Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202413629, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225451

RESUMEN

Helical foldamers have attracted much attention over the last decades given their resemblance to certain biomacromolecules and their potential in domains as different as pharmaceutics, catalysis and photonics. Various research groups have successfully controlled the right- or left- handedness of these oligomers by introducing stereogenic centers through covalent or non-covalent chemistry. However, developing helical structures whose handedness can be reversibly switched remains a major challenge for chemists. To date, such an achievement has been reported with light-responsive single-stranded foldamers only. Herein, we demonstrate that grafting a unidirectional motor onto foldamer strands constitutes a relevant strategy to i) control the single or double helical state of a foldamer, ii) switch on the chiral induction process from the motor to the helical strands and iii) select the handedness of double helical structures through photochemical and thermal stimulations.

2.
Chemistry ; : e202402892, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246096

RESUMEN

Developing new methods to control the size and shape of the helical structures adopted by foldamers is highly important as the secondary structure displayed by these supramolecular scaffolds often dictates their activity and function. Herein, we report on a systematic study demonstrating that the helical pitch of ortho-azobenzene/2,6-pyridyldicarboamide foldamers can be readily controlled through the nature of the terminal functionality. Remarkably, simply through varying the end group of the foldamer, and without modifying any other structural features of the scaffold, the helical pitch can be over doubled in magnitude (from 3.4 Å to 7.3 Å). Additionally, crystallographic analysis of a library ten foldamers has identified general trends in the influence of a range of terminal functionalities, including carboxylbenzyl (Cbz), diphenylcarbamyl (N(Ph)2), ferrocene (Fc) and tert-butyloxycarbonyl (Boc), in controlling the folding behaviour of these supramolecular scaffolds. These studies could prove useful in the future development of functional foldamers which adopt specific sizes and shapes.

3.
Curr Opin Chem Biol ; 81: 102509, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39098212

RESUMEN

Metal-dependent enzymes are abundant and vital catalytic agents in nature. The functional versatility of metalloenzymes has made them common targets for improvement by protein engineering as well as mimicry by de novo designed sequences. In both strategies, the incorporation of non-canonical cofactors and/or non-canonical side chains has proved a useful tool. Less explored-but similarly powerful-is the utilization of non-canonical covalent modifications to the polypeptide backbone itself. Such efforts can entail either introduction of limited artificial monomers in natural chains to produce heterogeneous backbones or construction of completely abiotic oligomers that adopt defined folds. Herein, we review recent research applying artificial protein-like backbones in the construction of metalloenzyme mimics, highlighting progress as well as open questions in this emerging field.


Asunto(s)
Metaloproteínas , Ingeniería de Proteínas , Metaloproteínas/química , Metaloproteínas/metabolismo , Ingeniería de Proteínas/métodos , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Enzimas/metabolismo , Enzimas/química , Modelos Moleculares
4.
Angew Chem Int Ed Engl ; : e202414317, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171890

RESUMEN

In this work, we report a new type of interface modes between helical secondary structures by noncovalent assembly along the helical axis. The dimerization of helical secondary structures mediated by aromatic π-stacking leads to discrete heterochiral dimeric helical rods consisting of left-handed helix and right-handed helix, which has been demonstrated by single-crystal X-ray diffraction. We conduct chiral induction studies on discrete heterochiral dimers to regulate the preference of the helical sense. Surprisingly, we found a novel supramolecular chirality potentially occurring inside the super-secondary structure of chirality-induced heterochiral helical dimers, rather than the racemization of helical chirality. Furthermore, chirality-induced heterochiral helical dimers can exhibit unique chiral switches when formed or not formed. In order to identify the emerging supramolecular chirality of discrete heterochiral dimeric helix, we covalently synthesized meso-helix structures with opposite helical handedness. The chirality of aromatic chromophore linker was confirmed by chiral induction despite competition from opposite handed helices, which strongly demonstrates the occurrence of emerging supramolecular chirality in heterochiral dimeric helix. This study not only reports the heterochiral π-stacking dimerization of helical secondary structures for the first time, but also discovers novel supramolecular chirality hidden in the structure of noncovalent and even covalent meso-helices.

5.
ACS Synth Biol ; 13(8): 2271-2275, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148431

RESUMEN

Protein synthesis methods have been adapted to incorporate an ever-growing level of non-natural components. Meanwhile, design of de novo protein structure and function has rapidly emerged as a viable capability. Yet, these two exciting trends have yet to intersect in a meaningful way. The ability to perform de novo design with non-proteinogenic components requires that synthesis and computation align on common targets and applications. This perspective examines the state of the art in these areas and identifies specific, consequential applications to advance the field toward generalized macromolecule design.


Asunto(s)
Sustancias Macromoleculares , Ingeniería de Proteínas , Proteínas , Proteínas/química , Proteínas/metabolismo , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Ingeniería de Proteínas/métodos
6.
Chemistry ; : e202402423, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137164

RESUMEN

We report on dual, light-responsive and redox-active foldamers that demonstrate reversible and robust stimuli-induced behaviour. Herein, UV/Vis, 1H NMR and circular dichroism (CD) spectroscopy and cyclic voltammetry have been used to establish the reversibility and highly robust nature of the light- and redox-driven behaviour of these new foldamers with minimal levels of fatigue observed even upon multiple cyclic treatments with irradiative/non-irradiative and oxidative/reductive conditions. This proof-of-concept work paves the way towards the creation of novel stimuli-responsive foldamers of increasing sophistication capable of demonstrating reversible and robust responses to multiple distinct stimuli.

7.
Angew Chem Int Ed Engl ; : e202410884, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937392

RESUMEN

Synthetic duplexes with high stabilities have promising potential for mimicking biomolecular functions and developing supramolecular smart materials. Herein, we describe the synthesis and stimuli-responsive properties of molecular duplexes derived from indolocarbazole-pyridine (I-P) oligomers. These duplexes adopt nonclassical helical structures, stabilized by I-P hydrogen-bonding pairs in anhydrous chlorinated solvents. Notably, the longest duplex 62 (11-mer)2 displays remarkable stability, forming twenty hydrogen bonds; its exchange energy barrier was determined to be ΔG≠=22.0 kcal ⋅ mol-1 at 75 °C in anhydrous (CDCl2)2. Upon the addition of water, a hydrated duplex 62 (11-mer)2⊃10H2O was formed, with one water molecule inserted between each I-P hydrogen-bonding pair. The Hill coefficient (n) for this process is 6.1, demonstrating extremely positive cooperativity. Conversely, the hydrated duplex 62 (11-mer)2⊃10H2O was completely converted into the original anhydrous duplex 62 (11-mer)2 when the temperature was increased. Interconversion between these two distinct duplexes can be repeatedly carried out by varying the temperature. Furthermore, reversible switching between hetero-duplexes and homo-duplexes was also demonstrated by controlling the temperature, with concomitant changes in the characteristic emission signals.

8.
Adv Sci (Weinh) ; 11(28): e2400678, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757406

RESUMEN

Transmembrane delivery of biologically active nucleic acids is an important process in cells and has inspired one to develop advanced drug delivery techniques. In this contribution, molecular-level single-stranded nucleic acid transmembrane carriers are reported based on 3.2 nm long Huc's foldamers (AOrnQ3Q3)8 and (mQ3Q2)8 with linearly and helically aligned positive charges, respectively. These two foldamers not only show very strong DNA affinity via electrostatic interactions but also discriminatively bind single-stranded DNA (ss-DNA) and double-stranded DNA (ds-DNA), corroborating the importance of precise charge arrangement in the electrostatic interactions. More importantly, these two foldamers are capable of efficiently transporting ss-DNA across the lipid membranes, and the ss-DNA transport activity of (AOrnQ3Q3)8 with linearly aligned charges is higher than that of (mQ3Q2)8 with helically aligned charges. Thus a type of novel single-stranded nucleic acid transmembrane molecular carriers based on positively charged helical foldamers are introduced. Further, effective and enhanced expression in EGFP-mRNA transfection experiments strongly demonstrates the potential of positively charged foldamers for RNA transmembrane transport and therapy.


Asunto(s)
ADN de Cadena Simple , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Electricidad Estática , Humanos , Transfección/métodos , Portadores de Fármacos/química
9.
Angew Chem Int Ed Engl ; 63(30): e202405924, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-38703400

RESUMEN

Natural membrane receptors are proteins that can report on changes in the concentration of external chemical messengers. Messenger binding to a receptor produces conformational changes that are relayed through the membrane into the cell; this information allows cells to adapt to changes in their environment. Artificial membrane receptors (R)-1 and (S)-1 are helical α-aminoisobutyric acid (Aib) foldamers that replicate key parts of this information relay. Solution-phase 19F NMR spectroscopy of zinc(II)-capped receptor 1, either in organic solvent or in membrane-mimetic micelles, showed messenger binding produced an enrichment of either left- or right-handed screw-sense; the chirality of the bound messenger was relayed to the other receptor terminus. Furthermore, in situ production of a chemical messenger in the external aqueous environment could be detected in real-time by a racemic mixture of receptor 1 in micelles. The hydrolysis of insoluble anhydrides produced carboxylate in the aqueous phase, which bound to the receptors and gave a distinct 19F NMR output from inside the hydrophobic region of the micelles.


Asunto(s)
Anhídridos , Micelas , Hidrólisis , Anhídridos/química , Halogenación , Ácidos Aminoisobutíricos/química , Conformación Molecular
10.
Acta Biomater ; 181: 391-401, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38704114

RESUMEN

Potassium ion transport across myocardial cell membrane is essential for type 2 long QT syndrome (LQT2). However, the dysfunction of potassium ion transport due to genetic mutations limits the therapeutic effect in treating LQT2. Biomimetic ion channels that selectively and efficiently transport potassium ions across the cellular membranes are promising for the treatment of LQT2. To corroborate this, we synthesized a series of foldamer-based ion channels with different side chains, and found a biomimetic ion channel of K+ (BICK) with the highest transport activity among them. The selected BICK can restore potassium ion transport and increase transmembrane potassium ion current, thus shortening phase 3 of action potential (AP) repolarization and QT interval in LQT2. Moreover, BICK does not affect heart rate and cardiac rhythm in treating LQT2 model induced by E4031 in isolated heart as well as in guinea pigs. By restoring ion transmembrane transport tactic, biomimetic ion channels, such as BICK, will show great potential in treating diseases related to ion transport blockade. STATEMENT OF SIGNIFICANCE: Type 2 long QT syndrome (LQT2) is a disease caused by K+ transport disorder, which can cause malignant arrhythmia and even death. There is currently no radical cure, so it is critical to explore ways to improve K+ transmembrane transport. In this study, we report that a small-molecule biomimetic ion channel BICK can efficiently simulate natural K+ channel proteins on the cardiomyocyte and cure E4031-induced LQT2 in guinea pig by restoring K+ transport function for the first time. This study found that the potassium transmembrane transport by BICK significantly reduced the QT interval, which provides a conceptually new strategy for the treatment of LQT2 disease.


Asunto(s)
Síndrome de QT Prolongado , Potasio , Síndrome de QT Prolongado/metabolismo , Animales , Potasio/metabolismo , Cobayas , Humanos , Potenciales de Acción/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Masculino , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Canales de Potasio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Frecuencia Cardíaca/efectos de los fármacos
11.
Chemistry ; 30(35): e202401150, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38639722

RESUMEN

In this study, a series of H-bonded arylamide foldamers bearing benzoselenadiazole ends with solvent-responsive properties have been synthesized. In dichloromethane or dimethyl sulfoxide solvents, the molecules exhibit meniscus or linear structures, respectively, which can be attributed to the unique intramolecular hydrogen bonding behavior evidenced by 1D 1H NMR and 2D NOESY spectra. UV-vis spectroscopy experiments show that the absorption wavelength of H-bonded arylamide foldamers are significantly red-shifted due to the presence of benzoselenadiazole group. In addition, the crystal structures reveal that effective intermolecular dual Se ⋅ ⋅ ⋅ N interactions between benzoselenadiazole groups induce further assembly of the monomers. Remarkably, supramolecular linear and double helices structures are constructed under the synergistic induction of intramolecular hydrogen bonding and intermolecular chalcogen bonding. Additionally, 2D DOSY diffusion spectra and theoretical modelling based on density functional theory (DFT) are performed to explore the persistence of intermolecular Se ⋅ ⋅ ⋅ N interactions beyond the crystalline state.

12.
Chemistry ; 30(27): e202400540, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38445775

RESUMEN

Oligomers of the achiral α-aminoisobutyric acid (Aib) adopt a 310 helical conformation in which the screw-sense preference can be controlled by a single chiral residue. The use of the fluorinated residue α-Trifluoromethylalanine (α-TfmAla) revealed a unique way to both induce and measure the screw-sense preference of such oligomers acting as 19F NMR probe. This work proposes a systematic study of the effect of this fluorinated chiral inducer on the helical screw-sense preference of poly-Aib oligomers. The impact of the position of the fluorinated residue into pentamers (N-terminal, central or C-terminal) as well as the nature of the C-terminal capping of the peptides was thoroughly studied in light of complete structural analysis. A deeper understanding of the fluorine effect was achieved confirming the unique ability of α-TfmAla as a helical screw-sense controller.

13.
Biopolymers ; 115(3): e23575, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38465777

RESUMEN

Conformational search and density functional theory calculations were performed to explore the preferences of helical structures for chiro-specific oligo-γ-peptides of 2-(aminomethyl)cyclopentanecarboxylic acid (γAmc5) with a cyclopentyl constraint on the Cα-Cß bond in solution. The dimer and tetramer of γAmc5 (1) with homochiral (1S, 2S) configurations exhibited a strong preference for the 9-membered helix foldamer in solution, except for the tetramer in water. However, the oligomers of γAmc5 (1) longer than tetramer preferentially adopted a right-handed (P)-2.614-helix (H1-14) as the peptide sequence becomes longer and as solvent polarity increases. The high stabilities for H1-14 foldamers of γAmc5 (1) in solution were ascribed to the favored solvation free energies. The calculated mean backbone torsion angles for H1-14 helix foldamers of γAmc5 (1) were similar to those calculated for oligomers of other γ-residues with cyclopentane or cyclohexane rings. However, the substitution of cyclopentane constraints on the Cα-Cß bond of the γAmc5 (1) residue resulted in different conformational preferences and/or handedness of helix foldamers. In particular, the pyrrolidine-substituted analogs of the H1-14 foldamers of γAmc5 (1) with adjacent amine diads substituted at a proximal distance are expected to be potential catalysts for the crossed aldol condensation in nonpolar and polar solvents.


Asunto(s)
Ciclopentanos , Péptidos , Ciclopentanos/química , Péptidos/química , Estructura Secundaria de Proteína , Ácidos Carboxílicos/química , Termodinámica , Modelos Moleculares
14.
Angew Chem Int Ed Engl ; 63(14): e202315668, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38346927

RESUMEN

Artificial molecular muscles are highly attractive in the field of molecular machinery due to their unique properties of contraction and stretching motion. However, the synthesis of molecular muscles poses formidable challenges as it is hindered by undesirable yields and poor selectivity. Herein, we present a procedure for the dynamic assembly of foldaxane-based [c2]daisy chains, wherein the hermaphroditic sequences consisting of aromatic helices and peptide rods are interlocked through inter-strand hydrogen-bonding interactions. The binding complementarity facilitates a selective and efficient assembly of [c2]daisy chain structures, inhibiting the creation of by-products. Introducing multiple recognition sites confers the system with contraction and stretching motion actuated by chemical stimuli. The rate of this muscle-like motion is calculated to be 0.8 s-1, which is 107 times faster than that of complex dissociation.

15.
Chemistry ; 30(16): e202303650, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38193643

RESUMEN

DNA mimic foldamers based on aromatic oligoamide helices bearing anionic phosphonate side chains have been shown to bind to DNA-binding proteins sometimes orders of magnitude better than DNA itself. Here, we introduce new features in the DNA mimic foldamers to facilitate structural investigations of their interactions with proteins. Thirteen new foldamer sequences have been synthesized and characterized using NMR, circular dichroism, molecular modeling, and X-ray crystallography. The results show that foldamer helix handedness can be quantitatively biased by means of a single stereogenic center, that the foldamer structure can be made C2-symmetrical as in palindromic B-DNA sequences, and that associations between foldamer helices can be promoted utilizing dedicated C-terminal residues that act as sticky ends in B-DNA structures.


Asunto(s)
Amidas , ADN Forma B , Amidas/química , Modelos Moleculares , Proteínas , Cristalografía por Rayos X
16.
Chemistry ; 30(20): e202304033, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38190370

RESUMEN

Supramolecular polymers offer tremendous potential to produce new "smart" materials, however, there remains a need to develop systems that are responsive to external stimuli. In this work, visible-light responsive hydrogen-bonded supramolecular polymers comprising photoresponsive supramolecular synthons (I-III) consisting of two hydrogen bonding motifs (HBMs) connected by a central ortho-tetrafluorinated azobenzene have been characterized by DOSY NMR and viscometry. Comparison of different hydrogen-bonding motifs reveals that assembly in the low and high concentration regimes is strongly influenced by the strength of association between the HBMs. I, Incorporating a triply hydrogen-bonded heterodimer, was found to exhibit concentration dependent switching between a monomeric pseudo-cycle and supramolecular oligomer through intermolecular hydrogen bonding interactions between the HBMs. II, Based on the same photoresponsive scaffold, and incorporating a quadruply hydrogen-bonded homodimer was found to form a supramolecular polymer which was dependent upon the ring-chain equilibrium and thus dependent upon both concentration and photochemical stimulus. Finally, III, incorporating a quadruply hydrogen-bonded heterodimer represents the first photoswitchable AB type hydrogen-bonded supramolecular polymer. Depending on the concentration and photostationary state, four different assemblies dominate for both monomers II and III, demonstrating the ability to control supramolecular assembly and physical properties triggered by light.

17.
Angew Chem Int Ed Engl ; 63(2): e202316309, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38009917

RESUMEN

Chirality is ubiquitous in nature, and homochirality is manifested in many biomolecules. Although ß-double helices are rare in peptides and proteins, they consist of alternating L- and D-amino acids. No peptide double helices with homochiral amino acids have been observed. Here, we report chiral ß-double helices constructed from γ-peptides consisting of alternating achiral (E)-α,ß-unsaturated 4,4-dimethyl γ-amino acids and chiral (E)-α,ß-unsaturated γ-amino acids in both single crystals and in solution. The two independent strands of the same peptide intertwine to form a ß-double helix structure, and it is stabilized by inter-strand hydrogen bonds. The peptides with chiral (E)-α,ß-unsaturated γ-amino acids derived from α-L-amino acids adopt a (P)-ß-double helix, whereas peptides consisting of (E)-α,ß-unsaturated γ-amino acids derived from α-D-amino acids adopt an (M)-ß-double helix conformation. The circular dichroism (CD) signature of the (P) and (M)-ß-double helices and the stability of these peptides at higher temperatures were examined. Furthermore, ion transport studies suggested that these peptides transport ions across membranes. Even though the structural analogy suggests that these new ß-double helices are structurally different from those of the α-peptide ß-double helices, they retain ion transport activity. The results reported here may open new avenues in the design of functional foldamers.


Asunto(s)
Aminoácidos , Péptidos , Modelos Moleculares , Péptidos/química , Aminoácidos/química , Conformación Proteica en Hélice alfa , Enlace de Hidrógeno , Dicroismo Circular
18.
Chemistry ; 29(72): e202303135, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37867145

RESUMEN

Metals play an important role in the structure and functions of various proteins. The combination of metal ions and peptides have been emerging as an attractive field to create advanced structures and biomaterials. Here, we are reporting the anion-influenced, silver ion coordinated diverse networks of designed short tripeptide 310 -helices with terminal pyridyl groups. The short peptides adopted classical right-handed, left-handed and 310 EL -helical conformations in the presence of different silver salts. The peptides have displayed conformational flexibility to accommodate different sizes and interactions of anions to yield a variety of metal-coordinated networks. The complexes of metal ions and peptides have shown different porous networks, right- and left-handed helical polymers, transformation of helix into superhelix and 2 : 2 metal-peptide macrocycles. Further, the metal-peptide crystals with inherent dipoles of helical peptides gave striking second harmonic generation response. The optical energy upconversion from NIR to red and green light is demonstrated. Overall, we have shown the utilization of short 310 -helices for the construction of diverse metal-coordinated helical networks and notable non-linear optical effects.


Asunto(s)
Péptidos , Plata , Péptidos/química , Conformación Molecular , Aniones
19.
Angew Chem Int Ed Engl ; 62(46): e202308408, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37707879

RESUMEN

Expanding the chemical diversity of peptide macrocycle libraries for display selection is desirable to improve their potential to bind biomolecular targets. We now have implemented a considerable expansion through a large aromatic helical foldamer inclusion. A foldamer was first identified that undergoes flexizyme-mediated tRNA acylation and that is capable of initiating ribosomal translation with yields sufficiently high to perform an mRNA display selection of macrocyclic foldamer-peptide hybrids. A hybrid macrocyclic nanomolar binder to the C-lobe of the E6AP HECT domain was selected that showed a highly converged peptide sequence. A crystal structure and molecular dynamics simulations revealed that both the peptide and foldamer are helical in an intriguing reciprocal stapling fashion. The strong residue convergence could be rationalized based on their involvement in specific interactions with the target protein. The foldamer stabilizes the peptide helix through stapling and through contacts with key residues. These results altogether represent a significant extension of the chemical space amenable to display selection and highlight possible benefits of inserting an aromatic foldamer into a peptide macrocycle for the purpose of protein recognition.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Secuencia de Aminoácidos , Proteínas/metabolismo , Simulación de Dinámica Molecular , Ribosomas/metabolismo
20.
J Enzyme Inhib Med Chem ; 38(1): 2244693, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37605435

RESUMEN

The entry of the SARS-CoV-2 virus into a human host cell begins with the interaction between the viral spike protein (S protein) and human angiotensin-converting enzyme 2 (hACE2). Therefore, a possible strategy for the treatment of this infection is based on inhibiting the interaction of the two abovementioned proteins. Compounds that bind to the SARS-CoV-2 S protein at the interface with the alpha-1/alpha-2 helices of ACE2 PD Subdomain I are of particular interest. We present a stepwise optimisation of helical peptide foldamers containing trans-2-aminocylopentanecarboxylic acid residues as the folding-inducing unit. Four rounds of optimisation led to the discovery of an 18-amino-acid peptide with high affinity for the SARS-CoV-2 S protein (Kd = 650 nM) that inhibits this protein-protein interaction with IC50 = 1.3 µM. Circular dichroism and nuclear magnetic resonance studies indicated the helical conformation of this peptide in solution.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA