Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Anim Ecol ; 93(7): 958-969, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38826033

RESUMEN

Broad-scale assessments of plant-frugivore interactions indicate the existence of a latitudinal gradient in interaction specialization. The specificity (i.e. the similarity of the interacting partners) of plant-frugivore interactions could also change latitudinally given that differences in resource availability could favour species to become more or less specific in their interactions across latitudes. Species occurring in the tropics could be more taxonomically, phylogenetically and functionally specific in their interactions because of a wide range of resources that are constantly available in these regions that would allow these species to become more specialized in their resource usage. We used a data set on plant-avian frugivore interactions spanning a wide latitudinal range to examine these predictions, and we evaluated the relationship between latitude and taxonomic, phylogenetic and functional specificity of plant and frugivore interactions. These relationships were assessed using data on population interactions (population level), species means (species level) and community means (community level). We found that the specificity of plant-frugivore interactions is generally not different from null models. Although statistically significant relationships were often observed between latitude and the specificity of plant-frugivore interactions, the direction of these relationships was variable and they also were generally weak and had low explanatory power. These results were consistent across the three specificity measures and levels of organization, suggesting that there might be an interplay between different mechanisms driving the interactions between plants and frugivores across latitudes.


Asunto(s)
Herbivoria , Animales , Aves/fisiología , Plantas/clasificación , Especificidad de la Especie , Geografía , Filogenia
2.
Biology (Basel) ; 13(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38927243

RESUMEN

Bats are a diverse and ecologically important group of mammals that exhibit remarkable diversity in their feeding habits. These diverse feeding habits are thought to be reflected in the composition and function of their gut microbiota, which plays important roles in nutrient acquisition, immune function, and overall health. Despite the rich biodiversity of bat species in South America, there is a lack of microbiome studies focusing on bats from this region. Such studies could offer major insights into conservation efforts and the preservation of biodiversity in South America. In this work, we aimed to compare the gut microbiota of four bat species with different feeding habits from Southern Brazil, including nectarivorous, frugivorous, insectivorous, and hematophagous bats. Our findings demonstrate that feeding habits can have a significant impact on the diversity and composition of bat gut microbiotas, with each species exhibiting unique metabolic potentials related to their dietary niches. In addition, the identification of potentially pathogenic bacteria suggests that the carriage of microbial pathogens by bats may vary, depending on feeding habits and host-specific factors. These findings provide novel insights into the relationship between bat feeding habits and gut microbiota composition, highlighting the need to promote diverse habitats and food sources to support these ecologically important species.

3.
New Phytol ; 241(1): 461-470, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858964

RESUMEN

Seed dispersal mechanisms play a crucial role in driving evolutionary changes in seed and fruit traits. While previous studies have primarily focussed on the mean or maximum values of these traits, there is also significant intraspecific variation in them. Therefore, it is pertinent to investigate whether dispersal mechanisms can explain intraspecific variations in these traits. Taking seed size as a case study, we compiled a global dataset comprising 3424 records of intraspecific variation in seed size (IVSS), belonging to 691 plant species and 131 families. We provided the first comprehensive quantification of dispersal mechanism effects on IVSS. Biotic-dispersed species exhibited a larger IVSS than abiotic-dispersed species. Synzoochory species had a larger IVSS than endozoochory, epizoochory, and myrmecochory species. Vertebrate-dispersed species exhibited a larger IVSS than invertebrate-dispersed species, and species dispersed by birds exhibited a larger IVSS than mammal-dispersed species. Additionally, a clear negative correlation was detected between IVSS and disperser body mass. Our results prove that the IVSS is associated with the seed dispersal mechanism. This study advances our understanding of the dispersal mechanisms' crucial role in seed size evolution, encompassing not only the mean value but also the variation.


Asunto(s)
Dispersión de Semillas , Humanos , Animales , Semillas , Frutas , Aves , Plantas , Mamíferos
4.
Ecol Evol ; 13(11): e10638, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37915807

RESUMEN

Seed dispersal is one of the most important ecosystem functions globally. It shapes plant populations, enhances forest succession, and has multiple, indirect benefits for humans, yet it is one of the most threatened processes in plant regeneration, worldwide. Seed dispersal distances are determined by the diets, seed retention times and movements of frugivorous animals. Hence, understanding how we can most effectively describe frugivore movement and behaviour with rapidly developing animal tracking technology is key to quantifying seed dispersal. To assess the current use of animal tracking in frugivory studies and to provide a baseline for future studies, we provide a comprehensive review and synthesis on the existing primary literature of global tracking studies that monitor movement of frugivorous animals. Specifically, we identify studies that estimate dispersal distances and how they vary with body mass and environmental traits. We show that over the last two decades there has been a large increase in frugivore tracking studies that determine seed dispersal distances. However, some taxa (e.g. reptiles) and geographic locations (e.g. Africa and Central Asia) are poorly studied. Furthermore, we found that certain morphological and environmental traits can be used to predict seed dispersal distances. We demonstrate that flight ability and increased body mass both significantly increase estimated seed dispersal mean and maximum distances. Our results also suggest that protected areas have a positive effect on mean seed dispersal distances when compared to unprotected areas. We anticipate that this review will act as a reference for future frugivore tracking studies, specifically to target current taxonomic and geographic data gaps, and to further explore how seed dispersal relates to key frugivore and fruit traits.

5.
Oecologia ; 201(1): 83-90, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36416931

RESUMEN

Many plants produce colour-polymorphic fruits. However, the processes responsible for the evolution and maintenance of fruit colour polymorphisms are poorly understood. We investigated the fruit colour polymorphism in Gaultheria depressa var. novae-zealandiae (Ericaceae), a predominantly bird-dispersed, alpine shrub from New Zealand, by testing whether colour morph frequencies vary geographically to maximise fruit-foliage colour contrasts. We also conducted a seed germination experiment to test whether fruit colour morphs vary in their susceptibility to UV damage. Results showed that 'red' fruits were more abundant at lower elevations, while 'white' fruits were predominant at higher elevations. Leaf colours shifted from 'green' in appearance at lower elevations to 'red' at higher elevations. Analyses of fruit-foliage colour contrasts showed that 'red' fruits were more conspicuous at lower elevations, and 'white' fruits were more conspicuous at higher elevations, which was consistent with the hypothesis that colour morph frequencies vary geographically to maximise their conspicuousness to dispersers. However, 'red' fruits were generally more conspicuous than 'white' fruits, regardless of elevation, indicating that the maintenance of the polymorphism could not be attributed to fruit-foliage colour contrasts alone. The seed germination experiment showed that 'white' fruits were more resistant to UV damage, suggesting the preponderance of 'white' fruited individuals in the landscape results from a greater degree of protection from UV damage. The fruit colour polymorphism in Gaultheria depressa var. novae-zealandiae therefore appears to be maintained by trade-offs between conspicuousness to dispersers and tolerance to UV damage, advocating a pluralistic approach to the problem in the future.


Asunto(s)
Color , Ericaceae , Frutas , Nueva Zelanda , Hojas de la Planta
6.
Life (Basel) ; 12(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36556485

RESUMEN

Unlike most animals, most bats cannot synthesize vitamin C endogenously. Consequently, this vitamin must be obtained from the diet. Among the bat species, there are several food groups, such as frugivorous, nectarivorous, insectivorous, and hematophagous. In this work, we measured and compared vitamin C levels in different organs of four species of bats, all collected in southern Brazil. When analyzing and comparing the levels of vitamin C in the four bat species, (regardless of the organ), no significant differences were observed. However, when analyzing and comparing the levels of vitamin C in the four organs (regardless of the species), significant differences were observed, with the highest concentrations in the heart, followed by the liver and brain, while the lowest concentration was measured in the kidneys. Additional differences in the levels of Vitamin C were only observed when each organ was analyzed according to the species/diet. These results indicate a high degree of metabolic homeostasis in bats despite the marked difference in the type of diet.

7.
Biology (Basel) ; 11(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36358346

RESUMEN

Mistletoes have been considered a keystone resource for biodiversity, as well as a remarkable source of medicinal attributes that attract pharmacologists. Due to their hemiparasitic nature, mistletoes leach water and nutrients, including primary and secondary metabolites, through the vascular systems of their plant hosts, primarily trees. As a result of intense mistletoe infection, the hosts suffer various growth and physiological detriments, which often lead to tree mortality. Because of their easy dispersal and widespread tropism, mistletoes have become serious pests for commercial fruit and timber plantations. A variety of physical and chemical treatment methods, along with silvicultural practices, have shaped conventional mistletoe management. Others, however, have either failed to circumvent the growing range and tropism of these parasitic plants or present significant environmental and public health risks. A biocontrol approach that could sidestep these issues has never achieved full proof of concept in real-field applications. Our review discusses the downsides of conventional mistletoe control techniques and explores the possibilities of biotechnological approaches using biocontrol agents and transgenic technologies. It is possible that smart management options will pave the way for technologically advanced solutions to mitigate mistletoes that are yet to be exploited.

8.
Proc Biol Sci ; 289(1975): 20220391, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35611541

RESUMEN

Forest degradation changes the structural heterogeneity of forests and species communities, with potential consequences for ecosystem functions including seed dispersal by frugivorous animals. While the quantity of seed dispersal may be robust towards forest degradation, changes in the effectiveness of seed dispersal through qualitative changes are poorly understood. Here, we carried out extensive field sampling on the structure of forest microhabitats, seed deposition sites and plant recruitment along three characteristics of forest microhabitats (canopy cover, ground vegetation and deadwood) in Europe's last lowland primeval forest (Bialowieza, Poland). We then applied niche modelling to study forest degradation effects on multi-dimensional seed deposition by frugivores and recruitment of fleshy-fruited plants. Forest degradation was shown to (i) reduce the niche volume of forest microhabitat characteristics by half, (ii) homogenize the spatial seed deposition within and among frugivore species, and (iii) limit the regeneration of plants via changes in seed deposition and recruitment. Our study shows that the loss of frugivores in degraded forests is accompanied by a reduction in the complementarity and quality of seed dispersal by remaining frugivores. By contrast, structure-rich habitats, such as old-growth forests, safeguard the diversity of species interactions, forming the basis for high-quality ecosystem functions.


Asunto(s)
Dispersión de Semillas , Distribución Animal , Animales , Ecosistema , Bosques , Plantas , Semillas , Árboles
9.
Oecologia ; 198(2): 457-470, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35112172

RESUMEN

In temperate zones, seed-dispersal networks by migratory birds are formed on long time scale. In mid-October from 2005 to 2016, to explore the dynamics of the network structures, we examined interannual variability of fruit abundance, bird migration, and seed-dispersal networks in central Japan. For 12 years, the fruit abundance exhibited a remarkable fluctuation across years, with the number of fruiting plants and matured fruits fluctuating repeatedly every other year, leading to the periodic fluctuations. The abundance of migratory birds was also fluctuated. According to the abundance of fruits and migratory birds, the 12 years was classified into three types: frugivores and fruits were abundant, frugivores were abundant but fruits were scarce, and frugivores were scarce. The seed-dispersal networks were investigated by collecting faeces and vomits of migrants. Of the 6652 samples collected from 15 bird species, 1671 (25.1%) included seeds from 60 plant species. Main dispersers were composed of Turdus pallidus, T. obscurus, and Zosterops japonicus. The network structures were almost nested for 12 years. Specifically, the nested structure was developed in years when fruit abundance was low. GLM analyses showed the abundance of migrants, particularly T. pallidus and T. obscurus, had strong positive effects on nested structure. It may be caused by the fact the two Turdus species were more frequently functioning as generalist dispersers when fruit abundance was lower. Our study suggested fruit abundance and foraging behaviour of frugivores determine the network structures of seed dispersal on long time scale.


Asunto(s)
Frutas , Passeriformes , Dispersión de Semillas , Migración Animal , Animales , Conducta Alimentaria , Japón , Semillas , Árboles
10.
Int J Biometeorol ; 66(4): 753-767, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35059819

RESUMEN

Timber extraction is often cited as detrimental to wildlife ecology. Little information, however, in particular from the Southeast Asian tropics, is available on how exactly logging affects wildlife food security. To address the gap, this paper presents the first high-resolution comparison of fruit production between logged and intact forests in lowland Borneo. In the period of 2004-2008, dry weight of fruit litter was assessed as a proxy for food security of wildlife. The pheno-phases of 1,054 trees in 14 sampling plots were monitored for 54 months. A total of 143,184 fruits from 50 tree families were collected from six sampling transects totalling 810 km in 34 months. Surprisingly, logged forest (mean = 23.3 kg ha-1, SD = 48.9) produced more fruit litter than intact forest (mean = 16.7 kg ha-1, SD = 23.3), although the difference is not significant based on Student's t test; t(66) = 0.702, p = 0.485. Pheno-phases could not be entirely explained by rainfall and temperature variables. Some evidence, however, indicates tree species composition, stand structure and sunlight exposure were likely determinants of flowering and fruit litter intensity. All things being equal, results imply selective logging if considerately practiced may increase food security for wildlife. The findings, however, should be interpreted with caution since tropical forest phenology and fruit productivity are also driven by a suite of small-scale edaphic attributes and large-scale spatio-temporal meteorological forcing. Although this research deals mainly with Borneo, the principles discussed and insights offered herein are valuable for furthering conversation around sustainable forestry in tropical Asia and elsewhere globally.


Asunto(s)
Animales Salvajes , Bosques , Animales , Borneo , Agricultura Forestal , Humanos , Árboles
11.
Biol Lett ; 17(9): 20210352, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34520684

RESUMEN

Fleshy fruits can be divided between climacteric (CL, showing a typical rise in respiration and ethylene production with ripening after harvest) and non-climacteric (NC, showing no rise). However, despite the importance of the CL/NC traits in horticulture and the fruit industry, the evolutionary significance of the distinction remains untested. In this study, we tested the hypothesis that NC fruits, which ripen only on the plant, are adapted to tree dispersers (feeding in the tree), and CL fruits, which ripen after falling from the plant, are adapted to ground dispersers. A literature review of 276 reports of 80 edible fruits found a strong correlation between CL/NC traits and the type of seed disperser: fruits dispersed by tree dispersers are more likely to be NC, and those dispersed by ground dispersers are more likely to be CL. NC fruits are more likely to have red-black skin and smaller seeds (preferred by birds), and CL fruits to have green-brownish skin and larger seeds (preferred by large mammals). These results suggest that the CL/NC traits have an important but overlooked seed dispersal function, and CL fruits may have an adaptive advantage in reducing ineffective frugivory by tree dispersers by falling before ripening.


Asunto(s)
Climaterio , Dispersión de Semillas , Animales , Aves , Frutas , Semillas
12.
Proc Biol Sci ; 288(1953): 20210817, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34157866

RESUMEN

The dispersal-syndrome hypothesis posits that fruit traits are a product of selection by frugivores. Although criticized as adaptationist, recent studies have suggested that traits such as fruit or seed size, colour and odour exhibit signatures that imply selection by animal mutualists. These traits imply nutritional rewards (e.g. lipid, carbohydrate), attracting frugivores; however, this remains incompletely resolved. Here, we investigated whether fruit nutrients (lipid, sugar, protein, vitamin C, water content) moderate the co-adaptation of key disperser-group mutualisms. Multivariate techniques revealed that fruit nutrients assembled non-randomly and grouped according to key dispersal modes. Bird-dispersed fruits were richer in lipids than mammal-dispersed fruits. Mixed-dispersed fruits had significantly higher vitamin C than did mammal- or bird-dispersed fruits separately. Sugar and water content were consistently high irrespective of dispersal modes, suggesting that these traits appeal to both avian and mammalian frugivores to match high-energy requirements. Similarly, protein content was low irrespective of dispersal modes, corroborating that birds and mammals avoid protein-rich fruits, which are often associated with toxic levels of nitrogenous secondary compounds. Our results provide substantial over-arching evidence that seed disperser assemblages co-exert fundamental selection pressures on fruit nutrient trait adaptation, with broad implications for structuring fruit-frugivore mutualism and maintaining fruit trait diversity.


Asunto(s)
Frutas , Dispersión de Semillas , Animales , Aves , Mamíferos , Nutrientes
13.
Plants (Basel) ; 10(2)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669228

RESUMEN

Selective abortion, also called selective maturation, is a phenomenon wherein maternal plants selectively mature ovules that have the potential to grow into higher-quality fruits, such as those that contain more seeds. We hypothesized that the effects of selective maturation on fruit traits could be influenced by the dispersal mechanism. However, to date, limited studies have been conducted on selective maturation in bird-dispersed fruits. Unlike self- or wind-dispersed species, bird-dispersed species would not selectively mature fruits that contain more seeds because they are not preferred by birds. Here, we investigated the effect of selective abortion on the fruit traits of a bird-dispersed species, elderberry (Sambucus racemosa L. subsp. kamtschatica). We performed a flower-removal experiment. Half of the inflorescences on each individual tree were removed for the treatment group, whereas the control group was not manipulated. We found that the flower-removed trees showed higher fruit sets, suggesting the existence of resource limitation. The number of seeds per fruit did not increase by the experimental treatment. Additionally, the control individuals did not produce larger fruits. The lack of effects on fruit traits supported our hypothesis that the effect of selective maturation on fruit traits may differ among species with different dispersal mechanisms.

14.
Ecol Evol ; 11(3): 1399-1412, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598140

RESUMEN

Endozoochory, a mutualistic interaction between plants and frugivores, is one of the key processes responsible for maintenance of tropical biodiversity. Islands, which have a smaller subset of plants and frugivores when compared with mainland communities, offer an interesting setting to understand the organization of plant-frugivore communities vis-a-vis the mainland sites. We examined the relative influence of functional traits and phylogenetic relationships on the plant-seed disperser interactions on an island and a mainland site. The island site allowed us to investigate the organization of the plant-seed disperser community in the natural absence of key frugivore groups (bulbuls and barbets) of Asian tropics. The endemic Narcondam Hornbill was the most abundant frugivore on the island and played a central role in the community. Species strength of frugivores (a measure of relevance of frugivores for plants) was positively associated with their abundance. Among plants, figs had the highest species strength and played a central role in the community. Island-mainland comparison revealed that the island plant-seed disperser community was more asymmetric, connected, and nested as compared to the mainland community. Neither phylogenetic relationships nor functional traits (after controlling for phylogenetic relationships) were able to explain the patterns of interactions between plants and frugivores on the island or the mainland pointing toward the diffused nature of plant-frugivore interactions. The diffused nature is a likely consequence of plasticity in foraging behavior and trait convergence that contribute to governing the interactions between plants and frugivores. This is one of the few studies to compare the plant-seed disperser communities between a tropical island and mainland and demonstrates key role played by a point-endemic frugivore in seed dispersal on island.

15.
Am J Phys Anthropol ; 174(4): 763-775, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33463723

RESUMEN

OBJECTIVES: We characterized the diet and foraging ecology of the black-and-white ruffed lemur (Varecia variegata), a specialized frugivore, and investigated behavioral strategies exhibited in response to seasonal changes in resource availability. MATERIALS AND METHODS: Behavioral data were collected from the same two adjacent communities across 29 months during two observation periods (2007-2008; 2017-2018) in Mangevo, a primary rainforest habitat in southeastern Madagascar. To analyze feeding in the context of energy maximization versus time minimization strategies, we used nonparametric tests to compare plant part constituents, dietary diversity, activity budgets, and canopy strata use between fruit-abundant versus fruit-lean seasons. RESULTS: Individuals dedicated ~30% of their time to feeding year-round, mostly in the middle canopy (11-20 m). Animals fed primarily on fruits (74% of diet), but frugivory decreased and folivory increased markedly during fruit-lean seasons. Abundant season dietary diversity (98 taxa, H' = 0.71-1.37) was greater than lean season diversity (70 taxa, H' = 0.56-1.06), which coincided with less traveling, more resting, and higher canopy use-though interannual variation was observed. CONCLUSIONS: Herein, we describe behavioral and dietary patterns that are concordant with a time minimizing behavioral strategy. Black-and-white ruffed lemur diets comprised lower taxonomic diversity, fewer fruits, and more leaves during fruit-lean months. Further, shifts toward less travel, more resting, and greater use of higher canopy levels during this time were most likely for thermoregulatory benefits.


Asunto(s)
Dieta/veterinaria , Conducta Alimentaria/fisiología , Lemuridae/fisiología , Animales , Antropología Física , Ecosistema , Femenino , Frutas , Madagascar , Masculino , Bosque Lluvioso , Estaciones del Año
16.
J Anim Ecol ; 89(9): 2181-2191, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32495479

RESUMEN

Networks of mutualistic interactions between animals and plants are considered a pivotal part of ecological communities. However, mutualistic networks are rarely studied from the perspective of species-specific roles, and it remains to be established whether those animal species more relevant for network structure also contribute more to the ecological functions derived from interactions. Here, we relate the contribution to seed dispersal of vertebrate species with their topological role in frugivore-plant interaction networks. For one year in two localities with remnant patches of Colombian tropical dry forest, we sampled abundance, morphology, behaviour and fruit consumption from fleshy-fruited plants of various frugivore species. We assessed the network topological role of each frugivore species by integrating their degree of generalization in interactions with plants with their contributions to network nestedness and modularity. We estimated the potential contribution of each frugivore species to community-wide seed dispersal, on the basis of a set of frugivore ecological, morphological and behavioural characteristics important for seed dispersal, together with frugivore abundance and frugivory degree. The various frugivore species showed strong differences in their network structural roles, with generalist species contributing the most to network modularity and nestedness. Frugivores also showed strong variability in terms of potential contribution to seed dispersal, depending on the specific combinations of frugivore abundance, frugivory degree and the different traits and behaviours. For both localities, the seed dispersal potential of a frugivore species responded positively to its contribution to network structure, evidencing that the most important frugivore species in the network topology were also those making the strongest contribution as seed dispersers. Contribution to network structure was correlated with frugivore abundance, diet and behavioural characteristics. This suggests that the species-level link between structure and function is due to the fact that the occurrence of frugivore-plant interactions depends largely on the characteristics of the frugivore involved, which also condition its ultimate role in seed dispersal.


Las redes de interacción mutualista entre animales y plantas son una parte esencial de las comunidades ecológicas. Sin embargo, este tipo de redes han sido poco estudiadas desde la perspectiva de los papeles específicos de las especies, y aún queda por discernir si los animales más relevantes en la estructura de las redes también contribuyen más a las funciones ecológicas derivadas de las interacciones. En este estudio, relacionamos la contribución de las especies de vertebrados como dispersores de semillas con su papel topológico en las redes frugívoro-planta. Durante un año, en dos localidades con remanentes de bosque tropical seco de Colombia, registramos la abundancia, morfología, comportamiento y el consumo de frutos carnosos de distintas especies de frugívoros. Evaluamos el papel que cada especie de frugívoro desempeña en la topología de la red, integrando su grado de generalización en las interacciones, con sus contribuciones al anidamiento y a la modularidad de la red. Estimamos la contribución potencial de cada especie de frugívoro como dispersor de semillas a nivel comunitario, a partir de un conjunto de características ecológicas, morfológicas y comportamentales influyentes en la dispersión de semillas, junto con la abundancia y su grado de frugivoría. Los frugívoros mostraron fuertes diferencias en sus papeles estructurales dentro de la red, donde las especies generalistas contribuyeron más al anidamiento y modularidad de la red. Los frugívoros también mostraron una gran variabilidad en su contribución potencial a la dispersión de semillas, dependiendo de las combinaciones específicas de abundancia, grado de frugivoría y diferentes rasgos y comportamientos. Para las dos localidades, el potencial de un frugívoro como dispersor de semillas dependió positivamente de su contribución a la estructura de la red, evidenciando que las especies frugívoras más importantes en la topología de la red fueron también las que mostraron mayor relevancia potencial como dispersores de semillas. La contribución a la estructura de la red se correlacionó con la abundancia, la dieta, los rasgos y el comportamiento. Esto sugiere que el vínculo entre estructura y función a nivel de especie se basa en que tanto la aparición de las interacciones frugívoro-planta, como el papel final de los animales como dispersores de semillas, dependen de las mismas características específicas de los frugívoros.


Asunto(s)
Dispersión de Semillas , Animales , Bosques , Frutas , Semillas , Simbiosis
17.
J Anim Ecol ; 89(9): 2145-2155, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32495955

RESUMEN

Niche and neutral processes jointly influence species interactions. Predictions of interactions based on these processes assume that they operate similarly across all species. However, species characteristics could systematically create differences in the strength of niche or neutral processes for each interspecific interaction. We used national-level records of plant-frugivore interactions, species traits, biogeographic status (native vs. exotic), phylogenies and species range sizes to test the hypothesis that the strength of niche processes in species interactions changes in predictable ways depending on trophic generalism and biogeographic status of the interacting species. The strength of niche processes (measured as trait matching) decreased when the generalism of the interacting partners increased. Furthermore, the slope of this negative relationship between trait matching and generalism of the interacting partners was steeper (more negative) for interactions between exotic species than those between native species. These results remained significant after accounting for the potential effects of neutral processes (estimated by species range size). These observed changes in the strength of niche processes in generating species interactions, after accounting for effects of neutral processes, could improve predictions of ecological networks from species trait data. Specifically, due to their shorter co-evolutionary history, exotic species tend to interact with native species even when lower trait matching occurs than in interactions among native species. Likewise, interactions between generalist bird species and generalist plant species should be expected to occur despite low trait matching between species, whereas interactions between specialist species involve higher trait matching.


Asunto(s)
Aves , Plantas , Animales , Ecosistema , Filogenia
18.
Ecology ; 101(7): e03028, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32112402

RESUMEN

The species composition of local communities varies in space, and its similarity generally decreases with increasing geographic distance between communities, a phenomenon known as distance decay of similarity. It is, however, not known how changes in local species composition affect ecological processes, that is, whether they lead to differences in the local composition of species' functional roles. We studied eight seed-dispersal networks along the South American Andes and compared them with regard to their species composition and their composition of functional roles. We tested (1) if changes in bird species composition lead to changes in the composition of bird functional roles, and (2) if the similarity in species composition and functional-role composition decreased with increasing geographic distance between the networks. We also used cluster analysis to (3) identify bird species with similar roles across all networks based on the similarity in the plants they consume, (i) considering only the species identity of the plants and (ii) considering the functional traits of the plants. Despite strong changes in species composition, the networks along the Andes showed similar composition of functional roles. (1) Changes in species composition generally did not lead to changes in the composition of functional roles. (2) Similarity in species composition, but not functional-role composition, decreased with increasing geographic distance between the networks. (3) The cluster analysis considering the functional traits of plants identified bird species with similar functional roles across all networks. The similarity in functional roles despite the high species turnover suggests that the ecological process of seed dispersal is organized similarly along the Andes, with similar functional roles fulfilled locally by different sets of species. The high species turnover, relative to functional turnover, also indicates that a large number of bird species are needed to maintain the seed-dispersal process along the Andes.


Asunto(s)
Dispersión de Semillas , Animales , Aves , Ecosistema , Frutas , Plantas , Semillas
19.
Proc Biol Sci ; 287(1921): 20192731, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32097588

RESUMEN

A long-standing hypothesis in ecology and evolution is that trichromatic colour vision (the ability to distinguish red from green) in frugivorous primates has evolved as an adaptation to detect conspicuous (reddish) fruits. This could provide a competitive advantage over dichromatic frugivores which cannot distinguish reddish colours from a background of green foliage. Here, we test whether the origin, distribution and diversity of trichromatic primates is positively associated with the availability of conspicuous palm fruits, i.e. keystone fruit resources for tropical frugivores. We combine global data of colour vision, distribution and phylogenetic data for more than 400 primate species with fruit colour data for more than 1700 palm species, and reveal that species richness of trichromatic primates increases with the proportion of palm species that have conspicuous fruits, especially in subtropical African forests. By contrast, species richness of trichromats in Asia and the Americas is not positively associated with conspicuous palm fruit colours. Macroevolutionary analyses further indicate rapid and synchronous radiations of trichromats and conspicuous palms on the African mainland starting 10 Ma. These results suggest that the distribution and diversification of African trichromatic primates is strongly linked to the relative availability of conspicuous (versus non-conspicuous) palm fruits, and that interactions between primates and palms are related to the coevolutionary dynamics of primate colour vision systems and palm fruit colours.


Asunto(s)
Arecaceae/fisiología , Evolución Biológica , Visión de Colores , Frutas , Primates/fisiología , Adaptación Fisiológica , Animales , Percepción de Color , Hojas de la Planta
20.
Ecol Lett ; 23(2): 348-358, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31814305

RESUMEN

Network metrics are widely used to infer the roles of mutualistic animals in plant communities and to predict the effect of species' loss. However, their empirical validation is scarce. Here we parameterized a joint species model of frugivory and seed dispersal with bird movement and foraging data from tropical and temperate communities. With this model, we investigate the effect of frugivore loss on seed rain, and compare our predictions to those of standard coextinction models and network metrics. Topological coextinction models underestimated species loss after the removal of highly linked frugivores with unique foraging behaviours. Network metrics informed about changes in seed rain quantity after frugivore loss. However, changes in seed rain composition were only predicted by partner diversity. Nestedness, closeness, and d' specialisation could not anticipate the effects of rearrangements in plant-frugivore communities following species loss. Accounting for behavioural differences among mutualists is critical to improve predictions from network models.


Asunto(s)
Dispersión de Semillas , Animales , Benchmarking , Aves , Frutas , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA