Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
J Sci Food Agric ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271605

RESUMEN

BACKGROUND: Food-grade Pickering particles, particularly plant proteins, have attracted significant interest due to their bio-based nature, environmental friendliness, and edibility. Mulberry-leaf protein (MLP) is a high-quality protein with rich nutritional value and important functional properties. It has special amphoteric and emulsifying characteristics, making it valuable for use in Pickering emulsions. This study aimed to investigate the feasibility of using MLP nanoparticles as solid particles to stabilize Pickering emulsions. RESULTS: The particle size of MLP nanoparticles was less than 300 nm under neutral and alkaline conditions. At pH 9, the zeta potential value reached -34.3 mV, indicating the electrostatic stability of the particles. As ion concentration increased, the particle size of MLP nanoparticles increased, and the zeta potential decreased. Throughout the storage process, no obvious aggregation or precipitation was observed in the dispersion of MLP nanoparticles, indicating strong stability. The particle size of the Pickering emulsion decreased with the increase in protein concentration. When the protein concentration was low, the particles on the oil-water interface became sparse, resulting in poor stability of the prepared emulsion and making it susceptible to aggregation and thus larger particle sizes. Increasing the oil-phase ratio to 70% (v/v) promotes the formation of Pickering emulsions, which exhibit exceptional stability when MLP nanoparticles are fixed at a concentration of 20 mg mL-1. CONCLUSION: The overall findings indicated that MLP nanoparticles have potential as food-grade materials for Pickering emulsions, marking a novel application of these nanoparticles in the food industry. © 2024 Society of Chemical Industry.

2.
Reprod Toxicol ; 130: 108687, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173974

RESUMEN

Food-grade titanium dioxide E171 was administered in feed to Sprague Dawley rats in an extended one-generation reproductive toxicity (EOGRT) study (OECD Test 443). The dosed diet (0, 100, 300, or 1000 mg/kg body weight/day) started 10 weeks before mating and continued throughout the study. After weaning, pups were allocated to Cohorts 1 A/1B (to assess reproductive toxicity), 2 A/2B (to assess developmental neurotoxicity), and 3 (to assess developmental immunotoxicity); in addition, Cohort 1B was mated to produce an F2 generation and satellite F0 animals were evaluated for colonic aberrant crypt foci (ACF). In F0 animals, there were no systemic toxicity or reproductive effects, no treatment-related histopathological changes, and no ACF in the colon. Serum estradiol or testosterone concentrations were not changed in F0 or F1 animals. No pre-/postnatal developmental changes related to treatment were noted in F1 animals, and the reproductive performance of F1 Cohort 1B animals was unaffected. F2 pups showed no abnormalities in pre- or postnatal development (postnatal days 4-8). No treatment-related developmental neurotoxicity was observed in Cohorts 2 A/2B. Although no treatment-related immunotoxicity was observed in Cohort 3, the positive control did not induce the expected response; this segment of the study will be repeated. Analyses of blood and urine showed negligible systemic absorption of E171 from the gastrointestinal tract upon dietary ingestion. The no observed adverse effect level (NOAEL) for parental systemic toxicity, reproductive toxicity, offspring toxicity, and developmental neurotoxicity was considered 1000 mg/kg body weight/day. For developmental immunotoxicity, a NOAEL was not determined owing to insufficient T-cell-dependent antibody response in the positive control. Our study provides robust data on the reproductive toxicity and preneoplastic potential of E171.

3.
Food Chem Toxicol ; 192: 114912, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39121895

RESUMEN

Food grade titanium dioxide E171 has been used in products such as confectionery, doughs and flours to enhance organoleptic properties. The European Union has warned about adverse effects on humans due to oral consumption. After oral exposure, E171 reaches the bloodstream which raises the concern about effects on blood cells such as monocytes. One of the main functions of these cells is the differentiation of macrophages leading to the phagocytosis of foreign particles. The aim of this study was to evaluate the effect of E171 exposure on the phagocytic capacity and differentiation process of monocytes (THP-1) into macrophages. Physicochemical E171 properties were evaluated, and THP-1 monocytes were exposed to 4, 40 and 200 µg/ml. Cell viability, uptake capacity, cytokine release, the differentiation process, cytoskeletal arrangement and E171 internalization were assayed. Results showed that E171 particles had an amorphous shape with a mean of hydrodynamic size of ∼46 nm in cell culture media. Cell viability decreased until the 9th day of exposure, while the uptake capacity decreased up to 62% in a concentration dependent manner in monocytes. Additionally, the E171 exposure increased the proinflammatory cytokines release and decreased the cell differentiation by a 61% in macrophages. E171 induced changes in cytoskeletal arrangement and some of the E171 particles were located inside the nuclei. We conclude that E171 exposure in THP-1 monocytes induced an inflammatory response, impaired the phagocytic capacity, and interfered with cell differentiation from monocytes to macrophages.


Asunto(s)
Diferenciación Celular , Supervivencia Celular , Macrófagos , Monocitos , Fagocitosis , Titanio , Titanio/toxicidad , Titanio/química , Humanos , Diferenciación Celular/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Células THP-1
4.
Antioxidants (Basel) ; 13(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39061937

RESUMEN

This study aims to recover the main by-product of Citrus fruits processing, the raw pomace, known also as pastazzo, to produce plant complexes to be used in the treatment of inflammatory bowel disease (IBD). Food-grade extracts from orange (OE) and lemon (LE) pomace were obtained by ultrasound-assisted maceration. After a preliminary phytochemical and biological screening by in vitro assays, primary and secondary metabolites were characterized by proton nuclear magnetic resonance (1H-NMR) and liquid chromatography coupled to diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI-MS) analyses. The intestinal bioaccessibility and antioxidant and anti-inflammatory properties were investigated by in vitro simulated gastro-intestinal digestion followed by treatments on a lipopolysaccharide (LPS)-stimulated human colorectal adenocarcinoma cell line (Caco-2). The tight junctions-associated structural proteins (ZO-1, Claudin-1, and Occludin), transepithelial electrical resistance (TEER), reactive oxygen species (ROS)-levels, expression of some key antioxidant (CAT, NRF2 and SOD2) and inflammatory (IL-1ß, IL-6, TNF-α, IL-8) genes, and pNFkB p65 nuclear translocation, were evaluated. The OE and LE digesta, which did not show any significant difference in terms of phytochemical profile, showed significant effects in protecting against the LPS-induced intestinal barrier damage, oxidative stress and inflammatory response. In conclusion, both OE and LE emerged as potential candidates for further preclinical studies on in vivo IBD models.

5.
Colloids Surf B Biointerfaces ; 241: 114066, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38954938

RESUMEN

Octacosanol has various biological effects such as antioxidant, hypolipidemic and anti-fatigue. However, poor solubility has limited the application of octacosanol in food. The aim of this study was to prepare octacosanol nanoemulsions with better solubility, stability and safety and to investigate in vivo anti-fatigue effect. The food-grade formulation of the octacosanol nanoemulsions consisted of octacosanol, olive oil, Tween 80, glycerol and water with 0.1 %, 1.67 %, 23.75 %, 7.92 % and 66.65 % (w/w), respectively. The nanoemulsions had an average particle size of 12.26 ± 0.76 nm and polydispersity index of 0.164 ± 0.12, and showed good stability under different pH, cold, heat, ionic stress and long-term storage conditions. The results of animal experiments showed that the octacosanol nanoemulsions significantly prolonged the fatigue tolerance time, alleviated the fatigue-related biochemical indicators, and weakened the oxidative stress. Meanwhile, octacosanol nanoemulsions upregulated hepatic glycogen levels. Taken together, these findings suggested that octacosanol nanoemulsions have promising applications as anti-fatigue functional foods.


Asunto(s)
Emulsiones , Fatiga , Alcoholes Grasos , Emulsiones/química , Animales , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Fatiga/tratamiento farmacológico , Tamaño de la Partícula , Masculino , Agua/química , Estrés Oxidativo/efectos de los fármacos , Ratas , Antioxidantes/farmacología , Antioxidantes/química , Ratas Sprague-Dawley , Solubilidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Glucógeno/metabolismo , Glucógeno/química , Polisorbatos/química , Polisorbatos/farmacología , Nanopartículas/química
6.
Front Microbiol ; 15: 1439009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021623

RESUMEN

Background: The emergence and spread of multidrug-resistant Staphylococcus aureus strains demonstrates the urgent need for new antimicrobials. Xanthorrhizol, a plant-derived sesquiterpenoid compound, has a rapid killing effect on methicillin-susceptible strains and methicillin-resistant strains of S. aureus achieving the complete killing of staphylococcal cells within 2 min using 64 µg/mL xanthorrhizol. However, the mechanism of its action is not yet fully understood. Methods: The S. aureus cells treated with xanthorrhizol were studied using optical diffraction tomography. Activity of xanthorrhizol against the wild-type and mscL null mutant of S. aureus ATCC 29213 strain was evaluated in the time-kill assay. Molecular docking was conducted to predict the binding of xanthorrhizol to the SaMscL protein. Results: Xanthorrhizol treatment of S. aureus cells revealed a decrease in cell volume, dry weight, and refractive index (RI), indicating efflux of the cell cytoplasm, which is consistent with the spontaneous activation of the mechanosensitive MscL channel. S. aureus ATCC 29213ΔmscL was significantly more resistant to xanthorrhizol than was the wild-type strain. Xanthorrhizol had an enhanced inhibitory effect on the growth and viability of exponentially growing S. aureus ATCC 29213ΔmscL cells overexpressing the SaMscL protein and led to a noticeable decrease in their viability in the stationary growth phase. The amino acid residues F5, V14, M23, A79, and V84 were predicted to be the residues of the binding pocket for xanthorrhizol. We also showed that xanthorrhizol increased the efflux of solutes such as K+ and glutamate from S. aureus ATCC 29213ΔmscL cells overexpressing SaMscL. Xanthorrhizol enhanced the antibacterial activity of the antibiotic dihydrostreptomycin, which targets the MscL protein. Conclusion: Our findings indicate that xanthorrhizol targets the SaMscL protein in S. aureus cells and may have important implications for the development of a safe antimicrobial agent.

7.
Enzyme Microb Technol ; 179: 110467, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852284

RESUMEN

ε-Poly-l-lysine (ε-PL), a natural food preservative with various advantages, is primarily produced by Streptomyces. It has attracted considerable attentions for the outstanding antibacterial activity, safety, heat stability, water solubility and other remarkable properties. In this study, a food-grade recombinant Bacillus subtilis was constructed for the biocatalysis of ε-PL. Firstly, the d-alanine racemase gene (alrA) was deleted from the genome of Bacillus subtilis 168 to construct an auxotrophic B. subtilis 168 (alrA-). Based on the shuttle plasmid pMA5, a food-grade plasmid pMA5a was constructed by replacing the genes of kanamycin resistance (Kanr) and ampicillin resistance (Ampr) with alrA and the gene encoding α-peptide of ß-galactosidase (lacZα), respectively. Subsequently, codon-optimized ε-PL synthase gene (pls) and P-pls were ligated into pMA5a and transformed in E. coli DH5α and expressed in B. subtilis 168 (alrA-). Finally, the whole-cell biocatalysis conditions for ε-PL production by B. subtilis 168 (alrA-)/pMA5a-pls were optimized, and the optimal conditions were 30°C, pH 4, l-lysine concentration of 0.6 g/L, bacterial concentration of 15 % (w/v) and a catalytic time of 7 h. The ε-PL production reached a maximum of 0.33 ± 0.03 g/L. The product was verified to be ε-PL by HPLC and tricine-SDS-PAGE. The information obtained in this study shows critical reference for the food-grade heterologous expression of ε-PL.


Asunto(s)
Bacillus subtilis , Biocatálisis , Polilisina , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimología , Polilisina/metabolismo , Polilisina/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo
8.
Food Res Int ; 188: 114492, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823875

RESUMEN

Two types of curcumin-loaded food-grade nano-silica (F-SiO2) hybrid materials were successfully synthesized using the rotary evaporation method (F-SiO2@Cur) and the adsorption method (Cur@F-SiO2). The microstructure and spectral analyses confirmed that the curcumin in F-SiO2@Cur was loaded within the nanopores in a non-aggregate form rather than being adsorbed onto the surface (Cur@F-SiO2). Additionally, F-SiO2@Cur exhibited remarkable water solubility (1510 ± 50.33 µg/mL) and photostability (a photodegradation ratio of only 59.22 %). Importantly, F-SiO2@Cur obtained a higher capacity for the generation of singlet oxygen (1O2) compared to control groups. Consequently, F-SiO2@Cur-mediated photodynamic inactivation (PDI) group attained the highest score in sensory evaluation and the best color protection effect in PDI experiment of small yellow croaker (Larimichthys polyactis) at 4 °C. Moreover, F-SiO2@Cur could effectively controlled total volatile basic nitrogen (TVB-N) content, pH, and total viable count (TVC), thereby prolonging the shelf life. Therefore, F-SiO2@Cur-mediated PDI is an effective fresh-keeping technology for aquatic products.


Asunto(s)
Curcumina , Conservación de Alimentos , Perciformes , Dióxido de Silicio , Curcumina/farmacología , Curcumina/química , Animales , Dióxido de Silicio/química , Conservación de Alimentos/métodos , Nanopartículas , Alimentos Marinos , Solubilidad , Oxígeno Singlete , Fotólisis , Humanos
9.
Heliyon ; 10(11): e31609, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828341

RESUMEN

Microplastics are a pollutant of growing concern. Several studies have found microplastics in table salt worldwide in the last decade, although most have focused on already prepackaged salt. To the best of our knowledge, there is no previous research analysing the entire salt production process. In this study focused on solar evaporation salinas, brine and salt samples were obtained from each stage of production, starting with the entrance of seawater/brine until the final stage of ready-to-sell salt, in six sites in Spain. We extracted microplastics from each sample after 30 % H2O2 digestion and filtration through cellulose nitrate 5 µm pore filters. Microplastic fibres were optically analysed with an Olympus DSX1000. Results indicate that microplastics are present both in seawater and air, with atmospheric fallout identified as the primary source. Microplastic concentrations from the entrance to the salina till the inlet to the crystallizers ranges from 256 to 1500 items per liter and from 79 to 193 microplastics per kg for packaged salt were estimated. Artisanal salina F shows the highest content in microplastics. This study hopes to give insight into the origin and causes of microplastic pollution in solar evaporation salinas and contribute to preventing this form of pollution in food-grade salt.

10.
J Colloid Interface Sci ; 671: 154-164, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38797141

RESUMEN

Although various conductive hydrogels have been developed for sensing, ideal materials for meeting the safety and toughness requirements of food detection are still lacking. This study introduces Ion-SSPB, a conductive hydrogel fabricated from eco-friendly, food-grade materials such as corn starch (CS), sodium alginate (SA), polyvinyl alcohol (PVA) and bentonite (BT). It leverages a green manufacturing approach designed for application in electronic food sensors. The hydrogel is achieved through a double network strategy and salt immersion method, which endows it with tunable mechanical and rheological properties. A key innovation of Ion-SSPB is the incorporation of bentonite, which enhances its performance, including low swelling, freezing resistance, and minimal residual adhesion. The hydrogel with 4% (w/v) BT concentration (Ion-SSPB4%) is an effective medium for detecting impedance changes in mangoes, correlating with their ripening stages. The Ion-SSPB hydrogel represents a significant advancement in the field of electronic food labels, combining environmental sustainability with technical efficacy.


Asunto(s)
Alginatos , Etiquetado de Alimentos , Hidrogeles , Hidrogeles/química , Alginatos/química , Alcohol Polivinílico/química , Bentonita/química , Almidón/química , Conductividad Eléctrica , Tamaño de la Partícula , Propiedades de Superficie , Tecnología Química Verde
11.
Crit Rev Food Sci Nutr ; : 1-20, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764436

RESUMEN

Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.

12.
Int J Biol Macromol ; 271(Pt 2): 132511, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772471

RESUMEN

Green Tea polyphenols (GTP) are important bioactive compounds with excellent physiological regulation functions. However, they are easily destroyed by the gastric environment during digestion. In this work, a sodium alginate (SA)-gellan gum (GG) interpenetrating network (IPN) hydrogel was synthesized to protect and delivery GTP. The ratio of SA/GG significantly affects the network structure of IPN hydrogels and the performance of delivering GTP. The hydrogel formed by interpenetrating 20 % GG with 80 % SA as the main network had the highest water uptake (55 g/g), holding capacity (950 mg/g), and freeze-thaw stability, with springiness reaching 0.933 and hardness reaching 1300 g, which due to the filling effect and non-covalent interaction. Rheological tests showed that the crosslink density of IPN hydrogel in SA-dominated network was improved by the addition of GG to make it better bound to GTP, and the higher water uptake meant that the system could absorb more GTP-containing solution. This IPN hydrogel maintained 917.3 mg/g encapsulation efficiency at the highest loading capacity (1080 mg/g) in tests as delivery system. In in vitro digestion simulations, owing to the pH responsiveness, the IPN hydrogel reduced the loss of GTP in gastric fluid, achieving a bioaccessibility of 71.6 % in the intestinal tract.


Asunto(s)
Disponibilidad Biológica , Hidrogeles , Polifenoles , , Hidrogeles/química , Polifenoles/química , Polifenoles/farmacocinética , Té/química , Alginatos/química , Polisacáridos Bacterianos/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Reología , Portadores de Fármacos/química
13.
World J Microbiol Biotechnol ; 40(6): 195, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722426

RESUMEN

Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Regiones Promotoras Genéticas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Señales de Clasificación de Proteína/genética
14.
Foods ; 13(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731723

RESUMEN

The intensity of the odor in food-grade paraffin waxes is a pivotal quality characteristic, with odor panel ratings currently serving as the primary criterion for its assessment. This study presents an innovative method for assessing odor intensity in food-grade paraffin waxes, employing headspace gas chromatography with mass spectrometry (HS/GC-MS) and integrating total ion spectra with advanced machine learning (ML) algorithms for enhanced detection and quantification. Optimization was conducted using Box-Behnken design and response surface methodology, ensuring precision with coefficients of variance below 9%. Analytical techniques, including hierarchical cluster analysis (HCA) and principal component analysis (PCA), efficiently categorized samples by odor intensity. The Gaussian support vector machine (SVM), random forest, partial least squares regression, and support vector regression (SVR) algorithms were evaluated for their efficacy in odor grade classification and quantification. Gaussian SVM emerged as superior in classification tasks, achieving 100% accuracy, while Gaussian SVR excelled in quantifying odor levels, with a coefficient of determination (R2) of 0.9667 and a root mean square error (RMSE) of 6.789. This approach offers a fast, reliable, robust, objective, and reproducible alternative to the current ASTM sensory panel assessments, leveraging the analytical capabilities of HS-GC/MS and the predictive power of ML for quality control in the petrochemical sector's food-grade paraffin waxes.

15.
Food Chem ; 451: 139437, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678653

RESUMEN

This study explores the potential for optimizing a sustainable manufacturing process that maintains the essential characteristics of conventional liposomes using food-grade solvents and components. The focus was comparing the physicochemical, morphological, and interfacial properties of liposomes produced with these food-grade ingredients to those made by conventional methods. It was found that there was no significant difference in particle size (195.87 ± 1.40 nm) and ζ-potential (-45.13 ± 0.65 mV) between liposomes made from food-grade and conventional materials. The manufacturing process for liposomes, utilizing food-grade solvents and components, was optimized through the application of Plackett-Burman design and response surface methodology. This approach helped identify key parameters (soy lecithin, ß-sitosterol, W/O ratio) and their optimal values (3.17 g, 0.25 g, 1:2.59). These findings suggest that it is possible to enhance the use of liposomes as an effective and safe delivery system in the food industry, adhering to the strict guidelines set by regulatory agencies.


Asunto(s)
Lecitinas , Liposomas , Tamaño de la Partícula , Liposomas/química , Lecitinas/química , Sitoesteroles/química , Microfluídica/instrumentación , Glycine max/química
16.
Int J Biol Macromol ; 268(Pt 1): 131672, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643912

RESUMEN

The packaging industry has primarily been dominated by single-use, petrochemical-sourced plastic materials despite their short-term use. Their leakage into the ecosystem after their use poses substantial environmental concerns. As a result, compostable and renewable packaging material alternatives are garnering significant attention. Cellulose acetate is a derivative of cellulose that exhibits excellent tensile properties, transparency, melt processability, and intermediate compostability. However, its application in the food packaging industry is limited due to its hygroscopic behavior and lack of dimensional stability. This study investigated using lignin (pristine and esterified) as a functional additive of cellulose acetate. The effect of varying concentrations of pristine kraft and oleic acid functionalized lignin in the cellulose acetate matrix and its effect on the resulting film's mechanical, morphological, viscoelastic, and water barrier properties were explored. Comprehensive characterization of the thermomechanical processed lignin-cellulose acetate sheets revealed reduced moisture absorption, improved UV and moisture barrier, and enhanced tensile properties with melt processability. Overall, the studied films could have appealing properties for food and other packaging applications, thus, serving as eco-friendly and sustainable alternatives to conventional petroleum-derived packing materials.


Asunto(s)
Celulosa , Interacciones Hidrofóbicas e Hidrofílicas , Lignina , Ácido Oléico , Resistencia a la Tracción , Lignina/química , Lignina/análogos & derivados , Celulosa/química , Celulosa/análogos & derivados , Ácido Oléico/química , Embalaje de Alimentos/métodos , Agua/química
17.
Foods ; 13(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38611296

RESUMEN

The technological and nutritional traits of food-grade sorghum hybrids, hulled/naked oat varieties and maize genotypes of different colors were studied for novel and healthier gluten-free foods. Oat genotypes showed the highest protein content, followed by maize and sorghum. The total starch and the total dietary fiber content were quite similar among the three species. Great variation was found in the amylose content, and the highest was in sorghum (27.12%), followed by oat 16.71% and maize 10.59%. Regarding the pasting profile, the rank of Peak Viscosity was sorghum (742.8 Brabender Unit, BU), followed by maize (729.3 BU) and oat (685.9 BU). Oat and sorghum genotypes had similar average breakdown (407.7 and 419.9 BU, respectively) and setback (690.7 and 682.1 BU, respectively), whereas maize showed lower values for both parameters (384.1 BU and 616.2 BU, respectively). The total antioxidant capacity, only in maize, significantly correlated with total flavonoid, phenolic and proanthocyanidin contents, indicating that all the measured compounds contributed to antioxidant capacity. The study indicated the importance of sounding out the nutritional and technological characteristics of gluten-free cereals in order to select suitable cultivars to be processed in different gluten-free foods with better and healthier quality.

18.
Pol J Microbiol ; 73(1): 3-10, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437472

RESUMEN

This comprehensive review explores the development of food-grade selection markers in lactic acid bacteria and yeast; some of their strains are precisely defined as safe microorganisms and are crucial in the food industry. Lactic acid bacteria, known for their ability to ferment carbohydrates into lactic acid, provide essential nutrients and contribute to immune responses. With its strong fermentation capabilities and rich nutritional profile, yeast finds use in various food products. Genetic engineering in these microorganisms has grown rapidly, enabling the expression of enzymes and secondary products for food production. However, the focus is on ensuring safety, necessitating food-grade selection markers. Traditional antibiotic and heavy metal resistance selection markers pose environmental and health risks, prompting the search for safer alternatives. Complementary selection markers, such as sugar utilization markers, offer a promising solution. These markers use carbohydrates as carbon sources for growth and are associated with the natural metabolism of lactic acid bacteria and yeast. This review discusses the use of specific sugars, such as lactose, melibiose, sucrose, D-xylose, glucosamine, and N-acetylglucosamine, as selection markers, highlighting their advantages and limitations. In summary, this review underscores the importance of food-grade selection markers in genetic engineering and offers insights into their applications, benefits, and challenges, providing valuable information for researchers in the field of food microbiology and biotechnology.


Asunto(s)
Lactobacillales , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Lactobacillales/genética , Antibacterianos , Biotecnología , Carbohidratos
19.
J Trace Elem Med Biol ; 83: 127409, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38394968

RESUMEN

BACKGROUND: Food-grade titanium dioxide (E171), a white colourant widely used in ultra-processed food products, has been banned in the European Union. However, its usage is still permitted in medicines, and in several other countries. The estimated intake of E171 in children is higher than in adults, which led us to hypothesise that E171 induces differential effects depending on age, with adult mice being the most susceptible due to age, despite the lower dose. AIM: To evaluate the effects of oral administration of E171 on intestinal permeability, ileum, and colon histology, and how these effects impact anxious and depressive behaviour in young and adult mice of both sexes. METHODS: Young and adult mice of both sexes C57BL/6 mice received 10 mg/kgbw E171/3 times per week for 3 months. E171 was administered orally in water by pipetting, while control groups only received drinking water, then intestinal permeability, histology and animal behaviour were analysed. RESULTS: E171 showed an amorphous shape, primary particles sized below 1 µm and anatase crystalline structure. Oral administration of E171 disrupted the intestinal permeability in adult male and female mice, but no effects were observed in young mice of both sexes. E171 promoted ileal adenoma formation in half of the adult female population, moreover hyperplastic crypts, and hyperplastic goblet cells at histological level in adult mice of both sexes. The colon presented hyperplastic goblet cells, hyperchromatic nuclei, increased proliferation and DNA damage in adult mice of both sexes. The anxiety and depressive behaviour were only altered in adult mice treated with E171, but no changes were detected in young animals of both sexes. CONCLUSIONS: Adult mice displayed higher susceptibility in all parameters analysed in this study compared to young mice of both sexes.


Asunto(s)
Aditivos Alimentarios , Nanopartículas , Humanos , Niño , Masculino , Femenino , Animales , Ratones , Aditivos Alimentarios/química , Aditivos Alimentarios/farmacología , Ratones Endogámicos C57BL , Alimentos , Intestinos , Titanio/química , Nanopartículas/química
20.
Food Chem X ; 21: 101207, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38370300

RESUMEN

As the low water solubility of gallic acid (GA), its biological activities such as water-based antioxidant effect may be greatly reduced. Therefore, GA-loaded nanocomposites (F-SiO2@GA) with high water solubility were synthesized via solvent evaporation using food-grade silica (F-SiO2) as carriers in this work. The assessment of antioxidant capacity revealed that F-SiO2@GA exhibited considerably greater free-radical scavenging ability than free GA and the physical mixture of F-SiO2 and GA. In the photooxidation experiment of food-grade gardenia yellow pigment (GYP), F-SiO2@GA showed a notable antioxidant effect on GYP solution. Additionally, in the storage experiment on chilled whiteleg shrimp (Litopenaeus vannamei) treated with F-SiO2@GA, pH, total volatile basic nitrogen (TVBN), and thiobarbituric acid reactive substance (TBARS) values were effectively inhibited. In conclusion, the internal encapsulation of GA effectively prevented the self-aggregation phenomenon, thereby facilitating the exposure of its active phenolic hydroxyl group and significantly enhancing its water-based biological activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA