RESUMEN
Predicting how plants respond to drought requires an understanding of how physiological mechanisms and drought response strategies occur, as these strategies underlie rates of gas exchange and productivity. We assessed the response of 11 plant traits to repeated experimental droughts in four co-occurring species of central Australia. The main goals of this study were to: (i) compare the response to drought between species; (ii) evaluate whether plants acclimated to repeated drought; and (iii) examine the degree of recovery in leaf gas exchange after cessation of drought. Our four species of study were two tree species and two shrub species, which field studies have shown to occupy different ecohydrological niches. The two tree species (Eucalyptus camaldulensis Dehnh. and Corymbia opaca (D.J.Carr & S.G.M.Carr) K.D.Hill & L.A.S.Johnson) had large reductions in stomatal conductance (gs) values, declining by 90% in the second drought. By contrast, the shrub species (Acacia aptaneura Maslin & J.E.Reid and Hakea macrocarpa A.Cunn. ex R.Br.) had smaller reductions gs in the second drought of 52 and 65%, respectively. Only A. aptaneura showed a physiological acclimatation to drought due to small declines in gs versus á´ªpd (0.08 slope) during repeated droughts, meaning they maintained higher rates of gs compared with plants that only experienced one final drought (0.19 slope). All species in all treatments rapidly recovered leaf gas exchange and leaf mass per area following drought, displaying physiological plasticity to drought exposure. This research refines our understanding of plant physiological responses to recurrent water stress, which has implications for modelling of vegetation, carbon assimilation and water use in semi-arid environments under drought.
Asunto(s)
Sequías , Hojas de la Planta , Árboles , Hojas de la Planta/fisiología , Árboles/fisiología , Australia , Transpiración de Plantas/fisiología , Especificidad de la Especie , Aclimatación/fisiologíaRESUMEN
CONTEXT: The debate over whether kinetic energy (KE) or potential energy (PE) are the fundamental energy components that contribute to forming covalent bonds has been enduring and stimulating over time. However, the supremacy of these energy components in reactions where multiple bonds are simultaneously formed or broken has yet to be explored. In this study, we use the reaction electronic flux (REF), an effective tool for investigating changes in driving electronic activity when bond formation or dissociation occurs in a chemical reaction, to examine the fluctuations in the KE and PE in a multi-bond reaction. To that end, the activation of CO 2 by low-valent group 14 catalysts through a concerted σ -bond metathesis mechanism is analyzed. The findings of this preliminary study suggest that the REF can be utilized as a tool to rationalize alterations in the KE and PE in a multi-bond reaction. Specifically, analyses across the reaction coordinate reveal that changes in the KE and PE precede activation in the REF, stimulating the electronic activity where bond formation or dissociation processes dominate. METHODS: The activation of CO 2 by the low-valent LEH catalysts (L = N,N'-bis(2,6-diisopropyl phenyl)- ß -diketiminate; E = Si, Ge, Sn, and Pb) was studied along the reaction coordinate at the M06-2X/6-31 G(d,p)-LANL2DZ(E) level of theory. The respective minimum energy path calculations were obtained using the intrinsic reaction coordinate (IRC) procedure. The reaction electronic flux (REF) was calculated through the computation of the electronic chemical potential using the frontier molecular orbital approximation. Mayer bond orders along the reaction coordinate have been determined using the NBO 3.1 program in Gaussian16. Most of the reaction coordinate quantities reported in this study (REF, KE, PE, among others) have been determined using the Kudi program and custom Python scripts.
RESUMEN
Understanding the mechanisms controlling platelet function is crucial for exploring potential therapeutic targets related to atherothrombotic pathologies and primary hemostasis disorders. Our research, which focuses on the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis, has significant implications for the development of new therapeutic strategies. Traditionally, Ca2+-dependent cellular signaling has been recognized as a determinant process throughout the platelet activation, controlled primarily by store-operated Ca2+ entry and the PLC-PKC signaling pathway. However, despite the accumulated knowledge of these regulatory mechanisms, the effectiveness of therapy based on various commonly used antiplatelet drugs (such as acetylsalicylic acid and clopidogrel, among others) has faced challenges due to bleeding risks and reduced efficacy associated with the phenomenon of high platelet reactivity. Recent evidence suggests that platelet mitochondria could play a fundamental role in these aspects through Ca2+-dependent mechanisms linked to apoptosis and forming a procoagulant phenotype. In this context, the present review describes the latest advances regarding the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis.
Asunto(s)
Envejecimiento , Plaquetas , Calcio , Mitocondrias , Activación Plaquetaria , Humanos , Mitocondrias/metabolismo , Activación Plaquetaria/fisiología , Calcio/metabolismo , Plaquetas/metabolismo , Envejecimiento/metabolismo , Animales , Trombosis/metabolismo , Señalización del Calcio/fisiologíaRESUMEN
Biological production and outgassing of greenhouse gasses (GHG) in Eastern Boundary Upwelling Systems (EBUS) are vital for fishing productivity and climate regulation. This study examines temporal variability of biogeochemical and oceanographic variables, focusing on dissolved oxygen (DO), nitrate, nitrogen deficit (N deficit), nitrous oxide (N2O) and air-sea N2O flux. This analysis is based on monthly observations from 2000 to 2023 in a region of intense seasonal coastal upwelling off central Chile (36°S). Strong correlations are estimated among N2O concentrations and N deficit in the 30-80 m layer, and N2O air-sea fluxes with the proportion of hypoxic water (4 < DO < 89 µmol L-1) in the water column, suggesting that N2O accumulation and its exchange are mainly associated with partial denitrification. Furthermore, we observe interannual variability in concentrations and inventories in the water column of DO, nitrate, N deficit, as well as air-sea N2O fluxes in both downwelling and upwelling seasons. These variabilities are not associated with El Niño-Southern Oscillation (ENSO) indices but are related to interannual differences in upwelling intensity. The time series reveals significant nitrate removal and N2O accumulation in both mid and bottom layers, occurring at rates of 1.5 µmol L-1 and 2.9 nmol L-1 per decade, respectively. Particularly significant is the increase over the past two decades of air-sea N2O fluxes at a rate of 2.9 µmol m-2 d-1 per decade. These observations suggest that changes in the EBUS, such as intensification of upwelling and the prevalence of hypoxic waters may have implications for N2O emissions and fixed nitrogen loss, potentially influencing coastal productivity and climate.
RESUMEN
Elevated ethanol concentrations in yeast affect the plasma membrane. The plasma membrane in yeast has many lipid-protein complexes, such as Pma1 (MCP), Can1 (MCC), and the eisosome complex. We investigated the response of eisosomes, MCPs, and membraneless structures to ethanol stress. We found a correlation between ethanol stress and proton flux with quick acidification of the medium. Moreover, ethanol stress influences the symporter expression in stressed cells. We also suggest that acute stress from ethanol leads to increases in eisosome size and SG number: we hypothesized that eisosomes may protect APC symporters and accumulate an mRNA decay protein in ethanol-stressed cells. Our findings suggest that the joint action of these factors may provide a protective effect on cells under ethanol stress.
RESUMEN
A comprehensive analysis is carried out for achieving hygrothermal comfort by using bidirectional heat and mass fluxes between the human skin and its surroundings during cooling seasons, considering the main characteristics of climate, metabolic rate, and clothing fabrics. As hygrothermal comfort is mainly seen as one-direction heat and mass flux from the close surroundings to the human body, without the emitted heat and mass by the human skin, the purpose of the analysis is to find out proper features of the respective clothing fabric according to the inlet boundary conditions, i.e. heat and mass flux from the human body, and the outlet boundary features, i.e. heat and mass flux due to the climate conditions. Thereby, a novel mathematical modelling is developed for heat and mass transfer, respectively. Then, the software Wolfram Mathematica is applied for the numerical solutions of the model. After the model is validated, a sensitivity analysis is carried out. Thereby, it is found that the sensible heat removal by convection, dependent on both airflow and humidity rates, has a great influence on the hygrothermal comfort. Furthermore, solar reflectivity for shortwave radiation, along with longwave radiation from the skin, have influence on the hygrothermal comfort when both ventilation and sweating are set as minimum. Therefore, if the conditions of temperature and relative humidity are proper, both high conductivity and air permeability clothes are recommended. Nevertheless, regarding the reflectivity, it depends on the presence of shortwave radiation, sweating, ventilation, and longwave radiation to consider light-toned or dark colors.
RESUMEN
Human Embryonic Kidney cells (HEK293) are a popular host for recombinant protein expression and production in the biotechnological industry. This has driven within both, the scientific and the engineering communities, the search for strategies to increase their protein productivity. The present work is inserted into this search exploring the impact of adding sodium acetate (NaAc) into a batch culture of HEK293 cells. We monitored, as a function of time, the cell density, many external metabolites, and the supernatant concentration of the heterologous extra-cellular domain ECD-Her1 protein, a protein used to produce a candidate prostate cancer vaccine. We observed that by adding different concentrations of NaAc (0, 4, 6 and 8 mM), the production of ECD-Her1 protein increases consistently with increasing concentration, whereas the carrying capacity of the medium decreases. To understand these results we exploited a combination of experimental and computational techniques. Metabolic Flux Analysis (MFA) was used to infer intracellular metabolic fluxes from the concentration of external metabolites. Moreover, we measured independently the extracellular acidification rate and oxygen consumption rate of the cells. Both approaches support the idea that the addition of NaAc to the culture has a significant impact on the metabolism of the HEK293 cells and that, if properly tuned, enhances the productivity of the heterologous ECD-Her1 protein.
RESUMEN
Poly-hydroxybutyrate (PHB) is an environmentally friendly alternative for conventional fossil fuel-based plastics that is produced by various microorganisms. Large-scale PHB production is challenging due to the comparatively higher biomanufacturing costs. A PHB overproducer is the haloalkaliphilic bacterium Halomonas campaniensis, which has low nutritional requirements and can grow in cultures with high salt concentrations, rendering it resistant to contamination. Despite its virtues, the metabolic capabilities of H. campaniensis as well as the limitations hindering higher PHB production remain poorly studied. To address this limitation, we present HaloGEM, the first high-quality genome-scale metabolic network reconstruction, which encompasses 888 genes, 1528 reactions (1257 gene-associated), and 1274 metabolites. HaloGEM not only displays excellent agreement with previous growth data and experiments from this study, but it also revealed nitrogen as a limiting nutrient when growing aerobically under high salt concentrations using glucose as carbon source. Among different nitrogen source mixtures for optimal growth, HaloGEM predicted glutamate and arginine as a promising mixture producing increases of 54.2% and 153.4% in the biomass yield and PHB titer, respectively. Furthermore, the model was used to predict genetic interventions for increasing PHB yield, which were consistent with the rationale of previously reported strategies. Overall, the presented reconstruction advances our understanding of the metabolic capabilities of H. campaniensis for rationally engineering this next-generation industrial biotechnology platform. KEY POINTS: A comprehensive genome-scale metabolic reconstruction of H. campaniensis was developed. Experiments and simulations predict N limitation in minimal media under aerobiosis. In silico media design increased experimental biomass yield and PHB titer.
Asunto(s)
Halomonas , Hidroxibutiratos , Nitrógeno , Poliésteres , Polihidroxibutiratos , Halomonas/metabolismo , Halomonas/genética , Halomonas/crecimiento & desarrollo , Nitrógeno/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Redes y Vías Metabólicas/genética , Biomasa , Glucosa/metabolismoRESUMEN
BACKGROUND: Although Basidiomycota produce pharmaceutically and ecologically relevant natural products, knowledge of how they coordinate their primary and secondary metabolism is virtually non-existent. Upon transition from vegetative mycelium to carpophore formation, mushrooms of the genus Psilocybe use L-tryptophan to supply the biosynthesis of the psychedelic tryptamine alkaloid psilocybin with the scaffold, leading to a strongly increased demand for this particular amino acid as this alkaloid may account for up to 2% of the dry mass. Using Psilocybe mexicana as our model and relying on genetic, transcriptomic, and biochemical methods, this study investigated if L-tryptophan biosynthesis and degradation in P. mexicana correlate with natural product formation. RESULTS: A comparative transcriptomic approach of gene expression in P. mexicana psilocybin non-producing vegetative mycelium versus producing carpophores identified the upregulation of L-tryptophan biosynthesis genes. The shikimate pathway genes trpE1, trpD, and trpB (encoding anthranilate synthase, anthranilate phosphoribosyltransferase, and L-tryptophan synthase, respectively) were upregulated in carpophores. In contrast, genes idoA and iasA, encoding indole-2,3-dioxygenase and indole-3-acetaldehyde synthase, i.e., gateway enzymes for L-tryptophan-consuming pathways, were massively downregulated. Subsequently, IasA was heterologously produced in Escherichia coli and biochemically characterized in vitro. This enzyme represents the first characterized microbial L-tryptophan-preferring acetaldehyde synthase. A comparison of transcriptomic data collected in this study with prior data of Psilocybe cubensis showed species-specific differences in how L-tryptophan metabolism genes are regulated, despite the close taxonomic relationship. CONCLUSIONS: The upregulated L-tryptophan biosynthesis genes and, oppositely, the concomitant downregulated genes encoding L-tryptophan-consuming enzymes reflect a well-adjusted cellular system to route this amino acid toward psilocybin production. Our study has pilot character beyond the genus Psilocybe and provides, for the first time, insight in the coordination of mushroom primary and secondary metabolism.
RESUMEN
A positive feedback loop where climate warming enhances eutrophication and its manifestations (e.g., cyanobacterial blooms) has been recently highlighted, but its consequences for biodiversity and ecosystem functioning are not fully understood. We conducted a highly replicated indoor experiment with a species-rich subtropical freshwater phytoplankton community. The experiment tested the effects of three constant temperature scenarios (17, 20, and 23 °C) under high-nutrient supply conditions on community composition and proxies of ecosystem functioning, namely resource use efficiency (RUE) and CO2 fluxes. After 32 days, warming reduced species richness and promoted different community trajectories leading to a dominance by green algae in the intermediate temperature and by cyanobacteria in the highest temperature treatments. Warming promoted primary production, with a 10-fold increase in the mean biomass of green algae and cyanobacteria. The maximum RUE occurred under the warmest treatment. All treatments showed net CO2 influx, but the magnitude of influx decreased with warming. We experimentally demonstrated direct effects of warming on phytoplankton species sorting, with negative effects on diversity and direct positive effects on cyanobacteria, which could lead to potential changes in ecosystem functioning. Our results suggest potential positive feedback between the phytoplankton blooms and warming, via lower net CO2 sequestration in cyanobacteria-dominated, warmer systems, and add empirical evidence to the need for decreasing the likelihood of cyanobacterial dominance.
Asunto(s)
Chlorophyta , Cianobacterias , Fitoplancton , Ecosistema , Dióxido de Carbono , Biomasa , Eutrofización , LagosRESUMEN
Terminos Lagoon (TL), in the southern Gulf of Mexico, has been under intensive anthropogenic pressure (e.g., oil-industry development) since the 1970s. Historical changes in flux ratios of potentially toxic elements (PTEs; As, Cd, Cr, Cu, Ni, Pb, V, Zn) were, for the first time, assessed inside TL by using 210Pb-dated sediment cores. Sediments showed minor enrichments for Cd, Ni, Pb, and V. However, according to international benchmarks, the As, Cr, Cu, and Ni concentrations could pose a risk for benthic biota. Sedimentary processes involved in the accumulation of PTEs were identified through a chemometric approach. Increments in PTEs flux ratios concur with the recent (â50 years) and extensive land-use changes, particularly the transport and deposit of materials delivered by rivers. These findings are expected to be used in managing this crucial natural resource, the larger Mexican coastal lagoon ecosystem, to mitigate the effects of global change.
Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Cadmio , Plomo , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Golfo de México , Ecosistema , Monitoreo del Ambiente , Medición de RiesgoRESUMEN
Marine thraustochytrids produce metabolically important lipids such as the long-chain omega-3 polyunsaturated fatty acids, carotenoids, and sterols. The growth and lipid production in thraustochytrids depends on the composition of the culture medium that often contains yeast extract as a source of amino acids. This work discusses the effects of individual amino acids provided in the culture medium as the only source of nitrogen, on the production of biomass and lipids by the thraustochytrid Thraustochytrium sp. RT2316-16. A reconstructed metabolic network based on the annotated genome of RT2316-16 in combination with flux balance analysis was used to explain the observed growth and consumption of the nutrients. The culture kinetic parameters estimated from the experimental data were used to constrain the flux via the nutrient consumption rates and the specific growth rate of the triacylglycerol-free biomass in the genome-scale metabolic model (GEM) to predict the specific rate of ATP production for cell maintenance. A relationship was identified between the specific rate of ATP production for maintenance and the specific rate of glucose consumption. The GEM and the derived relationship for the production of ATP for maintenance were used in linear optimization problems, to successfully predict the specific growth rate of RT2316-16 in different experimental conditions.
Asunto(s)
Modelos Biológicos , Estramenopilos , Estramenopilos/metabolismo , Estramenopilos/genética , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Redes y Vías Metabólicas/genética , Aminoácidos/metabolismo , Biomasa , Metabolismo de los Lípidos , Nutrientes/metabolismo , Adenosina Trifosfato/metabolismoRESUMEN
Genome-scale metabolic models provide a valuable resource to study metabolism and cell physiology. These models are employed with approaches from the constraint-based modeling framework to predict metabolic and physiological phenotypes. The prediction performance of genome-scale metabolic models can be improved by including protein constraints. The resulting protein-constrained models consider data on turnover numbers (kcat ) and facilitate the integration of protein abundances. In this systematic review, we present and discuss the current state-of-the-art regarding the estimation of kinetic parameters used in protein-constrained models. We also highlight how data-driven and constraint-based approaches can aid the estimation of turnover numbers and their usage in improving predictions of cellular phenotypes. Finally, we identify standing challenges in protein-constrained metabolic models and provide a perspective regarding future approaches to improve the predictive performance.
Asunto(s)
Modelos Biológicos , Fenotipo , Proteínas/metabolismo , Proteínas/genéticaRESUMEN
BACKGROUND: Uniform random sampling of mass-balanced flux solutions offers an unbiased appraisal of the capabilities of metabolic networks. Unfortunately, it is impossible to avoid thermodynamically infeasible loops in flux samples when using convex samplers on large metabolic models. Current strategies for randomly sampling the non-convex loopless flux space display limited efficiency and lack theoretical guarantees. RESULTS: Here, we present LooplessFluxSampler, an efficient algorithm for exploring the loopless mass-balanced flux solution space of metabolic models, based on an Adaptive Directions Sampling on a Box (ADSB) algorithm. ADSB is rooted in the general Adaptive Direction Sampling (ADS) framework, specifically the Parallel ADS, for which theoretical convergence and irreducibility results are available for sampling from arbitrary distributions. By sampling directions that adapt to the target distribution, ADSB traverses more efficiently the sample space achieving faster mixing than other methods. Importantly, the presented algorithm is guaranteed to target the uniform distribution over convex regions, and it provably converges on the latter distribution over more general (non-convex) regions provided the sample can have full support. CONCLUSIONS: LooplessFluxSampler enables scalable statistical inference of the loopless mass-balanced solution space of large metabolic models. Grounded in a theoretically sound framework, this toolbox provides not only efficient but also reliable results for exploring the properties of the almost surely non-convex loopless flux space. Finally, LooplessFluxSampler includes a Markov Chain diagnostics suite for assessing the quality of the final sample and the performance of the algorithm.
Asunto(s)
Algoritmos , Modelos Biológicos , Redes y Vías Metabólicas , Proyectos de Investigación , Adaptación FisiológicaRESUMEN
Oleaginous yeasts are promising platforms for microbial lipids production as a renewable and sustainable alternative to vegetable oils in biodiesel production. In this paper, a thorough in silico assessment of lipid production in batch cultivation by Rhodosporidium toruloides was developed. By means of dynamic flux balance analysis, the traditional two-stage bioprocess (TSB) performed by the native strain was contrasted with one-stage bioprocess (OSB) using four designed strains obtained by gene knockout strategies. Lipid titer, yield, content, and productivity were analyzed at different initial C/N ratios as relevant performance indicators used in bioprocesses. By weighting these indicators, a global lipid efficiency metric (GLEM) was defined to consider different scenarios. Under simulated conditions, designed strains for lipid overproduction in OSB outperformed the TSB in terms of lipid title (up to threefold), lipid yield (up to 2.4-fold), lipid content (up to 2.8-fold, with a maximum of 76%), and productivity (up to 1.3-fold), depending on C/N ratios. Using these efficiency parameters and the proposed GLEM, the process of selecting the most suitable candidates for lipid production could be carried out before experimental assays. This methodology holds the potential to be extended to other oleaginous microorganisms and diverse strain design techniques.
Asunto(s)
Basidiomycota , Rhodotorula , Basidiomycota/genética , Rhodotorula/genética , Biocombustibles , LípidosRESUMEN
Introduction: The interaction between blood and dialysis membrane increases the risk of clot formation. Membrane properties can interfere with coagulation activation during dialysis. Heparin is usually used to ensure anticoagulation, which can be monitored by the Activated Clotting Time (ACT) test. The purpose of this study was to compare the ACT of patients with chronic kidney disease (CKD) undergoing hemodialysis with high-flux (HF) and medium cut-off (MCO) membranes. Methods: This is a prospective, randomized, crossover study in which 32 CKD patients were dialyzed for 12 weeks with each membrane. Blood clotting measured by ACT was evaluated at the beginning, 2nd, and 4th hour of the dialysis session. Throughout the study, there were no changes in the dose or administration method of heparin. Results: Patients mainly were middle-aged, non-black males on hemodialysis for eight years. Before randomization, ACT values were 132 ± 56, 195 ± 60, and 128 ± 32 seconds at pre-heparinization, 2nd and 4th hour, respectively. After 12 weeks, ACT values in HF and MCO groups were 129 ± 17, 205 ± 65 and 139 ± 38 seconds, and 143 ± 54, 219 ± 68 and 142 ± 45 seconds, respectively. An ANOVA model adjusted and unadjusted for repeated measures showed a significant time but no treatment or interaction effects. In an additional paired-sample analysis, no difference between ACT values of HF and MCO Groups was observed. Discussion and Conclusion: There was no difference regarding the ACT test during dialysis therapy using HF or MCO membranes. This data suggests that no adjustment in the dose or administration method of heparin is necessary with the use of MCO dialysis membranes.
RESUMEN
In order to develop a standardized nomenclature for the mechanisms and materials utilized during extracorporeal blood purification, a consensus expert conference was convened in November 2022. Standardized nomenclature serves as a common language for reporting research findings, new device development, and education. It is also critically important to support patient safety, allow comparisons between techniques, materials, and devices, and be essential for defining and naming innovative technologies and classifying devices for regulatory approval. The multidisciplinary conference developed detailed descriptions of the performance characteristics of devices (membranes, filters, and sorbents), solute and fluid transport mechanisms, flow parameters, and methods of treatment evaluation. In addition, nomenclature for adsorptive blood purification techniques was proposed. This report summarizes these activities and highlights the need for standardization of nomenclature in the future to harmonize research, education, and innovation in extracorporeal blood purification therapies.
RESUMEN
Studies reveal that mangroves have the ability to store underground carbon more than a tropical forest, and this function is classified as the second most important to mitigate the effects of climate change. However, part of the carbon fixed returns to the atmosphere, and this is done through soil respiration. The present study seeks to quantify the total soil efflux (a subrogate of total soil respiration) that includes both autotrophic and heterotrophic soil efflux, emitted by a Panama's mangrove swamp, as well as to investigate what drivers are important. Firstly, 3 plots were established with predominant mangroves species, such as salty mangrove tree (Avicennia bicolor Standl.) and black mangrove tree (Avicennia germinans L.). Secondly, a forest inventory was carried out in one ha, resulting in 371 trees ha-1, where the salty mangrove tree prevailed with 219 individuals in front of the black mangrove tree, with 152 trees. In addition, tree level measurements were performed such as diameter at breast height (DBH), crown diameter and distance between trees. Third, using a Licor 6400XT infrared gas analyzer system and a meteorological tower, soil CO2 fluxes and air and soil temperature were measured respectively. Results showed a total of 33.61 t of CO2 ha-1 emitted by the soil of the mangrove in 3.5 months.
RESUMEN
Computational modeling and simulation of biological systems have become valuable tools for understanding and predicting cellular performance and phenotype generation. This work aimed to construct, model, and dynamically simulate the virulence factor pyoverdine (PVD) biosynthesis in Pseudomonas aeruginosa through a systemic approach, considering that the metabolic pathway of PVD synthesis is regulated by the quorum-sensing (QS) phenomenon. The methodology comprised three main stages: (i) Construction, modeling, and validation of the QS gene regulatory network that controls PVD synthesis in P. aeruginosa strain PAO1; (ii) construction, curating, and modeling of the metabolic network of P. aeruginosa using the flux balance analysis (FBA) approach; (iii) integration and modeling of these two networks into an integrative model using the dynamic flux balance analysis (DFBA) approximation, followed, finally, by an in vitro validation of the integrated model for PVD synthesis in P. aeruginosa as a function of QS signaling. The QS gene network, constructed using the standard System Biology Markup Language, comprised 114 chemical species and 103 reactions and was modeled as a deterministic system following the kinetic based on mass action law. This model showed that the higher the bacterial growth, the higher the extracellular concentration of QS signal molecules, thus emulating the natural behavior of P. aeruginosa PAO1. The P. aeruginosa metabolic network model was constructed based on the iMO1056 model, the P. aeruginosa PAO1 strain genomic annotation, and the metabolic pathway of PVD synthesis. The metabolic network model included the PVD synthesis, transport, exchange reactions, and the QS signal molecules. This metabolic network model was curated and then modeled under the FBA approximation, using biomass maximization as the objective function (optimization problem, a term borrowed from the engineering field). Next, chemical reactions shared by both network models were chosen to combine them into an integrative model. To this end, the fluxes of these reactions, obtained from the QS network model, were fixed in the metabolic network model as constraints of the optimization problem using the DFBA approximation. Finally, simulations of the integrative model (CCBM1146, comprising 1123 reactions and 880 metabolites) were run using the DFBA approximation to get (i) the flux profile for each reaction, (ii) the bacterial growth profile, (iii) the biomass profile, and (iv) the concentration profiles of metabolites of interest such as glucose, PVD, and QS signal molecules. The CCBM1146 model showed that the QS phenomenon directly influences the P. aeruginosa metabolism to PVD biosynthesis as a function of the change in QS signal intensity. The CCBM1146 model made it possible to characterize and explain the complex and emergent behavior generated by the interactions between the two networks, which would have been impossible to do by studying each system's individual components or scales separately. This work is the first in silico report of an integrative model comprising the QS gene regulatory network and the metabolic network of P. aeruginosa.
RESUMEN
BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.