellular mechanisms for the astroglial release of glutamate and ATP. However, no study has evaluated the effect of GABA on astroglial Cx43 hemichannel activity and Cx43 hemichannel-mediated gliotransmission. Here we assessed the effects of GABA on Cx43 hemichannel activity in DI NCT1 rat astrocytes and hippocampal brain slices. We found that GABA induces a Ca2+-dependent increase in Cx43 hemichannel activity in astrocytes mediated by the GABAA receptor, as it was blunted by the GABAA receptor antagonist bicuculline but unaffected by GABAB receptor antagonist CGP55845. Moreover, GABA induced the Cx43 hemichannel-dependent release of glutamate and ATP, which was also prevented by bicuculline, but unaffected by CGP. Gliotransmission in response to GABA was also unaffected by pannexin 1 channel blockade. These results are discussed in terms of the possible role of astroglial Cx43 hemichannel-mediated glutamate and ATP release in regulating the excitatory/inhibitory balance in the brain and their possible contribution to psychiatric disorders.
Asunto(s)
Astrocitos , Conexina 43 , Ratas , Animales , Conexina 43/metabolismo , Astrocitos/metabolismo , Receptores de GABA-A , Bicuculina/farmacología , Animales Recién Nacidos , Células Cultivadas , Ácido Glutámico/farmacología , Ácido gamma-Aminobutírico/farmacología , Adenosina Trifosfato/farmacologíaRESUMEN
Stress susceptibility could play a role in developing premenstrual anxiety due to abnormalities in the hypothalamus-pituitary-adrenal (HPA) axis and impairments in the GABAA receptors' benzodiazepine (BDZ) site. Hence, we studied the stress-vulnerable Wistar Kyoto rat strain (WKY) to evaluate progesterone withdrawal (PW) effects on anxiety, HPA axis response, and to explore indicators of GABAA functionality in the BDZ site. For five days, ovariectomized WKY rats were administered 2.0 mg/kg of progesterone. Twenty-four hours after the last administration, rats were tested in the anxiety-like burying behavior test (BBT) or elevated plus maze test (EPM), and corticosterone was determined. [3H]Flunitrazepam binding autoradiography served as the BDZ binding site index of the GABAA receptor in amygdala nuclei and hippocampus's dentate gyrus (DG). Finally, different doses of diazepam in PW-WKY rats were tested in the BBT. PW induced anxiety-like behaviors in both BBT and EPM compared with No-PW rats. PW increased corticosterone, but was blunted when combined with PW and BBT. PW increased [3H]Flunitrazepam binding in the DG and central amygdala compared with No-PW rats. Diazepam at a low dose induced an anxiogenic-like response in PW rats, suggesting a paradoxical response to benzodiazepines. Overall, PW induced anxiety-like behavior, a blunted HPA axis response, and higher GABAAR/BZD binding site sensitivity in a stress-vulnerable rat strain. These findings demonstrate the role of stress-susceptibility in GABAAR functionality in a preclinical approximation of PMDD.