Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 953: 176146, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265686

RESUMEN

Elevated sulfate levels in eutrophic lakes have been observed to induce the release of endogenous phosphorus. While previous studies have predominantly examined its impact on iron-bound phosphorus (FeP), the influence on organic phosphorus (OP), a crucial active phosphorus component in sediments, remains poorly understood. In this study, mesocosms were established with lactate supplementation and varying sulfate concentrations to explore sulfate reduction and its impacts on phosphorus mobilization in freshwater sediments. Lactate addition induced hypoxia and provided substrates, thereby stimulating sulfate reduction with a decline of sulfate levels, an increase of sulfide concentrations, and fluctuations of sulfate-reducing bacteria. Meanwhile, concentrations of total dissolved phosphorus and phosphate were dramatically promoted during lactate decomposition, with a higher sulfate concentration associated with greater phosphorus elevation, correlating with the decrease of total phosphorus in sediment. The increase in phosphorus of the overlying water was partly attributed to FeP release from the sediment, confirmed by a decrease in its sediment content. FeP release was ascribed to dissimilatory reduction of iron oxides or chemical reduction mediated by sulfides in anoxic sediments, leading to the desorption and subsequent release of phosphorus. Evidences included the proliferation of iron-reducing bacteria, a decrease in Fe(II) concentrations in sediment pore- water, and the continuous accumulation of solid iron sulfides in surface sediments. Furthermore, OP mineralization in sediment also contributed to the increase in phosphorus in water columns, confirmed by a reduction in its content and the abundance of fermentation bacteria in surface sediment. Notably, the decrease in OP content accounted for >80 % of the total phosphorus reduction in surface sediment in the end. Thus, sulfur cycling plays a critical role in iron and phosphorus cycling, significantly stimulating not only the mobilization of FeP but also OP in sediments, with OP mineralization potentially being the primary contributor to endogenous phosphorus release.

2.
Sci Total Environ ; 939: 173586, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38810752

RESUMEN

The difference in the transport behaviors of nanoplastics consistently assistant with their toxicities to benthic and other aquatic organisms is still unclear between freshwater and marine sediments. Here, the mobilities of polystyrene nanoplastics (PSNPs) and key environmental factors including salinity and humic acid (HA) were systematically studied. In the sand column experiments, both tested PSNPs in the freshwater system (100 nm NPs (100NPs): 90.15 %; 500 nm NPs (500NPs): 54.22 %) presented much higher penetration ratio than in the marine system (100NPs: 8.09 %; 500NPs: 19.04 %). The addition of marine sediment with a smaller median grain diameter caused a much more apparent decline in NPs mobility (100NPs: from 8.09 % to 1.85 %; 500NPs: from 19.04 % to 3.51 %) than that containing freshwater sediment (100NPs: from 90.15 % to 83.56 %; 500NPs: from 54.22 % to 41.63 %). Interestingly, adding HA obviously led to decreased and slightly increased mobilities for NPs in freshwater systems, but dramatically improved performance for NPs in marine systems. Electrostatic and steric repulsions, corresponding to alteration of zeta potential and hydrodynamic diameter of NPs and sands, as well as minerals owing to adsorption of dissolved organic matter (DOM) and aggregations from varied salinity, are responsible for the mobility difference.

3.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38632040

RESUMEN

Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.


Asunto(s)
Archaea , Sedimentos Geológicos , Metano , Oxidación-Reducción , Estanques , Metano/metabolismo , Estanques/microbiología , Anaerobiosis , Sedimentos Geológicos/microbiología , Archaea/metabolismo , Archaea/genética , Hierro/metabolismo , Bacterias/metabolismo , Bacterias/genética , Eutrofización , ARN Ribosómico 16S/genética , Compuestos Ferrosos/metabolismo
4.
Polymers (Basel) ; 16(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38256974

RESUMEN

One of the biggest challenges in the construction industry in recent times is the mitigation of the environmental impact of this sector, the reduction in dependence on primary raw materials, and the reduction in CO2 production while maintaining functional properties. Alkaline activation of a number of waste products represents a promising way to achieve the above-mentioned goals, but the availability of a number of waste products changes over time, especially in Europe. While freshwater sediments were in the past widely utilized as an agricultural fertilizer, recent precautions have significantly decreased such application, and thus new destinations must be delivered. To explore the potential of freshwater sediments, select samples from various locations were subjected to detailed characterization to verify the applicability of the material for alkali activation. As recognized, the selected sediments contain a substantial volume of desired mineralogical compounds that can serve, after 900 °C curing, as suitable precursors. Such samples have consequently activated the mixture of alkaline activators to obtain dense structures and were subjected to detailed investigation aimed at understanding the mechanical parameters. The obtained mechanical results ranging between 14.9 MPa and 36.8 MPa reveal the engineering potential of sediments for valorization through alkali activation and outline new research challenges in this area.

5.
Front Microbiol ; 14: 1295854, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075887

RESUMEN

A free-living Bradyrhizobium strain isolated from a contaminated sediment sample collected at a water depth of 4 m from the Hongze Lake in China was characterized. Phylogenetic investigation of the 16S rRNA gene, concatenated housekeeping gene sequences, and phylogenomic analysis placed this strain in a lineage distinct from all previously described Bradyrhizobium species. The sequence similarities of the concatenated housekeeping genes support its distinctiveness with the type strains of the named species. The complete genome of strain S12-14-2 consists of a single chromosome of size 7.3M. The strain lacks both a symbiosis island and important nodulation genes. Based on the data presented here, the strain represents a new species, for which the name Bradyrhizobium roseus sp. nov. is proposed for the type strain S12-14-2T. Several functional differences between the isolate and other published genomes indicate that the genus Bradyrhizobium is extremely heterogeneous and has functions within the community, such as non-symbiotic nitrogen fixation. Functional denitrification and nitrogen fixation genes were identified on the genomes of strain S12-14-2T. Genes encoding proteins for sulfur oxidation, sulfonate transport, phosphonate degradation, and phosphonate production were also identified. Lastly, the B. roseus genome contained genes encoding ribulose 1,5-bisphosphate carboxylase/oxygenase, a trait that presumably enables autotrophic flexibility under varying environmental conditions. This study provides insights into the dynamics of a genome that could enhance our understanding of the metabolism and evolutionary characteristics of the genus Bradyrhizobium and a new genetic framework for future research.

6.
Water Res ; 243: 120322, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451127

RESUMEN

Microplastics (MPs) pollution in the Yangtze River Basin (YRB) of China has grown to be a serious issue, yet there is a lack of understanding of the environmental risks of MPs in the sediment of the entire basin. This work revealed the spatial distribution characteristics of MPs in YRB sediments, and it methodically assessed the ecological risks of MPs by taking into consideration their abundance, toxic effects, and polymer types. The results showed a high heterogeneity in the abundance of MPs in YRB sediments, with an average of 611 particles/kg dry weight (DW) sediment. Small-sized MPs (<1 mm), fibrous, transparent-colored and polypropylene (PP) accounted for the majority with 71.6%, 68%, 37% and 30.8%, respectively. Correlation analysis indicated significant influences of human activities such as population, industrial structure, and urban wastewater discharge on the abundance and morphological types of MPs in sediments. Based on chronic toxicity data exposed to sediments, a predicted no-effect concentration (PNEC) of 539 particles/kg DW was calculated using the species susceptibility distribution (SSD). Multiple deterministic risk assessment indices indicated that MPs in YRB sediments exhibited primarily low pollution load levels, moderate-to-low potential ecological risk levels, and high levels of polymer pollution. However, probabilistic risk assessment revealed an overall low risk of MPs in YRB sediments. Monte Carlo simulation results demonstrated that polyvinyl chloride (PVC) and polycarbonate (PC) made a great contribution to ecological risk and should be considered as priority control pollutants in MPs. In addition, various assessments showed that the ecological risk of MPs in river sediments was higher than that in lake reservoir sediments. This is the first study to comprehensively assess the ecological risk of MPs in sediments of the YRB, which improves the understanding of the basin-wide occurrence characteristics and environmental risks of MPs in freshwater systems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Microplásticos/análisis , Plásticos , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Medición de Riesgo , China
7.
Water Res ; 242: 120218, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37390661

RESUMEN

Previous studies have demonstrated that e-SOx can regulate the sedimentary release of phosphorus (P) in brackish and marine sediments. When e-SOx is active, an iron (Fe) and manganese (Mn) oxide rich layer is formed near the sediment surface, which prevents P release. When e-SOx becomes inactive, the metal oxide layer is reduced via sulfide-mediated dissolution, and P is subsequently released to the water column. Cable bacteria have been shown to also occur in freshwater sediments. In these sediments, sulfide production is limited, and the metal oxide layer would thus dissolve less efficiently, leaving the P trapped at the sediment surface. This lack of an efficient dissolution mechanism implies that e-SOx could play an important role in the regulation of P availability in eutrophied freshwater streams. To test this hypothesis, we incubated sediments from a eutrophic freshwater river to investigate the impact of cable bacteria on sedimentary cycling of Fe, Mn and P. High-resolution depth profiling of pH, O2 and ΣH2S complemented with FISH analysis and high-throughput gene sequencing showed that the development of e-SOx activity was closely linked to the enrichment of cable bacteria in incubated sediments. Cable bacteria activity caused a strong acidification in the suboxic zone, leading to the dissolution of Fe and Mn minerals and consequently a strong release of dissolved Fe2+ and Mn2+ to the porewater. Oxidation of these mobilized ions at the sediment surface led to the formation of a metal oxide layer that trapped dissolved P, as shown by the enrichment of P-bearing metal oxides in the top layer of the sediment and low phosphate in the pore and overlying water. After e-SOx activity declined, the metal oxide layer did not dissolve and P remained trapped at the surface. Overall, our results suggested cable bacteria can play an important role to counteract eutrophication in freshwater systems.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Sedimentos Geológicos/microbiología , Agua Dulce/microbiología , Óxidos , Agua , Oxidación-Reducción , Bacterias , Sulfuros , Contaminantes Químicos del Agua/análisis
8.
Environ Int ; 176: 107964, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209487

RESUMEN

The impact of antibiotics on methane (CH4) release from sediment involves both CH4 production and consumption processes. However, most relevant studies lack a discussion of the pathways by which antibiotics affect CH4 release and do not highlight the role played by the sediment chemical environment in this influence mechanism. Here, we collected field surface sediments and grouped them with various antibiotic combination concentration gradients (50, 100, 500, 1000 ng g-1) under a 35-day indoor anaerobic constant temperature incubation. We found that the positive effect of antibiotics on sediment CH4 release potential appeared later than the positive effect on sediment CH4 release flux. Still, the positive effect of high-concentration antibiotics (500, 1000 ng g-1) occurred with a lag in both processes. Also, the positive effect of high-concentration antibiotics was significantly higher than low-concentration antibiotics (50, 100 ng g-1) in the later incubation period (p < 0.05). We performed a multi-collinearity assessment of sediment biochemical indicators, followed by a generalized linear model with negative binomial regression (GLM-NB) to obtain essential variables. In particular, we conducted the interaction analysis on CH4 release potential and flux regression for the influence pathways construction. The partial least-squares path modeling (PLS-PM) demonstrated that the positive effect of antibiotics on CH4 release (Total effect = 0.2579) was primarily attributed to their effect on the sediment chemical environment (Direct effect = 0.5107). These findings greatly expand our understanding of the antibiotic greenhouse effect in freshwater sediment. Further studies should more carefully consider the effects of antibiotics on the sediment chemical environment, and continuously improve the mechanistic studies of antibiotics on sediment CH4 release.


Asunto(s)
Efecto Invernadero , Metano , Metano/metabolismo , Lagos , Anaerobiosis
9.
Environ Monit Assess ; 195(3): 430, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847913

RESUMEN

The environmental standards of soil and sludge have been typically referenced for freshwater sediment determination and quality assessment, especially in some areas without sediment standards. The feasibility of determination method and quality standard of soils and sludge for freshwater sediment was investigated in this study. Fractions of heavy metals, nitrogen, phosphorus, and reduced inorganic sulfur (RIS) in different type of samples were determined, including freshwater sediments, dryland and paddy soils, and sludge with air-drying (AD) and freeze-drying (FD) treatment, respectively. Results showed fraction distributions of heavy metals, nitrogen, phosphorus, and RIS in sediments markedly differed from those of soils and sludge. Fraction redistributions of heavy metals, nitrogen, phosphorus, and RIS in sediments were observed with AD compared to those treated by FD. The proportions of heavy metals, nitrogen, and phosphorus associated with organic matter (or sulfide) in FD sediments decreased by 4.8-74.2%, 9.5-37.5%, and 16.1-76.3%, respectively, compared to those in AD sediments, while those associated with Fe/Mn oxides increased by 6.3-39.1%, 50.9-226.9%, and 6.1-31.0%, respectively. The fraction proportions of RIS in sediments with AD also sharply decreased. Determination of standard methods for sludge and soil caused the distortion of pollutant fraction analysis in sediment. Similarly, the quality standard of sludge and soil was inappropriate for sediment quality assessment due to the differences in pollutant fraction pattern between sediment and soils/sludge. Totally, soil and sludge standards are inapplicable for freshwater sediment pollutant determination and quality judgment. This study would greatly advance the establishment of freshwater sediment determination methods and quality standards.


Asunto(s)
Contaminantes Ambientales , Juicio , Estudios de Factibilidad , Aguas del Alcantarillado , Monitoreo del Ambiente , Agua Dulce , Nitrógeno , Fósforo , Suelo , Azufre
10.
Sci Total Environ ; 871: 161718, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709896

RESUMEN

This paper reviews the currently used pretreatment methods for microplastics (MPs) analysis in soil and freshwater sediments, primarily sample processing, pretreatment, and characterization methods for MPs analysis. In addition, analytical tools (e.g., lab instruments), MPs characteristics, and MPs quantity, are included in this review. Prior to pretreatment, soil and sediment samples are typically processed using sieving and drying methods, and a sample quantity of <50 g was mostly used for the pretreatment. Density separation was commonly performed before organic matter removal. Sodium chloride (NaCl) and zinc chloride (ZnCl2) were most often used for density separation, and hydrogen peroxide (H2O2) oxidation was most frequently used to remove organic matter. Although advantages of each pretreatment method have been investigated, it is still challenging to determine a universal pretreatment method due to sample variability (e.g., sample characteristics). Furthermore, it is highly required to establish standard pretreatment methods that can be used for various environmental matrices, including air, water, and wastes as well as soil and sediment.

11.
Sci Total Environ ; 858(Pt 2): 159933, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343817

RESUMEN

The abundant production and wide usage of silver nanoparticles (Ag NPs) inevitably lead to their release into aquatic ecosystems. However, it is still unclear about how Ag NPs influence denitrification and anammox (DA) in freshwater sediments. To address this, the sediments of hypertrophic and mesotrophic lakes were exposed to 0.5 and 50 mg/L Ag NPs under anaerobic conditions for 7 days to explore the effects of Ag NPs on environmental variables, including redox potential (Eh), pH, organic matter (OM) and acid volatile sulfide (AVS), and the resulting influence on DA. Experimental results indicated that NO3--N and NH4+-N levels were increased by the low (p > 0.05) and high doses of Ag NPs (p < 0.05) in comparison with the non-Ag control, revealing an inhibitive impact on DA. The level of total nitrogen (TN) was notably increased by the low and high doses of Ag NPs (p < 0.05), perhaps due to inhibited enzyme activity and corresponding encoding gene abundance, which were related to generating gaseous nitrogen such as N2O and N2. In addition, environmental factor Eh was significantly raised by Ag NPs (p < 0.05), further inhibiting DA. Moreover, the quantitative analysis unveiled that denitrifying and anammox bacteria in hypertrophic lakes evinced a stronger resistance to Ag NPs toxicity than those in mesotrophic lakes. Overall, our study revealed that short-term exposure to Ag NPs could inhibit DA in sediments. These findings provide an understanding enabling evaluation and prediction of the environmental risks of Ag NPs in freshwater lakes.


Asunto(s)
Lagos , Nanopartículas del Metal , Lagos/microbiología , Plata/toxicidad , Desnitrificación , Sedimentos Geológicos/microbiología , Nanopartículas del Metal/toxicidad , Ecosistema , Oxidación Anaeróbica del Amoníaco , Nitrógeno/farmacología
12.
Sci Total Environ ; 855: 158671, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36099957

RESUMEN

Forty-eight tropical shallow lakes (depth ≤ 4 m) across a climatic gradient were assessed for microplastic (MPs; <5 mm) pollution based on MPs concentrations in archive samples from lake shore sediments. The MPs were classified by type (fragments or fibres), colour (yellow, black, red, green, blue, white, and transparent), size (0.55 to 4.93 mm), and polymer (polyester, polyethylene, chlorinated polyethylene, and polyamide). Sediments were predominantly medium sand, and all samples (144) contained MPs, consisting of 24 % fragments (6.3 ± 11.3 MPs·300 g-1) and 76 % fibres (21.25 ± 12.7 MPs·300 g-1). The lake climate (humid, transitional, or semi-arid), type of surrounding land use (urban, semi-arid, or rural), and distance from the shoreline (0, 5 or 10 m) did not explain the differences in MPs concentrations, partially refuting the initial hypothesis. The only significant difference was between the sample medians for the number of fragments based on the region (H = 7.586; p = 0.0481). The number of fragments in the lakes in the humid region was greater than that in the semi-arid region (p < 0.05). Poor sanitation, sewage effluents, and solid wastes reaching and accumulating in the lakes may be the primary and transversal conditioning factors for this small difference among diverse environments. Freshwater lakes are investigated in all continents, and the present study contributes to the first record of MPs in shallow lake sediments in eastern South America. The 48 shallow lakes assessed showed a relatively low concentration of MPs compared to other lake contaminants reported in the international literature. This information coincides with public policies issued, regarding the control and reduction of plastics and MPs in Brazil, and the study region.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Lagos , Plásticos , Sedimentos Geológicos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Polietileno/análisis , Brasil
13.
Microorganisms ; 10(10)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36296257

RESUMEN

Inorganic mercury (Hg) can be methylated to the highly toxic and bioavailable methylmercury (MeHg) by microorganisms in anaerobic environments. The Hg methylation rate may be affected by forest management activities, which can influence the catchment soils, water, and sediments. Here, we investigate the influence of forest management in the form of ditch cleaning and beaver dam removal, as well as the seasonal variations, on sediment chemistry and microbiota. The relationships between MeHg concentrations in sediment samples and archaeal and bacterial communities assessed by 16S rRNA gene amplicon sequencing were investigated to determine the microbial conditions that facilitated the formation of MeHg. Concentrations of MeHg were highest in undisturbed catchments compared to disturbed or slightly disturbed sites. The undisturbed sites also had the highest microbial diversity, which may have facilitated the formation of MeHg. Low MeHg concentrations and microbial diversity were observed in disturbed sites, which may be due to the removal of organic sediment layers during ditch cleaning and beaver dam removal, resulting in more homogenous, mineral-rich environments with less microbial activity. MeHg concentrations were higher in summer and autumn compared to winter and spring, but the temporal variation in the composition and diversity of the microbial community was less than the spatial variation between sites. Beta diversity was more affected by the environment than alpha diversity. The MeHg concentrations in the sediment were positively correlated to several taxa, including Cyanobacteria, Proteobacteria, Desulfobacterota, Chloroflexi, and Bacteroidota, which could represent either Hg-methylating microbes or the growth substrates of Hg-methylating microbes.

14.
Environ Pollut ; 315: 120343, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36208824

RESUMEN

Microplastics (MPs) have been widely distributed on Earth and have drawn global concern for freshwater and marine ecosystems. Biodegradable plastics have risen in popularity to replace nonbiodegradable plastics all over the world. The effects of biodegradable plastics on denitrifying and anammox bacteria in freshwater sediment remain largely unknown. In this study, water column reactors containing polylactic acid (PLA) or polybutylene adipate-co-terephthalate (PBAT) MPs in sediment were established to simulate lake ecosystems and analyze the effects of biodegradable MPs on sedimentary nitrogen transformation microorganisms. The total organic carbon (TOC) concentrations in the PLA and PBAT groups were slightly higher than those in the control group, which might be related to the slow degradation of these two plastics. Denitrifying and anammox bacterial diversities decreased after adding MPs to sediments for 30 days, and the dominant OTUs of these two bacteria were differentiated from the control. The abundance levels of nirS denitrifying and anammox bacteria on the PLA MP surface were significantly higher than those in the other groups (P < 0.05), but they were lower in the PBAT groups than in the other groups. As an excellent electron donor for the denitrification process, lactic acid release from PLA degradation resulted in the enrichment of denitrifying and anammox bacteria on the MP surfaces. However, PBAT led to various responses of bacteria in an anaerobic environment. In addition, the redundancy analysis results indicated that total phosphorus, TOC and nitrate were strongly negatively correlated with the abundance levels of denitrifying and anammox bacteria. Our findings provided insight into the effects of MPs, especially the biodegradable ones, on sedimentary nitrogen-transformation bacteria.


Asunto(s)
Plásticos Biodegradables , Microplásticos , Plásticos , Ecosistema , Oxidación Anaeróbica del Amoníaco , Poliésteres , Bacterias , Agua Dulce , Nitrógeno , Adipatos
15.
Sci Total Environ ; 846: 157458, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35863571

RESUMEN

There are few biological indicators for freshwater systems subjected to high chloride levels. Freshwater systems receive many forms of chloride such as road salts (e.g., NaCl, CaCl2, MgCl2), fertilizers (e.g., KCl), and year-round water softener pollution. The goal our study was to investigate Halomonadaceae populations as prospective biological indicators of chloride-impacted freshwaters. The bacterial family Halomonadaceae are halophiles that generally require the presence of salt to survive, which make them an attractive candidate in determining chloride impaired areas. Field sediment surveys assessed how salt tolerant and halophilic bacteria abundance corresponded to chloride and conductivity measurements. Colony forming unit (CFU) counts on modified M9 6% NaCl plates (w/v) at urbanized sites compared to the rural sites had highest counts during winter and spring when chloride concentrations were also highest. Select isolates identified as Halomonadaceae through 16S rRNA sequencing were kept as active cultures to determine the NaCl concentration and temperature preference that resulted in the isolates optimal growth. Isolates tested under 5 °C (cold) grew optimally in 2 % NaCl (w/v), whereas under 18 °C (warm), isolates showed optimal growth at 6 % NaCl. The majority of isolates had maximum growth in the warmer temperature, however, select isolates grew better in the cold temperature. Culture-independent methods were used and identified Halomonadaceae were widespread and permeant members of the microbial community in a Lake Michigan drainage basin. Quantitative polymerase chain reaction (qPCR) targeting Halomonadaceae genera demonstrated that abundance varied by site, but overall were present throughout the year. However, community sequencing revealed there were a large relative proportion of specific Halomonadaceae populations present in winter versus summer. Methods targeting salt tolerant bacteria and specific members of Halomonadaceae appears to be a promising approach to assess chloride-impacted areas to better understand the long-term ecological impacts as we continue to salinize freshwater resources.


Asunto(s)
Cloruros/metabolismo , Halomonadaceae/metabolismo , Lagos/química , Biomarcadores Ambientales , Halomonadaceae/genética , Halomonadaceae/aislamiento & purificación , Lagos/microbiología , Michigan , Estudios Prospectivos , ARN Ribosómico 16S/genética , Cloruro de Sodio/análisis , Cloruro de Sodio/metabolismo , Temperatura
16.
Microorganisms ; 10(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35744736

RESUMEN

DNA based sequencing technology has revolutionized the field of microbial ecology and environmental studies. However, biases can be introduced at all experimental steps and, thus, affect the interpretation of microbial community. So far, previous studies on the biases introduced from the key steps of DNA extraction and primer sets mainly focused on the bacterial communities in soil or sediment samples, while little is known about the effect on the eukaryotic microbial communities. Here, we studied the effects of three different DNA extraction kits on both prokaryotic and micro-eukaryotic communities by 16S and 18S rRNA gene amplicon sequencing, and further disentangled the influence of primer choice on the micro-eukaryotic communities. Our results showed that the FastDNA SPIN Kit for Soil and DNeasy PowerSoil Kit produced much higher DNA yield with good reproducibility, and observed more eukaryotic OTUs compared to the MinkaGene DNA extraction kit, but all three kits exhibited comparable ability in recovering bacterial alpha diversity. Of the two primer sets, both targeting the V4 region of the 18S rRNA gene, the TAR primer set detected higher number of unique OTUs than the EK primer set, while the EK primer set resulted in longer amplicons and better reproducibility between replicates. Based on our findings, we recommend using the DNeasy PowerSoil Kit with the EK primer set to capture the abundant micro-eukaryotic taxa from freshwater sediment samples. If a more complete picture of the eukaryotic microbial community is desired, the TAR primer set in combination with the FastDNA SPIN Kit is more efficient in this study.

17.
Front Microbiol ; 13: 796018, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265057

RESUMEN

Methane emissions from aquatic ecosystems are increasingly recognized as substantial, yet variable, contributions to global greenhouse gas emissions. This is in part due to the challenge of modeling biologic parameters that affect methane emissions from a wide range of sediments. For example, the impacts of fish bioturbation on methane emissions in the literature have been shown to result in a gradient of reduced to enhanced emissions from sediments. However, it is likely that variation in experimental fish density, and consequently the frequency of bioturbation by fish, impacts this outcome. To explore how the frequency of disturbance impacts the levels of methane emissions in our previous work we quantified greenhouse gas emissions in sediment microcosms treated with various frequencies of mechanical disturbance, analogous to different levels of activity in benthic feeding fish. Greenhouse gas emissions were largely driven by methane ebullition and were highest for the intermediate disturbance frequency (disturbance every 7 days). The lowest emissions were for the highest frequency treatment (3 days). This work investigated the corresponding impacts of disturbance treatments on the microbial communities associated with producing methane. In terms of total microbial community structure, no statistical difference was observed in the total community structure of any disturbance treatment (0, 3, 7, and 14 days) or sediment depth (1 and 3 cm) measured. Looking specifically at methanogenic Archaea however, a shift toward greater relative abundance of a putatively oxygen-tolerant methanogenic phylotype (ca. Methanothrix paradoxum) was observed for the highest frequency treatments and at depths impacted by disturbance (1 cm). Notably, quantitative analysis of ca. Methanothrix paradoxum demonstrated no change in abundance, suggesting disturbance negatively and preferentially impacted other methanogen populations, likely through oxygen exposure. This was further supported by a linear decrease in quantitative abundance of methanogens (assessed by qPCR of the mcrA gene), with increased disturbance frequency in bioturbated sediments (1 cm) as opposed to those below the zone of bioturbation (3 cm). However, total methane emissions were not simply a function of methanogen populations and were likely impacted by the residence time of methane in the lower frequency disturbance treatments. Low frequency mechanical disruption results in lower methane ebullition compared to higher frequency treatments, which in turn resulted in reduced overall methane release, likely through enhanced methanotrophic activities, though this could not be identified in this work. Overall, this work contributes to understanding how animal behavior may impact variation in greenhouse gas emissions and provides insight into how frequency of disturbance may impact emissions.

18.
Environ Pollut ; 292(Pt B): 118431, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743968

RESUMEN

The fate and behavior of radioactive cesium (Cs) in the water environment are of great concern. The involvement of bacteria regarding their accumulation capability for this element is the most fundamental factor that needs to be clarified even for exploring the interactions between many environmental factors that involve together in governing the transport and distribution of Cs. As the first systematical study that aimed to evaluate the accumulation capability of environmental bacteria for Cs, bacteria in the sediment of a freshwater reservoir and coastal water environment were isolated and multiplied for contact experiment with Cs under different temperature conditions (5, 25, and 35 °C). The accumulation concentration of Cs in bacteria from freshwater sediment varied in 3.95 × 10-6 to 5.68 × 10-4ng-Cs/cell, and that from coastal sediment in 1.52 × 10-6 to 7.41 × 10-4ng-Cs/cell, indicating obvious differences among bacterial species. Bacteria of coastal sediment possessed higher accumulation capability for Cs than bacteria from freshwater sediment, and temperature dependency was confirmed for bacteria from coastal sediment. The findings of this study have great reference value for better understanding and controlling the fate and behavior of radioactive Cs associated with bacteria in the water environment.


Asunto(s)
Monitoreo de Radiación , Contaminantes Radiactivos del Agua , Bacterias , Cesio/análisis , Radioisótopos de Cesio/análisis , Agua Dulce , Sedimentos Geológicos , Contaminantes Radiactivos del Agua/análisis
19.
J Appl Microbiol ; 132(1): 747-757, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34312944

RESUMEN

AIM: To determine the impact of an acute, pulse disturbance of nutrients from manure on freshwater sediment microbiomes in an experimental system. METHODS AND RESULTS: A controlled freshwater mesocosm experiment was designed to compare the effect of disturbance from nutrients derived from sterile manure (SM), disturbance from equivalent concentrations of laboratory-derived nutrients, and a nondisturbed control on freshwater sediment microbial community composition and function using 16S rRNA amplicon sequencing. Sediment microbiomes impacted by nutrients from SM showed no sign of compositional recovery after 28 days but those impacted by laboratory-derived chemicals lead to a new steady-state (p < 0.05). Carbon and nitrate sources within disturbed mesocosms were the primary drivers of altered microbial community composition. Additionally, multiple potential pathogens (based on exact sequence matching at the species level) were enriched in mesocosms treated with SM. CONCLUSIONS: Nutrient disturbance from SM, in the absence of the manure microbial community, alters the microbiome of sediments without recovery after 28 days and enriches potential pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest manure land application practices should be re-evaluated to account for impact of nutrient disturbance on environmental microbiomes in addition to the impact of the manure microbial community.


Asunto(s)
Estiércol , Microbiota , Agua Dulce , Nutrientes , ARN Ribosómico 16S/genética
20.
Environ Res ; 203: 111830, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34358506

RESUMEN

It has been estimated that over 28 million tonnes of plastics end up in water bodies annually. These plastics degrade into microplastics (MPs), which along with microbeads and MPs from other sources such as wastewater treatment plants continue to threaten the aquatic system. At such small sizes, and corresponding larger surface areas per unit mass/volume, MPs exhibit enhanced capacity for absorbing and desorbing toxic chemicals/additives. Therefore, MPs can serve as vectors through which additives as well as other persistent, bio-accumulative, and toxic chemicals can enter the food chain. Additives are a significant component of most plastic products with some identified as hazardous to health and the environment. One group of additives that has continued to attract interest is organophosphate esters (OPEs), which are used both as flame retardants and plasticizers. Some of these OPEs are suspected carcinogens and endocrine disruptors and have been reported to exert serious toxic effects on freshwater biota. Separate studies on the presence and fate in the freshwater environment of these additives and MPs have emerged recently. However, no studies exist that examine the extent to which plastics additives such as OPEs in sediments are sorbed to MPs as opposed to the sediment itself. This has potentially important implications for the bioavailability of such additives and studies to examine this are recommended. This paper reviews critically the current state-of-knowledge on MPs in freshwater sediments, methods for their analysis, as well as their occurrence, temporal trends, and risks to the freshwater aquatic environment. Moreover, to facilitate the study of additives associated with MPs that have been extracted from sediments, we consider the possible effect of MP isolation methods on the determination of concentrations of associated additives like OPEs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Ésteres , Agua Dulce , Organofosfatos/toxicidad , Plásticos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA