Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros











Intervalo de año de publicación
1.
Food Res Int ; 195: 114903, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277215

RESUMEN

The utilization of quinoa in food production requires comprehensive information on its processing characteristics. Twenty-five new quinoa cultivars developed by the Northern Quinoa Breeding Program, grown in three Canadian locations over two seasons, were characterized for their proximate composition, pasting properties, thermal properties, water absorption index, water solubility index, foaming capacity, foaming stability, oil holding capacity, and emulsion activity crucial for potential food applications. Results showed significant variations in the proximate composition among the cultivars, which was also influenced by the growing location and harvest year. Significant differences (p < 0.05) were also observed in the pasting properties, thermal stability, hydration properties, foaming properties, oil holding capacity, and emulsion activity. The hierarchical cluster and principal component analyses were associated with five distinct clusters of quinoa cultivars, each with unique techno-functional attributes, suggesting their potential for different food applications. These findings emphasize the need for further research to explore the performance of quinoa flours in specific food products and their impact on end-product quality.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/química , Canadá , Genotipo , Análisis de Componente Principal , Variación Genética , Solubilidad , Emulsiones , Harina/análisis , Análisis por Conglomerados , Agua/química
2.
Int J Biol Macromol ; 279(Pt 4): 135497, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260651

RESUMEN

Porphyra haitanensis (P. haitanensis) belongs to the class Rhodophyta and the family Bangiaceae, which is a unique artificially cultivated seaweed in China, especially in the coastal areas of Fujian and Zhejiang province. P. haitanensis is rich in amino acids, mineral elements, proteins, polysaccharides, and trace elements, with proteins and polysaccharides being the main components. P. haitanensis proteins and polysaccharides have variety of biological activities, including antioxidant, anticancer, immunomodulatory, anti-allergic and anti-aging activities, among others. This review introduced and summarized the preparation, isolation and purification, phytochemistry and structural properties, and biological activities of P. haitanensis proteins and polysaccharide, as well as their biomedical and food applications. Furthermore, a thorough analysis of the current trends and perspectives on P. haitanensis bioactive macromolecules were highlighted and prospected. Hopefully, this review can provide a useful reference value for the development and application of P. haitanensis bioactive macromolecules in the field of biomedical and food in the future.

3.
Foods ; 13(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272458

RESUMEN

A versatile and popular Cucurbitaceous vegetable, pumpkin has recently gained much attention because of its variety of phytochemicals and health advantages. Pumpkins are a type of winter squash, traditionally with large, spherical, orange fruits and a highly nutrient food. Pumpkin by-products comprise various parts, such as seeds, peels, and pulp residues, with their bioactive composition and many potential benefits poorly explored by the food industry. Pumpkin and their by-products contain a wide range of phytochemicals, including carotenoids, polyphenols, tocopherols, vitamins, minerals, and dietary fibers. These compounds in pumpkin by-products exhibit antioxidant, anticancer, anti-inflammatory, anti-diabetic, and antimicrobial properties and could reduce the risk of chronic diseases. This comprehensive review aims to provide a detailed overview of the phytochemicals found in pumpkin and its by-products, along with their extraction methods, health benefits, and diverse food and industrial applications. This information can offer valuable insights for food scientists seeking to reevaluate pumpkin's potential as a functional ingredient. Reusing these by-products would support integrating a circular economy approach by boosting the market presence of valuable and sustainable products that improve health while lowering food waste.

4.
Int J Biol Macromol ; 279(Pt 3): 135397, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245115

RESUMEN

Food gel is a kind of macromolecular biopolymer with viscoelasticity, which has good water retention and gelling ability, especially gels formed by protein and/or polysaccharide. The addition of calcium ions triggers gelation by interacting with the gel matrix, enhancing gels' textural and rheological properties like hardness, viscosity and elasticity. Thus calcium ions enrich the range of applications of food gels. This review focuses on forming a calcium-induced gel and improving the texture properties. It summarizes the mechanisms of gelation induced by calcium ions in polysaccharide, protein, and polysaccharide-protein systems and their gel properties. The effects of influencing factors in calcium ion concentration, types and mixing ratios of matrices, acid, and alkaline environments, as well as treatment methods on calcium-induced gel characteristics, are presented. Additionally, the current applications of calcium-induced gels in food industries and challenges are presented.

5.
Food Res Int ; 192: 114741, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147548

RESUMEN

Significant volumes of agricultural and industrial waste are produced annually. With the global focus shifting towards sustainable and environmentally friendly practices, there is growing emphasis on recycling and utilizing materials derived from such waste, such as cellulose and lignin. In response to this imperative situation, nanocellulose materials have surfaced attracting heightened attention and research interest owing to their superior properties in terms of strength, stiffness, biodegradability, and water resistance. The current manuscript provided a comprehensive review encompassing the resources of nanocellulose, detailed pretreatment and extraction methods, and present applications of nanocellulose. More importantly, it highlighted the challenges related to its processing and utilization, along with potential solutions. After evaluating the benefits and drawbacks of different methods for producing nanocellulose, ultrasound combined with acid hydrolysis emerges as the most promising approach for large-scale production. While nanocellulose has established applications in water treatment, its potential within the food industry appears even more encouraging. Despite the numerous potential applications across various sectors, challenges persist regarding its modification, characterization, industrial-scale manufacturing, and regulatory policies. Overcoming these obstacles requires the development of new technologies and assessment tools aligned with policy. In essence, nanocellulose presents itself as an eco-friendly material with extensive application possibilities, prompting the need for additional research into its extraction, application suitability, and performance enhancement. This review focused on the wide application scenarios of nanocellulose, the challenges of nanocellulose application, and the possible solutions.


Asunto(s)
Agricultura , Celulosa , Residuos Industriales , Celulosa/química , Reciclaje , Nanoestructuras/química , Hidrólisis
6.
Int J Biol Macromol ; 276(Pt 1): 133869, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009261

RESUMEN

As food packaging evolves, consumer interests are shifting from traditional to intelligent food packaging systems. Intelligent packaging includes active components that display changes in a visual or interactive form perceivable by consumers. This offers real-time monitoring of the quality and shelf life of the packaged food and enhances transparency. For example, pH-sensitive natural pigment-based films change color in response to variations in pH levels, enabling the film/labels to reflect alterations in the acidity or basicity of the food inside the package. Natural pigments like anthocyanins, curcumin, betalains, chlorophyll, and carotenoids have been comprehensively reported for developing biodegradable pH-sensitive films of starch, protein, chitosan, and cellulose. Natural pigments offer great compatibility with these biopolymers and improve the other performance parameters of the films. However, these films still lack the strength and versatility of petroleum-based synthetic plastic films. But these films can be used as an indicator and combined with primary packaging to monitor freshness, time-temperature, and leak for muscle foods, dairy products, fruits and vegetables, and bakery products. Therefore, this review provides a detailed overview of pH-sensitive pigments, their compatibility with natural polymers, their role in film performance in monitoring, and their food packaging applications.


Asunto(s)
Embalaje de Alimentos , Pigmentos Biológicos , Embalaje de Alimentos/métodos , Concentración de Iones de Hidrógeno , Biopolímeros/química , Pigmentos Biológicos/química , Materiales Inteligentes/química , Antocianinas/química
7.
Chin Herb Med ; 16(3): 358-374, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39072200

RESUMEN

Cymbopogon citratus in the gramineous family, also known as lemongrass (LG), is a perennial herb. LG, a drug and food homologous medicine, has a widely recorded medicinal value and food applications. To date, 158 LG compounds have been reported, including terpenoids, flavonoids, phenolic acids. Pharmacological and clinical studies have indicated that LG has antibacterial, neuroprotective, hypoglycemic, hypotensive, anti-inflammatory, and anti-tumor effects. This article reviews LG in ethnopharmacology, chemical composition, pharmacology, food, medicine, and daily chemical applications to provide a basis for the subsequent development of food and medicine.

8.
Food Res Int ; 191: 114703, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059910

RESUMEN

Fat plays a pivotal role in the appearance, flavor, texture, and palatability of food. However, excessive fat consumption poses a significant risk for chronic ailments such as obesity, hypercholesterolemia, and cardiovascular disease. Therefore, the development of green, healthy, and stable protein-based emulsion gel as an alternative to traditional fats represents a novel approach to designing low-fat food. This paper reviews the emulsification behavior of proteins from different sources to gain a comprehensive understanding of their potential in the development of emulsion gels with fat-analog properties. It further investigates the emulsifying potential of protein combined with diverse substances. Then, the mechanisms of protein-stabilized emulsion gels with fat-analog properties are discussed, mainly involving single proteins, proteins-polysaccharides, as well as proteins-polyphenols. Moreover, the potential applications of protein emulsion gels as fat analogues in the food industry are also encompassed. By combining natural proteins with other components such as polysaccharides, polyphenols, or biopolymers, it is possible to enhance the stability of the emulsion gels and improve its fat-analog texture properties. In addition to their advantages in protecting oil oxidation, limiting hydrogenated oil intake, and delivering bioactive substances, protein-based emulsion gels have potential in food 3D printing and the development of specialty fats for plant-based meat.


Asunto(s)
Emulsiones , Geles , Emulsiones/química , Geles/química , Proteínas/química , Polisacáridos/química , Polifenoles/química , Humanos , Manipulación de Alimentos/métodos , Industria de Alimentos , Grasas de la Dieta
9.
Food Res Int ; 191: 114723, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059918

RESUMEN

The improper disposal of petroleum-based plastics has been associated with detrimental environmental consequences, such as the proliferation of microplastic pollution and increased emissions of greenhouse gases (GHGs). Consequently, biopolymers have emerged as a highly regarded alternative due to their environmental-friendly attributes and versatile range of applications. In response to consumer demands for safer food options, sustainable packaging, and escalating environmental concerns, the food sector is increasingly adopting biopolymers. Further, in the recent decade, the usage of active or functional biopolymers has evolved into smart biopolymers that can transmit real-time data to consumers. This review covers key topics such as antimicrobial and biodegradable packaging, edible coatings and films, incorporation of scavengers and bioactive substances that prolong the shelf life and guard against moisture and microbial contamination. The paper also discusses the development of edible cutlery as a sustainable substitute for plastic, the encapsulation of bioactive substances within biopolymers, 3-D food printing for regulated nutrition delivery and thickening and gelling agents that improve food texture and stability. It also discusses the integration of smart polymer functions, demonstrating their importance in guaranteeing food safety and quality, such as biosensing, pH and gas detection, antibacterial characteristics, and time-temperature monitoring. By shedding light on market trends, future scope, and potentialities, this review aims to elucidate the prospects of utilizing biopolymers to address sustainability and quality concerns within the food industry effectively.


Asunto(s)
Embalaje de Alimentos , Inocuidad de los Alimentos , Biopolímeros/química , Humanos , Microbiología de Alimentos , Películas Comestibles
10.
Foods ; 13(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063360

RESUMEN

Given the health risks associated with synthetic colorants, natural pigments have emerged as a promising alternative. These renewable choices not only provide health benefits but also offer valuable technical and sensory properties to food systems. The effective application of natural colorants, however, requires the optimization of processing conditions, exploration of new sources, and development of novel formulations to ensure stability and maintain their inherent qualities. Several natural pigment sources have been explored to achieve the broad color range desired by consumers. The purpose of this review is to explore the current advances in the obtention and utilization of natural pigments derived from by-products, which possess health-enhancing properties and are extracted through environmentally friendly methods. Moreover, this review provides new insights into the extraction processes, applications, and bioactivities of different types of pigments.

11.
Foods ; 13(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998484

RESUMEN

Citrus fruits, renowned for their abundant of phytochemicals and bioactive compounds, hold a prominent position as commercially grown fruits with health-promoting properties. In this context, tangerine peel (Citri Reticulatae Pericarpium, CRP) is garnering attention as a byproduct of citrus fruits. Within the framework of the circular economy, CRP has emerged as a focal point due to its potential health benefits. CRP, extracted from Citrus reticulata cv. and aged for over three years, has attracted increasing attention for its diverse health-promoting effects, including its anticancer, cardiovascular-protecting, gastrointestinal-modulating, antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, CRP positively impacts skeletal health and various physiological functions. This review delves into the therapeutic effects and molecular mechanisms of CRP. The substantial therapeutic potential of CRP highlights the need for further research into its applications in both food and medicine. As a value-added functional ingredient, CRP and its constituents are extensively utilized in the development of food and health supplements, such as teas, porridges, and traditional medicinal formulations.

12.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993144

RESUMEN

Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.

13.
Food Chem ; 458: 140329, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38991239

RESUMEN

Recently, fiber-based and functional paper food packaging has garnered significant attention for its versatility, excellent performance, and potential to provide sustainable solutions to the food packaging industry. Fiber-based food packaging is characterized by its large surface area, adjustable porosity and customizability, while functional paper-based food packaging typically exhibits good mechanical strength and barrier properties. This review summarizes the latest research progress on food packaging based on fibers and functional paper. Firstly, the raw materials used for preparing fiber and functional paper, along with their physical and chemical properties and roles in food packaging, were discussed. Subsequently, the latest advancements in the application of fiber and paper materials in food packaging were introduced. This paper also discusses future research directions and potential areas for improvement in fiber and functional paper food packaging to further enhance their effectiveness in ensuring food safety, quality, and sustainability.


Asunto(s)
Embalaje de Alimentos , Papel , Embalaje de Alimentos/instrumentación , Porosidad
14.
Int J Biol Macromol ; 274(Pt 1): 133166, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908645

RESUMEN

With the increasing environmental and health consequences of uncontrolled plastic use, the scientific community is progressively gravitating toward biodegradable and ecofriendly packaging alternatives. Seaweed polysaccharides have attracted attention recently because of their biodegradability, nontoxicity, antioxidant properties, and superior film-forming ability. However, it has some limitations for packaging applications, such as low tensile strength, water solubility, and only modest antimicrobial properties. The incorporation of biopolymers, nanoparticles, or organic active ingredients enhances these characteristics. This review encapsulates the contemporary research landscape pivoting around the role of seaweed polysaccharides in the development of bioplastics, active packaging solutions, edible films, and protective coatings. A meticulous collation of existing literature dissects the myriad food application avenues for these marine biopolymers, emphasizing their multifaceted physical, mechanical, thermal, and functional attributes, including antimicrobial and antioxidant. A key facet of this review spotlights environmental ramifications by focusing on their biodegradability, reinforcing their potential as a beacon of sustainable innovation. This article delves into the prevalent challenges that stymie large-scale adoption and commercialization of seaweed-centric packaging, offering a comprehensive perspective on this burgeoning domain.


Asunto(s)
Embalaje de Alimentos , Algas Marinas , Algas Marinas/química , Embalaje de Alimentos/métodos , Biopolímeros/química , Antioxidantes/química , Antioxidantes/farmacología , Polisacáridos/química , Biodegradación Ambiental , Antiinfecciosos/química , Antiinfecciosos/farmacología
15.
J Sci Food Agric ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922926

RESUMEN

Vitamin B12, a water-soluble essential micronutrient, plays a pivotal role in numerous physiological processes in the human body. This review meticulously examines the structural complexity and the diverse mechanisms through which vitamin B12 exerts its preventive effects against a spectrum of health conditions, including pernicious anaemia, neurological disorders, obesity, diabetes, dyslipidaemia and complications in foetal development. The selection of articles for this review was conducted through a systematic search across multiple scientific databases, including PubMed, Scopus and Web of Science. Criteria for inclusion encompassed relevance to the biochemical impact of vitamin B12 on health, peer-reviewed status and publication within the last decade. Exclusion criteria were non-English articles and studies lacking empirical evidence. This stringent selection process ensured a comprehensive analysis of vitamin B12's multifaceted impact on health, covering its structure, bioavailable forms and mechanisms of action. Clinical studies highlighting its therapeutic potential, applications in food fortification and other utilizations are also discussed, underscoring the nutrient's versatility. This synthesis aims to provide a clear understanding of the integral role of vitamin B12 in maintaining human health and its potential in clinical and nutritional applications. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

17.
Talanta ; 277: 126241, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820826

RESUMEN

A new chemosensory based on deprotonation and intramolecular charge transfer (ICT) was developed to detect cyanide in food samples. Deprotonation was facilitated by increasing the acidity of the NH proton in the dibenzosuberenone-based dihydropyridazine chemosensor Pz3 with -CN substituents. Addition of cyanide to acetonitrile and aqueous acetonitrile solution (1/9) of Pz3 resulted in their significant color change from colorless to purple in visible light, accompanied by a strong red shift in the absorption spectrum. Meanwhile, the near-infrared (NIR) emission (ex. 525 nm, em. 670 nm) of Pz3- resulting from deprotonation showed fluorescence switching behavior to detect the cyanide anion. While the acidic NH protons interact with basic anions as F-, CN-, OAc- and H2PO4- in organic solution (MeCN), just CN ions interact with in aqueous organic solutions (H2O-MeCN 1/9 HEPES pH 7.4). The limit of detection of cyanide from the fluorescence spectrum is 80 nM, which is well below the value determined for drinking water by World Health Organization (WHO). The interference effect of cations and anions showed that Pz3 could play an important role in the determination of waste NaCN. In addition, Pz3 successfully carried out the selective detection of cyanide in food samples such as bitter almonds and sprouting potatoes.

18.
Food Res Int ; 187: 114437, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763684

RESUMEN

Numerous datasets regarding anthocyanins have been noted elsewhere. These previous studies emphasized that all processes must be carried out meticulously from the source used to obtain anthocyanins to their inclusion in relevant applications. However, today, full standardization has not yet been achieved for these processes. For this, presenting the latest developments regarding anthocyanins under one roof would be a useful approach to guide the scientific literature. The current review was designed to serve the stated points. In this context, their biosynthesis pathway was elaborated. Superior potential of fruits and certain by-products in obtaining anthocyanins was revealed compared to their other counterparts. Health-promoting benefits of anthocyanins were detailed. Also, the situation of innovative techniques (ultrasound-assisted extraction, subcritical water extraction, pulse electrical field extraction, and so on) in the anthocyanin extraction was explained. The stability issues, which is one of the most important problems limiting the use of anthocyanins in applications were discussed. The role of copigmentation and various encapsulation techniques in solving these stability problems was summarized. This critical review is a map that provides detailed information about the processes from obtaining anthocyanins, which stand out with their functional properties, to their incorporation into various systems.


Asunto(s)
Antocianinas , Frutas , Frutas/química , Vías Biosintéticas , Extractos Vegetales/química
19.
Foods ; 13(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731769

RESUMEN

Plant-based proteins have gained popularity in the food industry as a good protein source. Among these, chickpea protein has gained significant attention in recent times due to its high yields, high nutritional content, and health benefits. With an abundance of essential amino acids, particularly lysine, and a highly digestible indispensable amino acid score of 76 (DIAAS), chickpea protein is considered a substitute for animal proteins. However, the application of chickpea protein in food products is limited due to its poor functional properties, such as solubility, water-holding capacity, and emulsifying and gelling properties. To overcome these limitations, various modification methods, including physical, biological, chemical, and a combination of these, have been applied to enhance the functional properties of chickpea protein and expand its applications in healthy food products. Therefore, this review aims to comprehensively examine recent advances in Cicer arietinum (chickpea) protein extraction techniques, characterizing its properties, exploring post-modification strategies, and assessing its diverse applications in the food industry. Moreover, we reviewed the nutritional benefits and sustainability implications, along with addressing regulatory considerations. This review intends to provide insights into maximizing the potential of Cicer arietinum protein in diverse applications while ensuring sustainability and compliance with regulations.

20.
Plants (Basel) ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732410

RESUMEN

Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA