Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Front Plant Sci ; 15: 1435927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148625

RESUMEN

Introduction: Phosphorus nutrition and hormone concentration both affect crop yield formation. Ascertaining the interaction of phosphorus and GA3 has a synergistic effect on the grain yield and phosphorus utilization efficiency of oilseed flax in dryland. It is extremely important for improving grain yield and phosphorus utilization efficiency. Methods: A field experiment was conducted in 2019 and 2020 at the Dingxi Oil Crops Test Station to investigated the effects of phosphorus, gibberellin (GA3), and their interaction on the grain yield and phosphorus-utilization efficiency of oilseed flax plants. Phosphorus fertilizer was applied at three levels (0, 67.5, 135 kg P2O5·ha-1) and GA3 was also sprayed at three concentrations (0, 15, and 30 mg·L-1). Results: The results showed that application of 67.5 kg P2O5·ha-1 reduced leaves acid phosphatase (ACPase) activity, but increased phosphorus accumulation throughout the growth period, the 1000-kernel weight (TKW), and the number of grains per capsule. Spraying GA3 significantly increased the leaves ACPase activity, phosphorus accumulation after anthesis and its contribution to grain, phosphorus-utilization efficiency, the number of capsules per plant, and TKW. The phosphorus accumulation at the anthesis, kernel, and maturity stages under the treatment of fertilizing 67.5 kg P2O5·ha-1 and spraying 30 mg·L-1 GA3 were increased by 56.06%, 73.51%, and 62.17%, respectively, compared with the control (no phosphorus, no GA3). And the phosphorus accumulation after anthesis and its contribution to grain also increased. 67.5 kg P2O5·ha-1 combined with 30 mg·L-1 GA3 and 135 kg P2O5·ha-1 combined with 15 mg·L-1 GA3 both significantly increased grain yield of oilseed flax, reaching 1696 kg·ha-1 and 1716 kg·ha-1 across two years, respectively. And there was no significant difference between them. However, the former treatment significant increased the apparent utilization rate, agronomic utilization rate, and partial productivity of phosphorus. The interaction between phosphorus and GA3 was significant for grain yield. Conclusion: Therefore, the application of 67.5 kg P2O5·ha-1 in combination with 30 mg·L-1 GA3 is an effective fertilization approach for enhancing oilseed flax growth and grain yield in the experiment region and other similar areas.

2.
Plants (Basel) ; 13(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39204614

RESUMEN

Paeonia peregrina Mill. is a protected, herbaceous species native to Southeastern Europe and Turkey. Due to its vulnerability, it has to be protected both in its natural habitats and through cultivation. Peonies are known to have a low potential for natural regeneration due to their seed dormancy, low germination rate, and long germination period. In this study, treatments with gibberellic acid (GA3 150, 200, 250, 300, and 350 mg L-1 GA3) and warm (at 20/16 °C day/night regime) and cold stratification (at 4 °C) were used to accelerate dormancy release and increase the germination rate. The seeds of P. peregrina from four natural habitats in Serbia and the Institute's collection were collected and analyzed. They showed an underdeveloped embryo that needs to grow inside the seed before it can germinate. The application of GA3 accelerated each stage of germination (seed coat rapturing, hypocotyl dormancy release, and epicotyl dormancy release) for approximately 10 days compared to the control. It was also found that two-day imbibition with 200 mg L-1 GA3 significantly accelerated and equalized germination. Higher GA3 concentrations had a more pronounced impact on each stage but also resulted in greater seed infection after the seed coat rupture, elongated and weak seedlings, while lower concentrations did not result in obtaining uniform seedlings. There were no significant differences observed between localities. Restoring P. peregrina through seeds and nursery-produced plants is crucial for conserving the genetic diversity of the tested species.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124843, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067365

RESUMEN

A novel red phosphor Lu3(1-x)Sc2Ga3O12: xEu3+(0 ≤ x ≤ 0.3) was successfully prepared by high temperature solid state method. The Lu2.4Sc2Ga3O12: 0.2Eu3+ phosphor shows strong high internal quantum efficiency and thermal stability with values of 64.79 % and 87.0 %, respectively. Based on Lu2.4Sc2Ga3O12: 0.2Eu3+ phosphor, the partial replacement of Lu3+ ions in the host by Gd3+ / Y3+ ions changes the local crystal field environment of Eu3+ ions, resulting in wonderful changes in the luminous center, and the luminous intensity at 593 nm is increased by 3.66 and 3.54 times, respectively. The decay time of Eu3+ ions is analyzed from the perspective of dynamics, and the reasons for the enhancement of luminescence after partial replacement of Lu3+ ions are discussed in detail from two aspects of phosphor structure and crystal field effect around Eu3+ ions. In addition, with the substitution of Gd3+ / Y3+ ions, the thermal stability of the sample is 90.3 %/89.4 % with excellent low thermal quenching. The thermal quenching mechanism is described by combining Debye temperature and activation energy. The sample also has a high internal quantum efficiency IQE=79.03 % / 78.24 %. Finally, under the excitation of 365 nm chip, the phosphors of Lu2.34Sc2Ga3O12: 0.2Eu3+, 0.02Gd3+ and Lu2.34Sc2Ga3O12: 0.2Eu3+, 0.02Y3+ synthesized R-LED device has extremely high color rendering index, Ra is 78.23/77.15 and color temperature is 1640.38 K/1642.97 K. The experimental results show that the Lu2.34Sc2Ga3O12: 0.2Eu3+, 0.02Gd3+ / Y3+ phosphors prepared has a wide application prospect in w-LED devices.

4.
J Inorg Biochem ; 260: 112670, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39068684

RESUMEN

The binding ability of 8-hydroxyquinoline-2-carboxylic acid (8-HQA) towards Ga3+ has been investigated by ISEH+ (Ion Selective Electrode, glass electrode) potentiometric and UV/Vis spectrophotometric titrations in KCl(aq) at I = 0.2 mol dm-3 and at T = 298.15 K. Further experiments were also performed adopting both the metal (with Fe3+ as competing cation) and ligand-competition approaches (with EDTA as competing ligand). Results gave evidence of the formation of the [Ga(8-HQA)]+, [Ga(8-HQA)(OH)], [Ga(8-HQA)(OH)2]- and [Ga(8-HQA)2]- species, the latter being so far the most stable, as also confirmed by ESI-MS analysis. Experiments were also designed to determine the stability constants of the [Ga(EDTA)]- and [Ga(EDTA)(OH)]2- in the above conditions. Due to the relevance of Ga3+ hydrolysis in aqueous systems, literature data on this topic were collected and critically analyzed, providing equations for the calculation of mononuclear Ga3+ hydrolysis constants at T = 298.15 K, in different ionic media, in the ionic strength range 0 < I / mol dm-3 ≤ 1.0. The synthesis and characterization (by ElectroSpray Ionization - Mass Spectrometry (ESI-MS), Attenuated Total Reflectance - Fourier-Transform Infrared Spectroscopy (ATR-FTIR) and ThermoGravimetric Analysis (TGA)) of Ga3+/8-HQA complexes were also performed, identifying [Ga(8-HQA)2]- as the main isolated species, even in the solid state. Finally, the potential effects of 8-HQA and Ga3+/8-HQA complex towards human microbiota exposed to ionizing radiation were evaluated (namely Actinomyces viscosus, Streptococcus mutans, Streptococcus sobrinus, Pseudomonas putida, Pseudomonas fluorescens and Escherichia coli), as well as their anti-proliferative and anti-inflammatory properties. A radioprotective effect of Ga3+/8-HQA complex was observed on Actinomyces viscosus, while showing a potential radiosensitizing effect against Streptococcus mutans and Streptococcus sobrinus. No cytotoxicity on RAW264.7 murine macrophage cells was observed, neither for the free ligand or Ga3+/8-HQA complex. Nevertheless, Ga3+/8-HQA complex highlighted potential anti-inflammatory properties.


Asunto(s)
Complejos de Coordinación , Galio , Oxiquinolina , Oxiquinolina/química , Oxiquinolina/farmacología , Galio/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Animales , Ratones , Humanos , Antibacterianos/farmacología , Antibacterianos/química
5.
Plants (Basel) ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891268

RESUMEN

Symplocos paniculata are reported to exhibit seed dormancy, which impedes its cultivation and widespread adoption. In this study, a comprehensive method was established to overcome seed dormancy by subjecting seeds to scarification in 98% H2SO4 for 10 min, followed by 1000 mg·L-1 GA3 soaking for 48 h and stratification at 4 °C for 100 days. The seed germination percentage has increased significantly, to a peak of 42.67%, though the seeds could not germinate timely by NaOH scarification. Additionally, the dynamic changes of key stored substances (proteins, soluble sugars, starches, and fats), associated enzyme activities (amylases, peroxidase, and catalase), and endogenous hormones (abscisic acid, gibberellic acid, and indole-3-acetic acid) in seeds were investigated. The results demonstrated a continuous degradation of starch and fat in S. paniculata seeds, while the levels of protein and soluble sugar exhibited fluctuations, which probably facilitated seed dormancy breaking through energy supply and transformation. The enzymatic activities underwent rapid changes, accompanied by a gradual decrease in ABA content within the seeds with increasing stratification time. Notably, GA3, GA3/ABA, and (GA3 + IAA)/ABA showed significant increases, indicating their positive regulatory roles in seed germination. This study clarified the dormancy mechanism and established an effective method for the release dormancy of S. paniculata seeds.

6.
Plants (Basel) ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732399

RESUMEN

The roots, stems, leaves, and seeds of Eucommia ulmoides contain a large amount of trans-polyisoprene (also known as Eu-rubber), which is considered to be an important laticiferous plant with valuable industrial applications. Eu-rubber used in industry is mainly extracted from leaves. Therefore, it is of great significance to identify genes related to regulating the leaf size of E. ulmoides. Plant growth-regulating factors (GRFs) play important roles in regulating leaf size, and their functions are highly conserved across different plant species. However, there have been very limited reports on EuGRFs until now. In this study, eight canonical EuGRFs with both QLQ and WRC domains and two putative eul-miR396s were identified in the chromosome-level genome of E. ulmoides. It is found that, unlike AtGRFs, all EuGRFs contain the miR396s binding site in the terminal of WRC domains. These EuGRFs were distributed on six chromosomes in the genome of E. ulmoides. Collinearity analysis of the E. ulmoides genome revealed that EuGRF1 and EuGRF3 exhibit collinear relationships with EuGRF2, suggesting that those three genes may have emerged via gene replication events. The collinear relationship between EuGRFs, AtGRFs, and OsGRFs showed that EuGRF5 and EuGRF8 had no collinear members in Arabidopsis and rice. Almost all EuGRFs show a higher expression level in growing and developing tissues, and most EuGRF promoters process phytohormone-response and stress-induced cis-elements. Moreover, we found the expression of EuGRFs was significantly induced by gibberellins (GA3) in three hours, and the height of E. ulmoides seedlings was significantly increased one week after GA3 treatment. The findings in this study provide potential candidate genes for further research and lay the foundation for further exploring the molecular mechanism underlying E. ulmoides development in response to GA3.

7.
PeerJ ; 12: e17236, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618572

RESUMEN

Purpose: Juniper (Juniperus procera) is a common forest tree species in Saudi Arabia. The decline in many populations of J. procera in Saudi Arabia is mainly due to seed dormancy and loss of natural regeneration. This study assessed the effects of chemical and hormonal treatments on seed germination and seedling growth in juniper plants. Methods: The seeds were subjected to either chemical scarification with 90% sulfuric acid and 20% acetic acid for 6 min or hormonal treatment by seed soaking in two concentrations (50 and 100 ppm) of three growth regulators, namely, indole acetic acid (IAA), gibberellins (GA3), and kinetin, for 72 h. A control group without any seed treatment was also prepared. The experiments were performed in an incubator maintained at room temperature and under a light and dark period of 12 h for 6 w. The germinated seeds for each treatment were counted and removed from the dishes. The selected germinated seeds from different treatments were planted in a greenhouse and irrigated with tap water for another 6 weeks. The hormone-treated seedlings were sprayed with their corresponding hormone concentrations 1 w after planting. Results: The highest percentage of seed germination was significantly recorded after seed soaking in 50 ppm GA3, whereas treatment with IAA (100 ppm) resulted in the best seedling growth. Seedlings treated with the three phytohormones showed a significant increase in photosynthetic pigments, total soluble sugars, proteins, percentage of oil, IAA, GA3, and kinetin contents of juniper seedlings compared with the control value, whereas abscisic acid content was decreased compared with chemical treatments. Conclusion: The investigated different treatments had an effective role in breaking seed dormancy and improving seedling growth of J. procera, which is facing a notable decline in its population worldwide. Moreover, such an effect was more pronounced in the three phytohormones that succeeded in breaking dormancy and growth of the Juniperus plant than in the other treatments.


Asunto(s)
Porcelana Dental , Juniperus , Aleaciones de Cerámica y Metal , Plantones , Titanio , Germinación , Reguladores del Crecimiento de las Plantas/farmacología , Cinetina/farmacología , Semillas , Hormonas
8.
Biomolecules ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38672503

RESUMEN

The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.


Asunto(s)
Antibacterianos , Galio , Hierro , Compuestos Organometálicos , Fenoles , Pseudomonas aeruginosa , Sideróforos , Galio/química , Galio/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Sideróforos/química , Sideróforos/metabolismo , Hierro/metabolismo , Hierro/química , Oligopéptidos/química , Oligopéptidos/metabolismo , Tiazoles/química , Tiazoles/metabolismo , Tiazoles/farmacología , Simulación por Computador , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Pironas/química , Pironas/metabolismo , Pironas/farmacología
9.
Mol Biol Rep ; 51(1): 581, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668759

RESUMEN

BACKGROUND: Homeodomain-leucine ZIPper (HD-ZIP) transcription factors play crucial roles in plant growth, development, and stress responses. The HD-ZIP family is categorised into four groups (HD-ZIP I-IV). While extensive genome-wide studies have been conducted on the HD-ZIP I, III, and IV subfamily in Nicotiana tabacum (tobacco), comprehensive reports on the HD-ZIP II subfamily genes are limited. METHODS: Bioinformatics resources and tools were utilised to analyse molecular characteristics, phylogenetic homology, and protein interactions. Expression pattern analyses in various tissues and the relative expression of NtHD-ZIP II genes under drought and GA3 treatment were assessed by qRT-PCR. RESULTS: In this study, 24 HD-ZIP II members were systematically identified and categorised into seven independent clades through phylogenetic analysis involving tobacco and other plant species. We found that 19 NtHD-ZIP II genes exhibited tissue-specific expression. The transcripts of NtHD-ZIPII3, 4, 14, 23, 24 were notably induced under the drought treatments, while those of NtHD-ZIPII7, 11, 12, 20 were suppressed. Furthermore, NtHD-ZIPII15 transcripts decreased following GA3 treatment, whereas the transcripts of NtHD-ZIPII7, 8, 11, 12 were induced after GA3 treatment. Notably, an increase in trichomes was observed in tobacco leaves treated with GA3 and subjected to drought. CONCLUSIONS: The expression levels of some HD-ZIP II genes were altered, and an increase in glandular trichomes was induced under GA3 and drought treatments in tobacco. Overall, our findings provide insights into the expression patterns of NtHD-ZIP II genes and will facilitate their functional characterisation in future studies.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Nicotiana , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Nicotiana/genética , Nicotiana/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Familia de Multigenes , Giberelinas/metabolismo , Leucina Zippers/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Perfilación de la Expresión Génica/métodos
10.
J Agric Food Chem ; 72(8): 4433-4447, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354220

RESUMEN

Astringency influences the sensory characteristics and flavor quality of table grapes. We tested the astringency sensory attributes of berries and investigated the concentration of flavan-3-ols/proanthocyanidins (PAs) in skins after the application of the plant growth regulators CPPU and GA3 to the flowers and young berries of the "Summer Black" grape. Our results showed that CPPU and GA3 applications increase sensory astringency perception scores and flavan-3-ol/proanthocyanidin concentrations. Using integrated transcriptomic and proteomic analysis, differentially expressed transcripts and proteins associated with growth regulator treatment were identified, including those for flavonoid biosynthesis that contribute to the changes in sensory astringency levels. Transient overexpression of candidate astringency-related regulatory genes in grape leaves revealed that VvWRKY71, in combination with VvMYBPA1 and VvMYC1, could promote the biosynthesis of proanthocyanidins, while overexpression of VvNAC83 reduced the accumulation of proanthocyanidins. However, in transient promoter studies in Nicotiana benthamiana, VvWRKY71 repressed the promoter of VvMYBPA2, while VvNAC83 had no significant effect on the promoter activity of four PA-related genes, and VvMYBPA1 was shown to activate its own promoter. This study provides new insights into the molecular mechanisms of sensory astringency formation induced by plant growth regulators in grape berries.


Asunto(s)
Polietilenglicoles , Poliuretanos , Proantocianidinas , Vitis , Proantocianidinas/metabolismo , Vitis/metabolismo , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Astringentes/metabolismo , Proteómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Genes Reguladores , Regulación de la Expresión Génica de las Plantas
11.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397102

RESUMEN

The GRAS (GAI\RGA\SCL) gene family encodes plant-specific transcription factors that play crucial roles in plant growth and development, stress tolerance, and hormone network regulation. Plant dwarfing symptom is mainly regulated by DELLA proteins of the GRAS gene subfamily. In this study, the association between the GRAS gene family and Paulownia witches' broom (PaWB) was investigated. A total of 79 PfGRAS genes were identified using bioinformatics methods and categorized into 11 groups based on amino acid sequences. Tandem duplication and fragment duplication were found to be the main modes of amplification of the PfGRAS gene family. Gene structure analysis showed that more than 72.1% of the PfGRASs had no introns. The genes PfGRAS12/18/58 also contained unique DELLA structural domains; only PfGRAS12, which showed significant response to PaWB phytoplasma infection in stems, showed significant tissue specificity and responded to gibberellin (GA3) in PaWB-infected plants. We found that the internodes were significantly elongated under 100 µmol·L-1 GA3 treatment for 30 days. The subcellular localization analysis indicated that PfGRAS12 is located in the nucleus and cell membrane. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays confirmed that PfGRAS12 interacted with PfJAZ3 in the nucleus. Our results will lay a foundation for further research on the functions of the PfGRAS gene family and for genetic improvement and breeding of PaWB-resistant trees.


Asunto(s)
Cytisus , Lamiales , Magnoliopsida , Phytoplasma , Magnoliopsida/genética , Enfermedades de las Plantas/genética , Phytoplasma/genética , Fitomejoramiento , Lamiales/genética
12.
Appl Biochem Biotechnol ; 196(3): 1493-1508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37428388

RESUMEN

Gibberellic acid (GA3) is a natural hormone present in some plants used in agricultural formulations as a growth regulator. Currently, its production on an industrial scale is performed by submerged fermentation using the fungus Gibberella fujikuroi, which is associated with low yields, leaving the purification stages with high costs. An alternative is solid-state fermentation (SSF), which makes it possible to obtain higher concentrations of product using low-cost substrates, such as agroindustrial by-products. This research investigated the use of raw rice bran (RRB) and barley malt residue (BMR) as substrates for GA3 production by the fungus Gibberella fujikuroi. Through two statistical designs, the effect of moisture (50 to 70 wt.%) and medium composition (RRB content between 30 and 70 wt.% to a mass ratio between RRB and BMR) was first evaluated. Using the best conditions previously obtained, the effect of adding glucose (carbon source, between 0 and 80 g·L-1) and ammonium nitrate-NH4NO3-(nitrogen source, between 0 and 5 g·L-1) on GA3 productivity was analyzed. The best yield was obtained using 30 wt.% RRB and 70 wt.% BMR for a medium with 70 wt.% of moisture after 7 days of process. It was also found that higher concentrations of NH4NO3 favor the GA3 formation for intermediate values of glucose content (40 g·L-1). Finally, a kinetic investigation showed an increasing behavior in the GA3 production (10.1 g·kg of substrate-1 was obtained), with a peak on the seventh day and subsequent tendency to stabilization.


Asunto(s)
Fusarium , Gibberella , Giberelinas , Oryza , Fermentación , Glucosa
13.
Plant Physiol Biochem ; 206: 108254, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056037

RESUMEN

Gibberellins (GAs) play a crucial role in regulating secondary growth in angiosperms, but their effects on the secondary growth of gymnosperms are rarely reported. In this study, we administered exogenous GA3 to two-year-old P. massoniana seedlings, and examined its effects on anatomical structure, physiological and biochemical changes, and gene expression in stems. The results showed that exogenous GA3 could enhance xylem development in P. massoniana by promoting cell division. The content of endogenous hormone (including auxins, brassinosteroids, and gibberellins) were changed and the genes related to phytohormone biosynthesis and signaling pathway, such as GID1, DELLA, TIR1, ARF, SAUR, CPD, BR6ox1, and CYCD3, were differentially expressed under GA3 treatment. Furthermore, GA3 and BR (brassinosteroid) might act synergistically in promoting secondary growth in P. massoniana. Additionally, lignin content was significantly increased after GA3 treatment accompanied by the express of lignin biosynthesis related genes. PmCAD (TRINITY_DN142116_c0_g1), a crucial gene involved in the lignin biosynthesis, was cloned and overexpressed in Nicotiana benthamiana, significantly promoting the xylem development and enhancing stem lignification. It was regarded as a key candidate gene for improving stem growth of P. massoniana. The findings of this study have demonstrated the impact of GA3 treatment on secondary growth of stems in P. massoniana, providing a foundation for understanding the molecular regulatory mechanism of stem secondary growth in Pinaceae seedlings and offering theoretical guidance for cultivating new germplasm with enhanced growth and yield.


Asunto(s)
Giberelinas , Pinus , Giberelinas/farmacología , Giberelinas/metabolismo , Plantones/metabolismo , Lignina/metabolismo , Pinus/genética , Pinus/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Plant Biol (Stuttg) ; 26(1): 117-125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014496

RESUMEN

Both NO and GAs are essential for regulating various physiological processes and stress responses in plants. However, the interaction between these two molecules remains unclear. We investigated the distinct response patterns of Arabidopsis thaliana Col-0 and GA synthesis functional deficiency mutants to NO by measuring root length. To investigate underlying mechanisms, we detected bioactive GA content using UHPLC-ESI-MS/MS, assessed the accumulation of ROS by chemical staining Arabidopsis roots. We also conducted RNA-seq analysis and compared results between Col-0 and ga3ox1, with and without SNP (as NO donor) treatment. Phenotypic results revealed that the inhibitory effect of NO on primary roots of Arabidopsis was primarily mediated by GA3-oxidase, rather than GA20-oxidase or GA2-oxidase. The content of GA3 decreased in Col-0 treated with SNP, whereas this decrease was not observed in ga3ox1. The deficiency of GA3-oxidase alleviated the buildup of H2 O2 in roots when treated with SNP. We identified 222 DEGs. GO annotation of these DEGs revealed that all top 20 GO terms were related to stress responses. Moreover, three DEGs were annotated to GA-related processes (DDF1, DDF2, EXPA1), and seven DEGs were associated with root development (RAV1, RGF2, ERF71, ZAT6, MYB77, XT1, and DTX50). In summary, NO inhibits primary root growth partially by repressing GA3-oxidase catalysed GA3 synthesis in Arabidopsis. ROS, Ca2+ , DDF1, DDF2, EXPA1 and seven root development-related genes may be involved in crosstalk between NO and GAs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Óxido Nítrico , Oxidorreductasas/genética , Espectrometría de Masas en Tándem , Especies Reactivas de Oxígeno , Giberelinas/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas
15.
Front Plant Sci ; 14: 1240028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078087

RESUMEN

Introduction: Tilia miqueliana is an endemic species whose population is declining. The permeability barrier and mechanical constraint of the pericarp (seed coat) are important causes of its seed dormancy. Although there has been considerable research on this subject, questions remain regarding how the permeability barrier and mechanical constraint of the seed coat are eliminated during dormancy release and how water enters the seed. Therefore, protecting the species by improving its germination/dormancy breaking in the laboratory is urgent. Methods: In this study, the changes in the cellular structure, mechanical properties, and components of the Tilia miqueliana seed coat after an H2SO4-gibberellic acid (GA3) treatment were analyzed during dormancy release. Various analyses (e.g., magnetic resonance imaging, scanning electron microscopy, and paraffin section detection) revealed the water gap and water channel. Results: The H2SO4 treatment eliminated the blockage at the micropyle and hilum of the seeds. Water entered the seeds through the water gap (micropyle) rather than through the hilum or seed coat, after which it dispersed along the radicle, hypocotyl, and cotyledon to the endosperm. During the cold stratification period, the cellular structure was damaged and an increasing number of holes appeared on the inner and outer surfaces of the seed coat. Vickers hardness tests showed that GA3 decreased the seed coat hardness. Additionally, the seed coat lignin and total phenol contents continuously decreased during the cold stratification period. Notably, the Liquid chromatography-mass spectrometry (LC-MS) analysis of the seed coat detected polyethylene glycol (osmoregulator), which may have destabilized the water potential balance inside and outside the seed and increased the water content to levels required for germination, ultimately accelerating seed dormancy release. Discussion: This sophisticated and multi-level study reveals how H2SO4 and GA3 eliminate the permeability barrier and mechanical constraints of the seed coat during dormancy release of Tilia miqueliana seeds. This will be beneficial to artificially assist the natural regeneration and population expansion of Tilia miqueliana.

16.
Funct Integr Genomics ; 24(1): 2, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066213

RESUMEN

Camellia perpetua has the excellent characteristic of flowering multiple times throughout the year, which is of great importance to solve the problem of "short flowering period" and "low fresh flower yield" in the yellow Camellia industry at present. Observations of flowering phenology have demonstrated that most floral buds of C. perpetua were formed by the differentiation of axillary buds in the scales at the base of the terminal buds of annual branches. However, the molecular mechanism of flowering in C. perpetua is still unclear. In this study, we conducted a comparative transcriptomic study of the terminal buds and their basal flower buds in March (spring) and September (autumn) using RNA-seq and found that a total of 11,067 genes were significantly differentially expressed in these two periods. We identified 27 genes related to gibberellin acid (GA) synthesis, catabolism, and signal transduction during floral bud differentiation. However, treatment of the terminal buds and axillary buds of C. perpetua on annual branch with GA3 did not induce floral buds at the reproductive growth season (in August) but promoted shoot sprouting. Moreover, 203 flowering genes were identified from the C. perpetua transcriptome library through homology alignment, including flowering integrators LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO), as well as MADS-box, SQUAMOSA PROMOTER BINDING PROTEIN-box (SBP-box), and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) genes, which were specifically upregulated in floral buds and were likely involved in flowering in C. perpetua. The floral inhibitor CperTFL1b was identified and cloned from C. perpetua, and its expression level was specifically regulated in terminal buds in autumn. Ectopic overexpression of CperTFL1b delayed flowering time and produced abnormal inflorescence and floral organs in Arabidopsis, suggesting that CperTFL1b inhibits flowering. In conclusion, this study deepens our understanding of the molecular mechanism of blooms throughout the year in C. perpetua and provides a helpful reference for cultivating new varieties of yellow Camellia with improved flowering traits.


Asunto(s)
Camellia , Transcriptoma , Camellia/genética , Perfilación de la Expresión Génica , RNA-Seq , Flores , Regulación de la Expresión Génica de las Plantas
17.
ACS Appl Bio Mater ; 6(12): 5582-5595, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37971315

RESUMEN

The present investigation highlights a rhodamine-B- and coumarin-based efficient probe that selectively detects Ga3+ over other metal ions. The active pocket of the ligand for trapping the metal ions and the binding stoichiometry of its Ga3+ complex were discovered by single-crystal X-ray diffraction (SC-XRD) analysis. This binding stoichiometry was further confirmed in the solution state by mass spectrometry and Job's plot. The detection limit was found to be at the nanomolar level. Pyrophosphate being a well-known quencher could easily quench the fluorescence intensity of the RC in the presence of Ga3+ and reversibly recognize Ga3+ in the solution. The spiro ring opening of the ligand after Ga3+ insertion is proposed to be the principal mechanism for the turn-on fluorescence response. This ring opening was confirmed by SC-XRD data and nuclear magnetic resonance (NMR) titration experiments. Both ground- and excited-state calculations of the ligand and complex have been carried out to obtain information about their energy levels and to obtain the theoretical electronic spectra. Furthermore, the live-cell imaging of the probe only and the probe after the addition of Ga3+ have been carried out in HaCaT cells and satisfactory responses were observed. Interestingly, with the help of this probe, Ga3+ can be tracked inside the intracellular organelle such as lysosomes along with other regions of the cell. The article highlights a rhodamine-coumarin-based probe for the detection of Ga3+ over other metal ions with a nanomolar level detection limit. Structural characterization of the ligand and its Ga3+ complex was investigated by SC-XRD. Density functional theory (DFT) and time-dependent DFT (TD-DFT) studies were carried out to explore the excited-state energies and electronic spectra. The application of the probe for the detection of Ga3+ in live cells has been explored, and positive responses were observed.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Ligandos , Rodaminas/química , Iones/análisis
18.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37834318

RESUMEN

Exogenous gibberellin treatment can promote early growth of grape fruit, but the underlying regulatory mechanisms are not well understood. Here, we show that VvDELLA2 directly regulates the activity of the VvCEB1 transcription factor, a key regulator in the control of cell expansion in grape fruit. Our results show that VvCEB1 binds directly to the promoters of cell expansion-related genes in grape fruit and acts as a transcriptional activator, while VvDELLA2 blocks VvCEB1 function by binding to its activating structural domain. The exogenous gibberellin treatment relieved this inhibition by promoting the degradation of VvDELLA2 protein, thus, allowing VvCEB1 to transcriptionally activate the expression of cell expansion-related genes. In conclusion, we conclude that exogenous GA3 treatment regulates early fruit expansion by affecting the VvDELLA-VvCEB1 interaction in grape fruit development.


Asunto(s)
Frutas , Vitis , Frutas/metabolismo , Giberelinas/farmacología , Giberelinas/metabolismo , Vitis/metabolismo , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
19.
Materials (Basel) ; 16(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37763523

RESUMEN

This paper describes an investigation of the effects of silicone-containing additives on the tribological and rheological properties of various lubricant blends. Aerosil® and layered silicate were used to modify lubricants containing rapeseed, linseed and soy oil that were thickened with soap thickener. Tribological tests were carried out using a four-ball concentric contact tester. On the basis of the data obtained from the tribological studies of the selected lubricant blends, it was concluded that the addition of amorphous silica increased the anti-seizure and anti-wear properties of the tested lubricants. The addition of montmorillonite caused a significant increase in the values of the individual parameters determining the level of lubricating properties of the tested lubricants in comparison with the lubricants modified with the silica additive. Based on the results of the rheological tests of the studied lubricants, it was found that the applied additives caused a change in the dynamic viscosity and chemical structure of the tested lubricants, expressed by a change in the values of the G' and G″ indices. The main finding of this manuscript was to demonstrate that the use of montmorillonite and aerosil additives improves the functional properties of vegetable-based plastic lubricants. The performance of tribological and rheological tests is of great scientific importance, as it provides an insight into the interaction of siliceous additives with the results of tribological tests on vegetable-oil-based greases. These findings make it possible to determine the behaviour of the lubricant under load and add to the knowledge of vegetable greases.

20.
Plant Physiol Biochem ; 203: 108053, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37769452

RESUMEN

Plant architecture, an important agronomic trait closely associated with yield, is governed by a highly intricate molecular network. Despite extensive research, many mysteries surrounding this regulation remain unresolved. Trihelix transcription factor family plays a crucial role in the development of plant morphology and abiotic stresses. Here, we identified a novel trihelix transcription factor named SlGT-26, and its down-regulation led to significant alterations in plant architecture, including dwarfing, reduced internode length, smaller leaves, and shorter petioles. The dwarf phenotype of SlGT-26 silenced transgenic plants could be recovered after spraying exogenous GA3, and the GA3 content were decreased in the RNAi plants. Additionally, the expression levels of gibberellin-related genes were affected in the RNAi lines. These results indicate that the dwarf of SlGT-26-RNAi plants may be a kind of GA3-sensitive dwarf. SlGT-26 was response to drought and salt stress treatments. SlGT-26-RNAi transgenic plants demonstrated significantly enhanced drought resistance and salt tolerance in comparison to their wild-type tomato counterparts. SlGT-26-RNAi transgenic plants grew better, had higher relative water content and lower MDA and H2O2 contents. The expression of multiple stress-related genes was also up-regulated. In summary, we have discovered a novel gene, SlGT-26, which plays a crucial role in regulating plant architecture and in respond to drought and salt stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA