Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39267298

RESUMEN

OBJECTIVES: To reveal the force profiles recorded by haptic autonomous robotic force feedback during the transcrestal sinus floor elevation (TSFE) process, providing a reference for the surgery strategy during TSFE. MATERIALS AND METHODS: A total of 42 maxillary sinus models with different angles of the sinus floor (30°, 40°, 50°, 60°, 70°, 80°, and 90°, compared to vertical plane) were 3D printed. Implant site preparation was performed using a robotic system, and the total force (Ft) and axial force along the drill (Fz) during the surgery were recorded by the haptic robotic arm. The actual initial breakthrough point (drill contacting sinus floor) and complete breakthrough point (drill penetrating the sinus floor) were defined visually (the actual IBP and the actual CBP). The theoretical initial breakthrough point (the theoretical IBP) and the theoretical complete breakthrough point (the theoretical CBP) defined by the robot-guided system and the CBCT were determined by real-time force feedback and imaging distance measurement, respectively. The distance from the bottom of the resin model to the actual IBP and the actual CBP was defined as Di and Dt, respectively. RESULTS: The difference in Fz began to increase significantly at 70°, while the difference in Ft became significant at 60°. When the angle was greater than 70°, there was no significant difference in the discrepancy between the actual and theoretical perforation points. Compared to judging the breakthrough point by CBCT, real-time force feedback TSFE under robotic surgery achieved more accurate initial breakthrough point detection. CONCLUSIONS: The smaller the angle, the larger the breakthrough force for the drill. The real-time force feedback of haptic robotic system during TSFE could provide reliable reference for dentists. More clinical studies are needed to further validate the application of robotic surgery assisted TSFE.

2.
Surg Endosc ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266755

RESUMEN

BACKGROUND: The absence of force feedback (FFB) is considered a technical limitation in robotic-assisted surgery (RAS). This pre-clinical study aims to evaluate the forces applied to tissues using a novel integrated FFB technology, which allows surgeons to sense forces exerted at the instrument tips. METHODS: Twenty-eight surgeons with varying experience levels employed FFB instruments to perform three robotic-assisted surgical tasks, including retraction, dissection, and suturing, on inanimate or ex-vivo models, while the instrument sensors recorded and conveyed the applied forces to the surgeon hand controllers of the robotic system. Generalized Estimating Equations (GEE) models were used to analyze the mean and maximal forces applied during each task with the FFB sensor at the "Off" setting compared to the "High" sensitivity setting for retraction and to the "Low", "Medium", and "High" sensitivity settings for dissection and suturing. Sub-analysis was also performed on surgeon experience levels. RESULTS: The use of FFB at any of the sensitivity settings resulted in a significant reduction in both the mean and maximal forces exerted on tissue during all three robotic-assisted surgical tasks (p < 0.0001). The maximal force exerted, potentially associated with tissue damage, was decreased by 36%, 41%, and 55% with the use of FFB at the "High" sensitivity setting while performing retraction, dissection, and interrupted suturing tasks, respectively. Further, the use of FFB resulted in substantial reductions in force variance during the performance of all three types of tasks. In general, reductions in mean and maximal forces were observed among surgeons at all experience levels. The degree of force reduction depends on the sensitivity setting selected and the types of surgical tasks evaluated. CONCLUSIONS: Our findings demonstrate that the utilization of FFB technology integrated in the robotic surgical system significantly reduced the forces exerted on tissue during the performance of surgical tasks at all surgeon experience levels. The reduction in the force applied and a consistency of force application achieved with FFB use, could result in decreases in tissue trauma and blood loss, potentially leading to better clinical outcomes in patients undergoing RAS. Future studies will be important to determine the impact of FFB instruments in a live clinical environment.

3.
Int J Med Robot ; 20(4): e2667, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39120052

RESUMEN

BACKGROUND: Robot-assisted microsurgery (RAMS) is gradually becoming the preferred method for some delicate surgical procedures. However, the lack of haptic feedback reduces the safety of the surgery. Surgeons are unable to feel the grasping force between surgical instruments and the patient's tissues, which can easily lead to grasping failure or tissue damage. METHODS: This paper proposes a tendon-driven grasping force feedback mechanism, consisting of a follower hand and a leader hand, to address the lack of grasping force feedback in flexible surgical robots. Considering the friction in the tendon transmission process, a grasping force estimation model is established for the follower hand. The admittance control model is designed for force/position control of the leader hand. RESULTS: Through experimental validation, it has been confirmed that the grasping force sensing range of the follower hand is 0.5-5 N, with a sensing accuracy of 0.3 N. The leader hand is capable of providing feedback forces in the range of 0-5 N, with a static force accuracy of 0.1 N. CONCLUSIONS: The designed mechanism and control strategy can provide the grasping force feedback function. Future work will focus on improving force feedback performance. TRIAL REGISTRATION: This research has no clinical trials.


Asunto(s)
Diseño de Equipo , Retroalimentación , Fuerza de la Mano , Procedimientos Quirúrgicos Robotizados , Humanos , Procedimientos Quirúrgicos Robotizados/métodos , Procedimientos Quirúrgicos Robotizados/instrumentación , Fuerza de la Mano/fisiología , Microcirugia/métodos , Microcirugia/instrumentación , Tendones/cirugía , Tendones/fisiología , Reproducibilidad de los Resultados
4.
Sensors (Basel) ; 24(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123980

RESUMEN

Pumping stations have undergone significant modernization and digitalization in recent decades. However, traditional virtual inspections often prioritize the visual experience and fail to effectively represent the haptic physical properties of devices during inspections, resulting in poor immersion and interactivity. This paper presents a novel virtual inspection system for pumping stations, incorporating virtual reality interaction and haptic force feedback technology to enhance immersion and realism. The system leverages a 3D model, crafted in 3Ds Max, to provide immersive visualizations. Multimodal feedback is achieved through a combination of haptic force feedback provided by a haptic device and visual information delivered by a VR headset. The system's data platform integrates with external databases using Unity3D to display relevant information. The system provides immersive 3D visualizations and realistic force feedback during simulated inspections. We compared this system to a traditional virtual inspection method that demonstrated statistically significant improvements in task completion rates and a reduction in failure rates when using the multimodal feedback approach. This innovative approach holds the potential to enhance inspection safety, efficiency, and effectiveness in the pumping station industry.

5.
Otolaryngol Clin North Am ; 57(5): 767-779, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38971627

RESUMEN

Robotic surgery is a growing field with increasing applications to patient care. With the rising use of artificial intelligence (AI), a new frontier emerges, allowing semiautonomous robotics. This article reviews the origins of robotic surgery and subsequent trials of automaticity in all fields. It then describes specific nascent robotic and semiautonomous surgical prototypes within the field of otolaryngology. Finally, broader systemic considerations are posited regarding the implementation of AI-driven robotics in surgery.


Asunto(s)
Inteligencia Artificial , Procedimientos Quirúrgicos Otorrinolaringológicos , Procedimientos Quirúrgicos Robotizados , Humanos , Procedimientos Quirúrgicos Robotizados/instrumentación , Procedimientos Quirúrgicos Robotizados/métodos , Procedimientos Quirúrgicos Otorrinolaringológicos/instrumentación , Procedimientos Quirúrgicos Otorrinolaringológicos/métodos , Otolaringología
6.
Surg Endosc ; 38(7): 3917-3928, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834723

RESUMEN

BACKGROUND: Tissue handling is a crucial skill for surgeons and is challenging to learn. The aim of this study was to develop laparoscopic instruments with different integrated tactile vibration feedback by varying different tactile modalities and assess its effect on tissue handling skills. METHODS: Standard laparoscopic instruments were equipped with a vibration effector, which was controlled by a microcomputer attached to a force sensor platform. One of three different vibration feedbacks (F1: double vibration > 2 N; F2: increasing vibration relative to force; F3: one vibration > 1.5 N and double vibration > 2 N) was applied to the instruments. In this multicenter crossover trial, surgical novices and expert surgeons performed two laparoscopic tasks (Peg transfer, laparoscopic suture, and knot) each with all the three vibration feedback modalities and once without any feedback, in a randomized order. The primary endpoint was force exertion. RESULTS: A total of 57 subjects (15 surgeons, 42 surgical novices) were included in the trial. In the Peg transfer task, there were no differences between the tactile feedback modalities in terms of force application. However, in subgroup analysis, the use of F2 resulted in a significantly lower mean-force application (p-value = 0.02) among the student group. In the laparoscopic suture and knot task, all participants exerted significantly lower mean and peak forces using F2 (p-value < 0.01). These findings remained significant after subgroup analysis for both, the student and surgeon groups individually. The condition without tactile feedback led to the highest mean and peak force exertion compared to the three other feedback modalities. CONCLUSION: Continuous tactile vibration feedback decreases the mean and peak force applied during laparoscopic training tasks. This effect is more pronounced in demanding tasks such as laparoscopic suturing and knot tying and might be more beneficial for students. Laparoscopic tasks without feedback lead to increased force application.


Asunto(s)
Competencia Clínica , Estudios Cruzados , Laparoscopía , Tacto , Vibración , Humanos , Laparoscopía/educación , Femenino , Masculino , Técnicas de Sutura/educación , Adulto , Retroalimentación Sensorial
7.
Micromachines (Basel) ; 15(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38930663

RESUMEN

Virtual reality technology brings a new experience to human-computer interaction, while wearable force feedback devices can enhance the immersion of users in interaction. This paper proposes a wearable fingertip force feedback device that uses a tendon drive mechanism, with the aim of simulating the stiffness characteristics of objects within virtual scenes. The device adjusts the rotation angle of the torsion spring through a DC motor, and then uses a wire to convert the torque into a feedback force at the user's index fingertips, with an output force of up to 4 N and a force change rate of up to 10 N/s. This paper introduces the mechanical structure and design process of the force feedback device, and conducts a mechanical analysis of the device to select the appropriate components. Physical and psychological experiments are conducted to comprehensively evaluate the device's performance in conveying object stiffness information. The results show that the device can simulate different stiffness characteristics of objects, and users can distinguish objects with different stiffness characteristics well when wearing the force feedback device and interacting with the three-dimensional virtual environments.

8.
J Neuroeng Rehabil ; 21(1): 77, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745227

RESUMEN

BACKGROUND: Over 80% of patients with stroke experience finger grasping dysfunction, affecting independence in activities of daily living and quality of life. In routine training, task-oriented training is usually used for functional hand training, which may improve finger grasping performance after stroke, while augmented therapy may lead to a better treatment outcome. As a new technology-supported training, the hand rehabilitation robot provides opportunities to improve the therapeutic effect by increasing the training intensity. However, most hand rehabilitation robots commonly applied in clinics are based on a passive training mode and lack the sensory feedback function of fingers, which is not conducive to patients completing more accurate grasping movements. A force feedback hand rehabilitation robot can compensate for these defects. However, its clinical efficacy in patients with stroke remains unknown. This study aimed to investigate the effectiveness and added value of a force feedback hand rehabilitation robot combined with task-oriented training in stroke patients with hemiplegia. METHODS: In this single-blinded randomised controlled trial, 44 stroke patients with hemiplegia were randomly divided into experimental (n = 22) and control (n = 22) groups. Both groups received 40 min/day of conventional upper limb rehabilitation training. The experimental group received 20 min/day of task-oriented training assisted by a force feedback rehabilitation robot, and the control group received 20 min/day of task-oriented training assisted by therapists. Training was provided for 4 weeks, 5 times/week. The Fugl-Meyer motor function assessment of the hand part (FMA-Hand), Action Research Arm Test (ARAT), grip strength, Modified Ashworth scale (MAS), range of motion (ROM), Brunnstrom recovery stages of the hand (BRS-H), and Barthel index (BI) were used to evaluate the effect of two groups before and after treatment. RESULTS: Intra-group comparison: In both groups, the FMA-Hand, ARAT, grip strength, AROM, BRS-H, and BI scores after 4 weeks of treatment were significantly higher than those before treatment (p < 0.05), whereas there was no significant difference in finger flexor MAS scores before and after treatment (p > 0.05). Inter-group comparison: After 4 weeks of treatment, the experimental group's FMA-Hand total score, ARAT, grip strength, and AROM were significantly better than those of the control group (p < 0.05). However, there were no statistically significant differences in the scores of each sub-item of the FMA-Hand after Bonferroni correction (p > 0.007). In addition, there were no statistically significant differences in MAS, BRS-H, and BI scores (p > 0.05). CONCLUSION: Hand performance improved in patients with stroke after 4 weeks of task-oriented training. The use of a force feedback hand rehabilitation robot to support task-oriented training showed additional value over conventional task-oriented training in stroke patients with hand dysfunction. CLINICAL TRIAL REGISTRATION INFORMATION: NCT05841108.


Asunto(s)
Fuerza de la Mano , Hemiplejía , Robótica , Rehabilitación de Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Masculino , Femenino , Persona de Mediana Edad , Robótica/instrumentación , Fuerza de la Mano/fisiología , Hemiplejía/rehabilitación , Hemiplejía/fisiopatología , Hemiplejía/etiología , Anciano , Método Simple Ciego , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Dedos/fisiología , Dedos/fisiopatología , Mano/fisiopatología , Adulto , Retroalimentación Sensorial/fisiología , Resultado del Tratamiento , Recuperación de la Función
9.
Int J Comput Assist Radiol Surg ; 19(7): 1273-1280, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38816649

RESUMEN

PURPOSE: Skullbase surgery demands exceptional precision when removing bone in the lateral skull base. Robotic assistance can alleviate the effect of human sensory-motor limitations. However, the stiffness and inertia of the robot can significantly impact the surgeon's perception and control of the tool-to-tissue interaction forces. METHODS: We present a situational-aware, force control technique aimed at regulating interaction forces during robot-assisted skullbase drilling. The contextual interaction information derived from the digital twin environment is used to enhance sensory perception and suppress undesired high forces. RESULTS: To validate our approach, we conducted initial feasibility experiments involving a medical and two engineering students. The experiment focused on further drilling around critical structures following cortical mastoidectomy. The experiment results demonstrate that robotic assistance coupled with our proposed control scheme effectively limited undesired interaction forces when compared to robotic assistance without the proposed force control. CONCLUSIONS: The proposed force control techniques show promise in significantly reducing undesired interaction forces during robot-assisted skullbase surgery. These findings contribute to the ongoing efforts to enhance surgical precision and safety in complex procedures involving the lateral skull base.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Base del Cráneo , Humanos , Base del Cráneo/cirugía , Procedimientos Quirúrgicos Robotizados/métodos , Estudios de Factibilidad , Mastoidectomía/métodos
10.
Surg Innov ; 31(3): 331-341, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38486132

RESUMEN

BACKGROUND: Virtual simulations (VSs) enhance clinical competencies and skills. However, a previous systematic review of 9 RCT studies highlighted a paucity of literature on the effects of haptic feedback in surgical VSs. An updated systematic and scoping review was conducted to encompass more studies and a broader range of study methodologies. METHODS: A systematic literature search was conducted on July 31, 2023, in MEDLINE, Embase, and Cochrane. English language studies comparing haptic vs non-haptic conditions and using VSs were included. Studies were evaluated and reported using PRISMA-ScR guidelines. RESULTS: Out of 2782 initial studies, 51 were included in the review. Most studies used RCT (21) or crossover (23) methodologies with medical residents, students, and attending physicians. Most used post-intervention metrics, while some used pre- and post-intervention metrics. Overall, 34 performance results from studies favored haptics, 3 favored non-haptics, and the rest showed mixed or equal results. CONCLUSION: This updated review highlights the diverse application of haptic technology in surgical VSs. Haptics generally enhances performance, complements traditional teaching methods, and offers personalized learning with adequate simulator validation. However, a sparsity of orienting to the simulator, pre-/post-study designs, and small sample sizes poses concerns with the validity of the results. We underscore the urgent need for standardized protocols, large-scale studies, and nuanced understanding of haptic feedback integration. We also accentuate the significance of simulator validation, personalized learning potential, and the need for researcher, educator, and manufacturer collaboration. This review is a guidepost for navigating the complexities and advancements in haptic-enhanced surgical VSs.


Asunto(s)
Competencia Clínica , Entrenamiento Simulado , Humanos , Retroalimentación , Cirugía General/educación , Entrenamiento Simulado/métodos , Realidad Virtual
11.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339652

RESUMEN

Most haptic actuators available on the market today can generate only a single modality of stimuli. This ultimately limits the capacity of a kinaesthetic haptic controller to deliver more expressive feedback, requiring a haptic controller to integrate multiple actuators to generate complex haptic stimuli, with a corresponding complexity of construction and control. To address this, we designed a haptic controller to deliver several modalities of kinaesthetic haptic feedback using a single actuator: a flywheel, the orientation of which is controlled by two gimbals capable of rotating over 360 degrees, in combination with a flywheel brake. This enables the controller to generate multiple haptic feedback modalities, such as torque feedback, impact simulation, low-frequency high-amplitude vibrations, inertial effects (the sensation of momentum), and complex haptic output effects such as the experience of vortex-like forces (whirl effects). By combining these diverse haptic effects, the controller enriches the haptic dimension of VR environments. This paper presents the device's design, implementation, and characterization, and proposes potential applications for future work.

12.
BMC Med Educ ; 24(1): 161, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378608

RESUMEN

BACKGROUND: A lack of force feedback in laparoscopic surgery often leads to a steep learning curve to the novices and traditional training system equipped with force feedback need a high educational cost. This study aimed to use a laparoscopic grasper providing force feedback in laparoscopic training which can assist in controlling of gripping forces and improve the learning processing of the novices. METHODS: Firstly, we conducted a pre-experiment to verify the role of force feedback in gripping operations and establish the safe gripping force threshold for the tasks. Following this, we proceeded with a four-week training program. Unlike the novices without feedback (Group A2), the novices receiving feedback (Group B2) underwent training that included force feedback. Finally, we completed a follow-up period without providing force feedback to assess the training effect under different conditions. Real-time force parameters were recorded and compared. RESULTS: In the pre-experiment, we set the gripping force threshold for the tasks based on the experienced surgeons' performance. This is reasonable as the experienced surgeons have obtained adequate skill of handling grasper. The thresholds for task 1, 2, and 3 were set as 0.731 N, 1.203 N and 0.938 N, respectively. With force feedback, the gripping force applied by the novices with feedback (Group B1) was lower than that of the novices without feedback (Group A1) (p < 0.005). During the training period, the Group B2 takes 6 trails to achieve gripping force of 0.635 N, which is lower than the threshold line, whereas the Group A2 needs 11 trails, meaning that the learning curve of Group B2 was significantly shorter than that of Group A2. Additionally, during the follow-up period, there was no significant decline in force learning, and Group B2 demonstrated better control of gripping operations. The training with force feedback received positive evaluations. CONCLUSION: Our study shows that using a grasper providing force feedback in laparoscopic training can help to control the gripping force and shorten the learning curve. It is anticipated that the laparoscopic grasper equipped with FBG sensor is promising to provide force feedback during laparoscopic training, which ultimately shows great potential in laparoscopic surgery.


Asunto(s)
Laparoscopía , Curva de Aprendizaje , Humanos , Retroalimentación , Laparoscopía/educación , Fuerza de la Mano , Competencia Clínica
13.
Comput Struct Biotechnol J ; 24: 126-135, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38352631

RESUMEN

Mirror therapy is a standard technique of rehabilitation for recovering motor and vision abilities of stroke patients, especially in the case of asymmetric limb function. To enhance traditional mirror therapy, robotic mirror therapy (RMT) has been proposed over the past decade, allowing for assisted bimanual coordination of paretic (affected) and contralateral (healthy) limbs. However, state-of-the-art RMT platforms predominantly target mirrored motions of trajectories, largely limited to 2-D motions. In this paper, an RMT platform is proposed, which can facilitate the patient to practice virtual activities of daily living (ADL) and thus enhance their independence. Two similar (but mirrored) 3D virtual environments are created in which the patients operate robots with both their limbs to complete ADL (such as writing and eating) with the assistance of the therapist. The recovery level of the patient is continuously assessed by monitoring their ability to track assigned trajectories. The patient's robots are programmed to assist the patient in following these trajectories based on this recovery level. In this paper, the framework to dynamically monitor recovery level and accordingly provide assistance is developed along with the nonlinear controller design to ensure position tracking, force control, and stability. Proof-of-concept studies are conducted with both 3D trajectory tracking and ADL. The results demonstrate the potential use of the proposed system to enhance the recovery of the patients.

14.
Primates ; 65(2): 89-101, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244142

RESUMEN

While force-feedback devices have been developed in areas such as virtual reality, there have been very few comparative cognitive studies in nonhuman animals using these devices. In addition, although cross-modal perception between vision and touch has been actively studied in nonhuman primates for several decades, there have been no studies of their active haptic perception. In this study, we attempted to train force discrimination in chimpanzees using a force-feedback device modified from a trackball. Chimpanzees were given different levels of force feedback (8.0 vs. 0.5 N) when moving the on-screen cursor to the target area by manipulating the trackball and were required to select one of two choice stimuli based on the force cue. The experiment was conducted using a trial-block procedure in which the same force stimulus was presented for a fixed number of trials, and the force stimulus was changed between blocks. The block size was progressively reduced from ten trials. Four chimpanzees were trained, but none reached the learning criterion (80% or more correct responses under the condition that the force stimuli were presented randomly). However, a detailed analysis of the chimpanzees' performance before and after the trial-block switching revealed that their choice behavior could not be explained by a simple win-stay/lose-shift strategy, suggesting that the switching of the force stimuli affected the chimpanzees' choice behavior. It was also found that the chimpanzees performed better when switching from small to large force stimuli than when switching from large to small force stimuli. Although none of the chimpanzees in this study acquired force discrimination, future studies using such force-feedback devices will provide new insights for understanding haptic cognition in nonhuman primates from a comparative cognitive perspective.


Asunto(s)
Aprendizaje , Pan troglodytes , Animales , Retroalimentación , Pan troglodytes/psicología , Cognición
15.
Int J Psychol ; 59(1): 104-110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37848345

RESUMEN

We aimed to understand which factors have a functional role in the size coding of responses, either the size of the switches or the force required to trigger each switch. This question is of relevance because it allows a better understanding of processes underlying action coding. In each trial, participants saw a small or large object. Depending on its colour, the participants had to press one of two switches. In the "size" condition, the response device consisted of two switches of different visual size, but both required the same amount of force. In the "force-feedback" condition, the response device consisted in two switches of identical visual size, but one switch required more force than the other. We found a compatibility effect in the "size," not in the "force-feedback" condition, supporting that the size-coding of responses would be due to the size of the switches.


Asunto(s)
Desempeño Psicomotor , Humanos , Retroalimentación , Desempeño Psicomotor/fisiología
16.
Surg Endosc ; 38(3): 1222-1229, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38092971

RESUMEN

BACKGROUND: Currently, widely used robotic surgical systems do not provide force feedback. This study aimed to evaluate the impact and benefits of a force feedback function on the suturing procedure. METHODS: Twenty surgeons were recruited and divided into young (Y-group, n = 11) and senior (S-group, n = 9) groups, based on their years of surgical experience. The effect of the force feedback function on suturing quality was evaluated using an objective assessment system (A-LAP mini, Kyoto Kagaku Co., Ltd., Kyoto, Japan). Each participant completed the suturing task on intestinal model sheets with the robotic contact force feedback on and off. The task accomplishment time (s), maximal force (Newton, N) applied to the robotic forceps, and quality of suturing (assessed by A-LAP mini) were recorded as performance parameters. RESULTS: In total, the maximal force applied to the robotic forceps was significantly decreased with the robotic force feedback switched on (median [interquartile range]: 2.8 N (2.3-3.2)) as compared with when the feedback was switched off (3.4 N (2.7-4.0), P < 0.001). The contact force feedback function did not affect the objectively assessed suturing score (18 points (17.7-19.0) versus 18 points (17.0-19.0), P = 0.421). The contact force feedback function slightly shortened the task accomplishment time in the Y-group (552.5 s (466.5-832) versus 605.5 s (476.2-689.7), P = 0.851) but not in the S-group (566 s (440.2-703.5) versus 470.5 s (419.7-560.2), P = 0.164). CONCLUSIONS: With the contact force feedback function, the suturing task was completed with a smaller maximal force, while maintaining the quality of suturing. Because the benefits are more apparent in young surgeons, robots with the contact force feedback function will facilitate the educational process in novice surgeons.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Cirujanos , Humanos , Robótica/métodos , Retroalimentación , Procedimientos Neuroquirúrgicos , Instrumentos Quirúrgicos , Competencia Clínica , Técnicas de Sutura
17.
J Electromyogr Kinesiol ; 74: 102851, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38048656

RESUMEN

PURPOSE: This work studied muscle neuro-mechanics during symmetrical up-going ramp (UGR) and down-going ramp (DGR). AIM: to evaluate during the modulation of muscular action the outcome of force feedback (FF) or neural feedback (NF) on the behavior of the trailing signals - i.e. the EMG envelope (eEMG) for FF or force signal for NF. METHOD: Subjects: 20. Investigated muscles: dorsal interosseous (FDI) and tibialis anterior (TA). Detected signals: force and EMG. Visual feedback: force (FF), eEMG (NF). Effort triangles: ramps duration 7.5 s, vertex at 50 and 100 % of the maximal voluntary action. Eventually, each subject performed FF50%, FF100%, NF50% and NF100% per each muscle. In each condition the areas beneath the force and eEMG signals were computed to calculate the ratios between the DGR and UGR values during the different tasks (force area DGR / force area UGR; eEMG area DGR / eEMG area UGR). Electro-mechanical coupling efficiency (EMCE) was estimated through the eEMG area / force area ratio for both UGR and DGR in each condition. RESULTS: a) FF. FDI: eEMG area ratio was 0.84 ± 0.15 and 0.73 ± 0.17 for FF50% and FF100%, respectively. TA: eEMG area ratio was 0.88 ± 0.11 and 0.91 ± 0.17 for FF50% and FF100%, respectively. b) NF: FDI: force area ratio was 1.18 ± 0.13 and 1.17 ± 0.13 for NF50% and NF100%, respectively. TA: force area ratio was 1.17 ± 0.21 and 1.07 ± 0.19 for NF50% and NF100%, respectively. c) DGR EMCE was greater than UGR EMCE in all four tasks. CONCLUSION: The influence of UGR on deployed EMCE in the following force decrement phase underpins the changes of trailing signals area during DGR. This underlines the necessity of a careful evaluation of the features of FF or NF for experimental studies or rehabilitation purposes involving the motor control system.


Asunto(s)
Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Electromiografía , Retroalimentación
18.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(6): 638-644, 2023 Nov 30.
Artículo en Chino | MEDLINE | ID: mdl-38086721

RESUMEN

Vascular interventional surgery is an important means to treat cardiovascular and cerebrovascular diseases, but the particularity of its working environment will bring greater radiation threat to doctors. Vascular interventional surgery robots can effectively improve the working environment of doctors and can provide more stable operations, improve the success rate of surgery. This study mainly introduces the current research status, key technologies, and future application of vascular interventional surgical robots.


Asunto(s)
Robótica , Procedimientos Quirúrgicos Vasculares/métodos , Corazón , Tecnología
19.
Int J Med Robot ; : e2616, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38131502

RESUMEN

BACKGROUND: Remote-controlled robotic vascular interventional surgery can reduce radiation exposure to interventional physicians and improve safety. However, inconvenient operation and lack of force feedback limit its application. MATERIALS AND METHODS: A new wearable robotic system for vascular interventional surgery is designed, which is more flexible in operation. It ensures the safety of surgery through haptic force feedback. The system was evaluated by human vascular models and animal experiments. RESULTS: The average static error of the system is 0.048 mm when the axial motion is 250 mm and 1.259° when the rotational motion is 400°. The average error of the force feedback is 0.021 N. The results of vascular model experiments and animal experiments demonstrate the feasibility and safety of the system. CONCLUSIONS: The proposed robotic system can assist physicians in remotely delivering standard catheters or guidewires. The system is more flexible and uses haptic force feedback to ensure surgical safety.

20.
J Neuroeng Rehabil ; 20(1): 119, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37705008

RESUMEN

BACKGROUND: Closing the control loop in myoelectric prostheses by providing artificial somatosensory feedback is recognized as an important goal. However, designing a feedback interface that is effective in realistic conditions is still a challenge. Namely, in some situations, feedback can be redundant, as the information it provides can be readily obtained through hearing or vision (e.g., grasping force estimated from the deformation of a compliant object). EMG feedback is a non-invasive method wherein the tactile stimulation conveys to the user the level of their own myoelectric signal, hence a measurement intrinsic to the interface, which cannot be accessed incidentally. METHODS: The present study investigated the efficacy of EMG feedback in prosthesis force control when 10 able-bodied participants and a person with transradial amputation used a myoelectric prosthesis to grasp compliant objects of different stiffness values. The performance with feedback was compared to that achieved when the participants relied solely on incidental cues. RESULTS: The main outcome measures were the task success rate and completion time. EMG feedback resulted in significantly higher success rates regardless of pin stiffness, indicating that the feedback enhanced the accuracy of force application despite the abundance of incidental cues. Contrary to expectations, there was no difference in the completion time between the two feedback conditions. Additionally, the data revealed that the participants could produce smoother control signals when they received EMG feedback as well as more consistent commands across trials, signifying better control of the system by the participants. CONCLUSIONS: The results presented in this study further support the efficacy of EMG feedback when closing the prosthesis control loop by demonstrating its benefits in particularly challenging conditions which maximized the utility of intrinsic feedback sources.


Asunto(s)
Miembros Artificiales , Humanos , Retroalimentación , Amputación Quirúrgica , Señales (Psicología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA