Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20721, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237610

RESUMEN

Improving the thermal and dielectric properties of insulation oil (INO) with nanoadditives is an important challenge, and achieving dispersion stability in these nanofluids is quite challenging, necessitating further investigation. The main goal of this study is the synthesis and use of the hydrophobicity of zinc ferrite (ZnFe2O4) nanoparticles, which can improve both the thermal and dielectric properties of the INO. This oil is made from distillate (petroleum), including severely hydrotreated light naphthenic oil (75-85%) and severely hydrotreated light paraffinic oil (15-25%). A comprehensive investigation was carried out, involving the creation of nanofluids with ZnFe2O4 nanoparticles at various concentrations, and employing various characterization methods such as X-ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscopy, energy dispersive X-ray (EDX), zeta potential analysis, and dynamic light scattering (DLS). The KD2 Pro thermal analyzer was used to investigate the thermal characteristics, including the thermal conductivity coefficient (TCC) and volumetric heat capacity (VHC). Under free convection conditions, the free convection heat transfer coefficient (FCHTC) and Nusselt numbers (Nu) were evaluated, revealing enhancements ranging from 14.15 to 11.7%. Furthermore, the most significant improvement observed in the AC Breakdown voltage (BDV) for nanofluids containing 0.1 wt% of ZnFe2O4 amounted to 17.3%. The most significant finding of this study is the improvement in the heat transfer performance, AC BDV, and stability of the nanofluids.

2.
Heliyon ; 10(8): e29380, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628760

RESUMEN

In this research, a free convective flow of water inside an H-shaped hollow structure which is subjected to the existence of an exterior magnetic field and Joule heating is computationally investigated. The structure's right and left upright surfaces are maintained at invariant ambient thermal condition, while the top and bottom-most surfaces of the structure are in adiabatic condition. The rest of the inner walls are heated isothermally. Computational analysis is carried out for different configurations of the chamber by solving Navier-Stokes and heat energy equations via the finite element approach. Parametric computations are conducted by varying Hartmann numbers (0 ≤ Ha ≤ 20), Rayleigh numbers (103 ≤ Ra ≤ 106), width of the vertical sections (0.2 ≤ d/L ≤ 0.4, where L denotes the structure's reference dimension), and thickness of the horizontal middle section (0.2 ≤ t/L ≤ 0.4). To find out the impact of the governing parameters on thermal performance for different configurations, the mean Nusselt number along the hot walls, mean temperature of fluid, overall entropy generation, and thermal performance criterion are assessed. In addition, the variations in fluid motion and thermal patterns are reported in terms of streamlines, isotherms, and heatlines. With a larger mean Nusselt number and smaller thermal performance criterion, better heat transmission performance is found for thicker horizontal middle section and wider vertical sections. The maximum reduction in thermal performance criterion is found to be 87.8 % for increasing the width of the vertical sections. However, in the cases of Ha and d/L, there is an interesting transition in Nusselt number noticed for different Rayleigh numbers.

3.
Micromachines (Basel) ; 14(5)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37241672

RESUMEN

In the field of convective energy transfer, natural convection is one of the most studied phenomena, with applications ranging from heat exchangers and geothermal energy systems to hybrid nanofluids. The aim of this paper is to scrutinize the free convection of a ternary hybrid nanosuspension (Al2O3-Ag-CuO/water ternary hybrid nanofluid) in an enclosure with a linearly warming side border. The ternary hybrid nanosuspension motion and energy transfer have been modelled by partial differential equations (PDEs) with appropriate boundary conditions by the single-phase nanofluid model with the Boussinesq approximation. The finite element approach is applied to resolve the control PDEs after transforming them into a dimensionless view. The impact of significant characteristics such as the nanoparticles' volume fraction, Rayleigh number, and linearly heating temperature constant on the flow and thermal patterns combined with the Nusselt number has been investigated and analyzed using streamlines, isotherms, and other suitable patterns. The performed analysis has shown that the addition of a third kind of nanomaterial allows for intensifying the energy transport within the closed cavity. The transition between uniform heating to non-uniform heating of the left vertical wall characterizes the heat transfer degradation due to a reduction of the heat energy output from this heated wall.

4.
Diagnostics (Basel) ; 13(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900119

RESUMEN

We are developing a Virtual Eye for in silico therapies to accelerate research and drug development. In this paper, we present a model for drug distribution in the vitreous body that enables personalized therapy in ophthalmology. The standard treatment for age-related macular degeneration is anti-vascular endothelial growth factor (VEGF) drugs administered by repeated injections. The treatment is risky, unpopular with patients, and some of them are unresponsive with no alternative treatment. Much attention is paid to the efficacy of these drugs, and many efforts are being made to improve them. We are designing a mathematical model and performing long-term three-dimensional Finite Element simulations for drug distribution in the human eye to gain new insights in the underlying processes using computational experiments. The underlying model consists of a time-dependent convection-diffusion equation for the drug coupled with a steady-state Darcy equation describing the flow of aqueous humor through the vitreous medium. The influence of collagen fibers in the vitreous on drug distribution is included by anisotropic diffusion and the gravity via an additional transport term. The resulting coupled model was solved in a decoupled way: first the Darcy equation with mixed finite elements, then the convection-diffusion equation with trilinear Lagrange elements. Krylov subspace methods are used to solve the resulting algebraic system. To cope with the large time steps resulting from the simulations over 30 days (operation time of 1 anti-VEGF injection), we apply the strong A-stable fractional step theta scheme. Using this strategy, we compute a good approximation to the solution that converges quadratically in both time and space. The developed simulations were used for the therapy optimization, for which specific output functionals are evaluated. We show that the effect of gravity on drug distribution is negligible, that the optimal pair of injection angles is (50∘,50∘), that larger angles can result in 38% less drug at the macula, and that in the best case only 40% of the drug reaches the macula while the rest escapes, e.g., through the retina, that by using heavier drug molecules, more of the drug concentration reaches the macula in an average of 30 days. As a refined therapy, we have found that for longer-acting drugs, the injection should be made in the center of the vitreous, and for more intensive initial treatment, the drug should be injected even closer to the macula. In this way, we can perform accurate and efficient treatment testing, calculate the optimal injection position, perform drug comparison, and quantify the effectiveness of the therapy using the developed functionals. We describe the first steps towards virtual exploration and improvement of therapy for retinal diseases such as age-related macular degeneration.

5.
Micromachines (Basel) ; 13(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36363926

RESUMEN

In a cylindrical cavity, the convection and entropy of the hybrid nanofluid were studied. We have introduced a rectangular fin inside the cylinder; the fin temperature is at Th. The right waving wall is cooled to Tc. The upper and lower walls are insulated. This study contains the induction of a constant magnetic field. The Galerkin finite element method (GFEM) is utilized to treat the controlling equations obtained by giving Rayleigh number values between Ra (103-106) and Hartmann number ratio Ha (0, 25, 50, 100) and Darcy ranging between Da (10-2-10-5) and the porosity ratio is ε (0.2, 0.4, 0.6, 0.8), and the size of the nanoparticles is ϕ (0.02, 0.04, 0.06, 0.08). The range is essential for controlling both fluid flow and the heat transport rate for normal convection. The outcomes show how Da affects entropy and leads to a decline in entropy development. The dynamic and Nusselt mean diverge in a straight line. The domain acts in opposition to the magnetic force while flowing. Highest entropy-forming situations were found in higher amounts of Ra, Da, and initial values of Ha. Parameters like additive nanoparticles (ϕ) and porosity (ε) exert diagonal dominant trends with their improving values.

6.
Heliyon ; 8(9): e10538, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36119868

RESUMEN

The outcome of Newtonian heating on the viscoelastic fluid plays a vital role in daily life applications such as conjugate heat transfer around fins, heat exchanger, solar radiation, petroleum industry, etc. Also, rotation of viscoelastic fluid has various importance in product-making industries and engineering. Viscoelastic dusty fluids and Newtonian heating are applicable in nuclear reactors, gas cooling systems, control temperature of the system and centrifugal separators, etc. Therefore, based on this motivation, the present study presents the Newtonian heating effect on the dusty viscoelastic fluid. Additionally, a free convective heat transfer is taken for Couette flow in a rotating frame along with a uniform applied magnetic field. The dust particles possess complex velocities due to rotation and therefore it is the combination of the primary and secondary velocities. For the specified flow, the entropy generation and Bejan number are also computed. Poincare-Light Hill technique has been used for the solution of the system of partial differential equations. The velocity profile for dust particles and fluid are discussed in this article. The influence of different parameters on the Nusselt number, temperature profile, velocity of fluid and dust particle is discussed thoroughly.

7.
Comb Chem High Throughput Screen ; 25(7): 1103-1114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34391375

RESUMEN

BACKGROUND: The present manuscript analyzes the influence of buoyant forces of a conducting time-dependent nanofluid flow through porous moving walls. The medium is also filled with porous materials. In addition to that, uniform heat source and absorption parameters are considered that affect the nanofluid model. INTRODUCTION: The model is based on the thermophysical properties of Hamilton-Crosser's nanofluid model, in which a gold nanoparticle is submerged into the base fluid water. Before simulation is obtained by a numerical method, suitable transformation is used to convert nonlinear coupled PDEs to ODEs. METHOD: Runge-Kutta's fourth-order scheme is applied successfully for the first-order ODEs in conjunction with the shooting technique. RESULT: Computations for the coefficients of rate constants are presented through graphs, along with the behavior of several physical parameters augmented by the flow phenomena. CONCLUSION: The present investigation may be compatible with the applications of biotechnology. It is seen that the inclusion of volume concentration and the fluid velocity enhances near the middle layer of the channel and retards near the permeable walls. Also, augmented values of the Reynolds number and both cooling and heating of the wall increase the rate of shear stress.


Asunto(s)
Nanopartículas del Metal , Agua , Simulación por Computador , Oro , Calor
8.
Entropy (Basel) ; 23(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205028

RESUMEN

The heat transfer enhancement and fluid flow control in engineering systems can be achieved by addition of ferric oxide nanoparticles of small concentration under magnetic impact. To increase the technical system life cycle, the entropy generation minimization technique can be employed. The present research deals with numerical simulation of magnetohydrodynamic thermal convection and entropy production in a ferrofluid chamber under the impact of an internal vertical hot sheet. The formulated governing equations have been worked out by the in-house program based on the finite volume technique. Influence of the Hartmann number, Lorentz force tilted angle, nanoadditives concentration, dimensionless temperature difference, and non-uniform heating parameter on circulation structures, temperature patterns, and entropy production has been scrutinized. It has been revealed that a transition from the isothermal plate to the non-uniformly warmed sheet illustrates a rise of the average entropy generation rate, while the average Nusselt number can be decreased weakly. A diminution of the mean entropy production strength can be achieved by an optimal selection of the Lorentz force tilted angle.

9.
Sci Total Environ ; 788: 147740, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34134376

RESUMEN

Clarifying the relationship between meteorological factors and ozone can provide scientific support for ozone pollution prediction, but the effects of boundary layer meteorology, especially boundary layer height and turbulence, on ozone pollution are rarely studied. Here, ozone and its related meteorological factors were observed in summer in Shijiazhuang, a city with the most serious ozone pollution on the North China Plain. The forced and free convection boundary layers were classified using ground remote observations. After eliminating the forced convection condition, strong free convection conditions, exhibiting a high boundary layer height, high wind speed, strong turbulence and large-scale free convection velocity, were found to be beneficial for the aggravation of ozone pollution. Combined with the ozone profile detected by a tethered balloon, the ozone chemical budget was calculated using the differences in the column ozone concentrations between the morning and afternoon, and the results confirmed the impact of free convection intensity on ozone pollution. The change in ozone sensitivity from VOCs sensitivity to NOx sensitivity driven by strong free convection was the main reason for the deterioration of ozone pollution. This study clarified the impact of boundary layer meteorology on ozone and its sensitivity and has important practical significance for ozone pollution prevention and early warning.

10.
Data Brief ; 27: 104559, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31656832

RESUMEN

This article is related to research article entitled "Resolution, energy and time dependency on layer scaling in finite element modelling of laser beam powder bed fusion additive manufacturing" [1]. This data article presents a computationally efficient approximation of part-powder interface conduction heat transfer, as convection heat transfer, thus eliminating the need for powder elements in the finite element model. The heat loss profile due to part-powder conduction was first characterised for a Ti6Al4V Powder Bed Fusion process. Cooling rate data was obtained for a range of powder in-plane depths. A matching cooling rate profile was obtained from free convection from the part surface, by calibration of the convection coefficient.

11.
Am J Bot ; 105(9): 1499-1511, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114317

RESUMEN

PREMISE OF THE STUDY: Nonvascular plants play important roles in exchange of water and heat at the soil-atmosphere interface. Differential evaporative cooling may cause temperature gradients within bryophyte canopies, influencing convective heat and mass transport. Understanding mechanisms that affect fluxes through moss layers should improve models of forest floor function. METHODS: A three-dimensional thermal imaging system measured temperature distributions within moss shoot systems that were used to explore relationships among canopy structure, temperature gradients, evaporation, and conductance to water vapor (gs ). We studied five moss species under dark and light conditions in the lab. Also, these properties were measured in two species that differed in canopy structure during drying. KEY RESULTS: Differential evaporative cooling led to a 1.4 to 5.0°C range in shoot temperatures within canopies. Samples displayed -0.5 to -0.9°C/cm temperature gradients with cooler apical temperatures. Gradient magnitudes did not differ among species, but taller canopies expressed greater temperature differences. Light enhanced both the gradient and the temperature difference. Rates of evaporation were significantly related to canopy height in the light, but not in the dark, although gs was positively associated with canopy height in both. Rayleigh (Ra) numbers characterize whether temperature gradients likely generate free convection. In tall canopies, Ra numbers exceeded the value indicative of free convection and turbulent flow. As plants dried, temperature gradients decreased. CONCLUSIONS: When moss canopies are wet, cooler apical temperatures create thermal instabilities within the canopies that appear sufficient to enhance convective transport of water vapor and heat in tall canopies with low bulk density.


Asunto(s)
Briófitas , Brotes de la Planta/metabolismo , Briófitas/anatomía & histología , Briófitas/metabolismo , Temperatura , Agua/metabolismo , Viento
12.
Entropy (Basel) ; 20(11)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33266570

RESUMEN

MHD free convection inside a triangular-wave-shaped corrugated porous cavity with Cu-water nanofluid is numerically studied with the finite element method. The influences of the Grashof number ( 10 4 ≤ Gr ≤ 10 6 ), Hartmann number ( 0 ≤ Ha ≤ 50 ), Darcy number ( 10 - 4 ≤ Da ≤ 10 - 1 ) and solid volume fraction of the nanoparticle ( 0 ≤ ϕ ≤ 0.05 ) on the convective flow features are examined. It is observed that increasing the Grashof number and Darcy number enhances the heat transfer, while the effect is opposite for the Hartmann number. As the corrugation frequency of the triangular wave increases, the local and averaged heat transfer rates decrease, which is more effective for higher values of Grashof and Darcy numbers. Normalized total entropy generation increases as the Darcy number and solid volume fraction of the nanoparticles increase and decreases as the Hartmann number increases both for flat and corrugated wall configurations.

13.
Springerplus ; 5(1): 2090, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018798

RESUMEN

BACKGROUND: Non-coaxial rotation has wide applications in engineering devices, e.g. in food processing such as mixer machines and stirrers with a two-axis kneader, in cooling turbine blades, jet engines, pumps and vacuum cleaners, in designing thermal syphon tubes, and in geophysical flows. Therefore, this study aims to investigate unsteady free convection flow of viscous fluid due to non-coaxial rotation and fluid at infinity over an oscillating vertical plate with constant wall temperature. METHODS: The governing equations are modelled by a sudden coincidence of the axes of a disk and the fluid at infinity rotating with uniform angular velocity, together with initial and boundary conditions. Some suitable non-dimensional variables are introduced. The Laplace transform method is used to obtain the exact solutions of the corresponding non-dimensional momentum and energy equations with conditions. Solutions of the velocity for cosine and sine oscillations as well as for temperature fields are obtained and displayed graphically for different values of time (t ), the Grashof number (Gr), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]). Skin friction and the Nusselt number are also evaluated. RESULTS: The exact solutions are obtained and in limiting cases, the present solutions are found to be identical to the published results. Further, the obtained exact solutions also validated by comparing with results obtained by using Gaver-Stehfest algorithm. CONCLUSION: The interested physical property such as velocity, temperature, skin friction and Nusselt number are affected by the embedded parameters time (t), the Grashof number (Gr), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]).

14.
Springerplus ; 4: 333, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26180753

RESUMEN

In this paper, the steady two-dimensional hydromagnetic free convective flow of an incompressible viscous and electrically conducting fluid between two parallel vertical porous plates has been considered. The effect of induced magnetic field arising due to the motion of an electrically conducting fluid is taken into account. The governing equations of the motion are a set of simultaneous ordinary differential equations and their analytical solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expression for the induced current density has been also obtained. The effects of various non-dimensional parameters on the velocity profile, the induced magnetic field profile, the temperature profile and the induced current density profile have been shown in the graphs. It is found that the effect of suction parameter is to decrease the velocity field and induced current density while it has increasing effect on the induced magnetic field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA