Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(19): 8149-8160, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38652896

RESUMEN

Environmental impacts associated with shale gas exploitation have been historically underestimated due to neglecting to account for the production or the release of end-of-pipe organic pollutants. Here, we assessed the environmental impacts of shale gas production in China and the United States using life cycle assessment. Through data mining, we compiled literature information on organic pollutants in flowback and produced water (FPW), followed by assessments using USEtox to evaluate end-of-pipe risks. Results were incorporated to reveal the life cycle risks associated with shale gas exploitation in both countries. China exhibited higher environmental impacts than the US during the production phase. Substantially different types of organic compounds were observed in the FPW between two countries. Human carcinogenic and ecological toxicity attributed to organics in FPW was 3 orders of magnitude higher than that during the production phase in the US. Conversely, in China, end-of-pipe organics accounted for approximately 52%, 1%, and 47% of the overall human carcinogenic, noncarcinogenic, and ecological impacts, respectively. This may be partially limited by the quantitative data available. While uncertainties exist associated with data availability, our study highlights the significance of integrating impacts from shale gas production to end-of-pipe pollution for comprehensive environmental risk assessments.


Asunto(s)
Gas Natural , China , Medición de Riesgo , Estados Unidos , Humanos , Monitoreo del Ambiente
2.
Sci Total Environ ; 912: 169510, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38154638

RESUMEN

Flowback and produced water (FPW) generated from shale gas extraction is a complex mixture consisting of injected drilling fluid, deep formation water, and byproducts of downhole reactions. Limited knowledge is available regarding the impact of discharged FPW on surface water in China. With the development of shale gas exploitation, this emphasizes an urgent need for comprehensive assessments and stringent regulations to ensure the safe disposal of shale gas extraction-related wastewater. Herein, we explored potential impacts of treated shale gas wastewater discharged into a local river in southwest China through toxicity identification evaluation (TIE). Results revealed that organics and particulates significantly contributed to the overall toxicity of the treated FPW wastewater. Through target and suspect chemical analyses, various categories of organic contaminants were detected, including alkanes, aromatic hydrocarbons, biocides, phenols, and phthalates. Furthermore, non-target analysis uncovered the presence of surfactant-related contaminants in tissues of exposed organisms, but their contribution to the observed toxicity was unclear due to the lack of effect data for these compounds. Higher toxicity was found at the discharge point compared with upstream sites; however, the toxicity was rapidly mitigated due to dilution in the receiving river, posing little impact on downstream areas. Our study highlighted the importance of monitoring toxicity and water quality of FPW effluent even though dilution could be a viable approach when the water volume in the discharge was small.

3.
J Hazard Mater ; 460: 132490, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703728

RESUMEN

Hydraulic fracturing for oil and gas extraction produces large volumes of wastewater, termed flowback and produced water (FPW), that are highly saline and contain a variety of organic and inorganic contaminants. In the present study, FPW samples from ten hydraulically fractured wells, across two geologic formations were collected at various timepoints. Samples were analyzed to determine spatial and temporal variation in their inorganic composition. Results indicate that FPW composition varied both between formations and within a single formation, with large compositional changes occurring over short distances. Temporally, all wells showed a time-dependent increase in inorganic elements, with total dissolved solids increasing by up to 200,000 mg/L over time, primarily due to elements associated with salinity (Cl, Na, Ca, Mg, K). Toxicological analysis of a subset of the FPW samples showed median lethal concentrations (LC50) of FPW to the aquatic invertebrate Daphnia magna were highly variable, with the LC50 values ranging from 1.16% to 13.7% FPW. Acute toxicity of FPW significantly correlated with salinity, indicating salinity is a primary driver of FPW toxicity, however organic components also contributed to toxicity. This study provides insight into spatiotemporal variability of FPW composition and illustrates the difficulty in predicting aquatic risk associated with FPW.


Asunto(s)
Fracking Hidráulico , Animales , Daphnia , Epiclorhidrina , Dosificación Letal Mediana , Agua
4.
Environ Sci Technol ; 57(6): 2380-2392, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36724135

RESUMEN

Hydraulic fracturing extracts oil and gas through the injection of water and proppants into subterranean formations. These injected fluids mix with the host rock formation and return to the surface as a complex wastewater containing salts, metals, and organic compounds, termed flowback and produced water (FPW). Previous research indicates that FPW is toxic to Daphnia magna (D. magna), impairing reproduction, molting, and maturation time; however, recovery from FPW has not been extensively studied. Species unable to recover have drastic impacts on populations on the ecological scale; thus, this study sought to understand if recovery from an acute 48 h FPW exposure was possible in the freshwater invertebrate, D. magna by using a combination of physiological and molecular analyses. FPW (0.75%) reduced reproduction by 30% and survivorship to 32% compared to controls. System-level quantitative proteomic analyses demonstrate extensive perturbation of metabolism and protein transport in both 0.25 and 0.75% FPW treatments after a 48 h FPW exposure. Collectively, our data indicate that D. magna are unable to recover from acute 48 h exposures to ≥0.25% FPW, as evidence of toxicity persists for at least 19 days post-exposure. This study highlights the importance of considering persisting effects following FPW remediation when modeling potential spill scenarios.


Asunto(s)
Fracking Hidráulico , Contaminantes Químicos del Agua , Animales , Daphnia/fisiología , Proteómica , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Agua
5.
Chemosphere ; 313: 137415, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36464016

RESUMEN

Improving the sustainability of the hydraulic fracturing water cycle of unconventional oil and gas development needs an advanced water treatment that can efferently treat flowback and produced water (FPW). In this study, we developed a robust two-stage process that combines flocculation, and iron-carbon micro-electrolysis plus sodium persulfate (ICEPS) advanced oxidation to treat field-based FPW from the Sulige tight gas field, China. Influencing factors and optimal conditions of the flocculation-ICEPS process were investigated. The flocculation-ICEPS system at optimal conditions sufficiently removed the total organic contents (95.71%), suspended solids (92.4%), and chroma (97.5%), but the reaction stoichiometric efficiency (RSE) value was generally less than 5%. The particles and chroma were effectively removed by flocculation, and the organic contents was mainly removed by the ICEPS system. Fourier-transform infrared spectroscopy (FTIR) analysis was performed to track the changes in FPW chemical compositions through the oxidation of the ICEPS process. Multiple analyses demonstrated that PS was involved in the activation of Fe oxides and hydroxides accreted on the surface of the ICE system for FPW treatment, which led to increasing organics removal rate of the ICEPS system compared to the conventional ICE system. Our study suggests that the flocculation-ICEPS system is a promising FPW treatment process, which provides technical and mechanistic foundations for further field application.


Asunto(s)
Fracking Hidráulico , Contaminantes Químicos del Agua , Aguas Residuales , Carbono/análisis , Hierro/análisis , Contaminantes Químicos del Agua/análisis , Electrólisis
6.
Sci Total Environ ; 851(Pt 2): 158371, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36041624

RESUMEN

Shale gas wastewater (SGW) disposal is a major challenge in the areas in central China due to its increasing volume associated with intensification of shale gas exploration and its high levels of contaminants. In the Fuling shale gas field of Sichuan Basin, a small amount of SGW originated from the flowback and produced water (FPW) is treated and then discharged to a local stream. This study investigated the inorganic water geochemistry and Sr isotopic composition of the FPW in Fuling shale gas field, the SGW effluent that is generated in the treatment facility, and the quality of a local river after the disposal of treated SGW. The data generated in this study reveals that FPW generate after several years of shale gas operation maintain the original geochemical fingerprints detected in early stages of FPW generation, and consistent with the FPW composition detected in other shale gas fields in Sichuan Basin. We show that reuse of saline FPW for hydraulic fracturing can generate an inverse salinity trend, where the salinity of FPW decreases with time, reflecting the increase of the contribution of formation water with lower salinity. The treatment of the FPW results in ~40 % reduction of the salts by dilution with freshwater and selective (80-90 %) removal of some of the inorganic contaminants. The original geochemical fingerprints of the FPW from Fuling shale gas field was not modified during FPW treatment, reinforcing the applicability of these tracers for detecting SGW in the environment. Discharge of treated SGW effluent to a local river causes a major 200-fold dilution and reduction of all contaminants levels below drinking water and ecological standards. Overall, this study emphasizes the importance of water quality monitoring of treated SGW and the overall measures needed to protect public health and the environment in areas of shale gas development.


Asunto(s)
Agua Potable , Fracking Hidráulico , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales/química , Gas Natural , Sales (Química) , Purificación del Agua/métodos , Yacimiento de Petróleo y Gas , Minerales , Contaminantes Químicos del Agua/análisis
7.
Environ Res ; 212(Pt D): 113486, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35597290

RESUMEN

Membrane processes are widely applied in shale gas flowback and produced water (SGFPW) reuse. However, particulate matters and organic matters aggravate membrane fouling, which is one of the major restrictions on SGFPW reuse. The present study proposed fixed bed adsorption using granular activated carbon (GAC) combined with ultrafiltration (UF) for the first time to investigate the treatment performance and membrane fouling mechanism. The adsorption of GAC for SGFPW was best described by the Temkin isotherm model and the pseudo-second-order kinetic model. GAC fixed bed pretreatment with different empty bed contact times (EBCT) (30, 60 and 90 min) showed the significant removal rate for dissolved organic carbon (DOC) and turbidity, which was 34.7%-42.4% and 98.1%-98.9%, respectively. According to characterization of UF membrane fouling layer, particulate matters and organic matters caused major part of membrane fouling. After being treated by GAC fixed bed, total fouling index (TFI) and hydraulic irreversible fouling index (HIFI) respectively decreased by more than 32.5% and 18.3% respectively, showing the mitigation effect of GAC fixed bed on membrane fouling. According to the XDLVO theory, GAC fixed bed also mitigated membrane fouling by reducing the hydrophobic interactions between the foulants and the UF membrane. The integrated GAC fixed bed-UF process produced high-quality effluents that met the water quality standards of SGFPW internal reuse, which was an effective technology of the SGFPW reuse.


Asunto(s)
Ultrafiltración , Purificación del Agua , Adsorción , Carbón Orgánico/química , Membranas Artificiales , Gas Natural , Aguas Residuales/química
8.
Sci Total Environ ; 807(Pt 3): 150986, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662612

RESUMEN

Large stores of previously inaccessible hydrocarbons have become available due to the development of hydraulic fracturing technologies. During the hydraulic fracturing process, a mixture of water and proprietary additives is injected into geologic formations to release trapped hydrocarbons. After fracturing, injected water and fluid from the target formation return to the surface as flowback and produced water (FPW), a potentially toxic byproduct of hydraulic fracturing activities. FPW is a complex mixture that contains chemical additives present in the initial injection fluid as well as salts, metals, and a variety of organic compounds. As a result, FPW composition can be highly variable across wells from different geological formations, methods of fracturing and well development, and well age. The present study sought to determine if FPW sourced from four wells (O, P, U, V) located on the same well pad within the Montney Formation have similar levels of acute and chronic toxicity to the freshwater invertebrate, Daphnia magna. Minimal differences in the estimated 48 h LC50 concentrations were observed among the studied wells. Long-term, 21 d exposures to ≤2% FPW revealed differences in the level of lethality between wells, including complete mortality in daphnids exposed to 2% well O by day 9. No sublethal effects were observed as a result of exposure to FPW from wells P, U or V; however, a large impairment of reproductive traits and molting behaviour were detected after exposure to 0.75% well O FPW. These results indicate that FPW sourced from wells on the same well pad cannot be considered the same in terms of chemical composition or toxicity, an important distinction to make for risk assessment practices.


Asunto(s)
Daphnia , Geología , Animales , Agua Dulce
9.
Environ Pollut ; 287: 117614, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34171731

RESUMEN

Hydraulic fracturing flowback and produced water (HF-FPW), which contains polyaromatic hydrocarbons (PAHs) and numerous other potential contaminants, is a complex wastewater produced during the recovery of tight hydrocarbon resources. Previous studies on HF-FPW have demonstrated various toxicological responses of aquatic organisms as consequences of combined exposure to high salinity, dissolved organic compounds and particle/suspended solids-bound pollutants. Noteworthy is the lack of studies illustrating the potentially toxic effects of the FPW suspended solids (FPW-SS). In this study, we investigated the acute and sublethal toxicity of suspended solids filtered from six authentic FPW sample collected from two fracturing wells, using a sediment contact assay based on early-life stages of zebrafish (Danio rerio). PAHs profiles and acute toxicity tests provided initial information on the toxic potency of the six samples. Upon exposure to sediment mixture at two selected doses (1.6 and 3.1 mg/mL), results showed adverse effects in larval zebrafish, as revealed by increased Ethoxyresorufin-O-deethylase (EROD) activity. Transcriptional alterations were also observed in xenobiotic biotransformation (ahr, pxr, cyp1a, cyp1b1, cyp1c1, cyp1c2, cyp3a65, udpgt1a1, udpgt5g1), antioxidant response (sod1, sod2, gpx1a, gpx1b) and hormone receptor signaling (esr1, esr2a, cyp19a1a, vtg1) genes. The results demonstrated that even separated from the complex aqueous FPW mixture, FPW-SS can induce toxicological responses in aquatic organisms' early life stages. Since FPW-SS could sediment to the bottom of natural wetland acting as a continuous source of contaminants, the current findings imply the likelihood of long-term environmental risks of polluted sediments on aquatic ecosystems due to FPW spills.


Asunto(s)
Fracking Hidráulico , Contaminantes Químicos del Agua , Animales , Ecosistema , Agua , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
10.
Environ Sci Technol ; 55(11): 7167-7185, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33970611

RESUMEN

There is considerable debate about the sustainability of the hydraulic fracturing (HF) water cycle in North America. Recently, this debate has expanded to China, where HF activities continue to grow. Here, we provide a critical review of the HF water cycle in China, including water withdrawal practices and flowback and produced water (FPW) management and their environmental impacts, with a comprehensive comparison to the U.S. and Canada (North America). Water stress in arid regions, as well as water management challenges, FPW contamination of aquatic and soil systems, and induced seismicity are all impacts of the HF water cycle in China, the U.S., and Canada. In light of experience gained in North America, standardized practices for analyzing and reporting FPW chemistry and microbiology in China are needed to inform its efficient and safe treatment, discharge and reuse, and identification of potential contaminants. Additionally, conducting ecotoxicological studies is an essential next step to fully reveal the impacts of accidental FPW releases into aquatic and soil ecosystems in China. From a policy perspective, the development of China's unconventional resources lags behind North America's in terms of overall regulation, especially with regard to water withdrawal, FPW management, and routine monitoring. Our study suggests that common environmental risks exist within the world's two largest HF regions, and practices used in North America may help prevent or mitigate adverse effects in China.


Asunto(s)
Fracking Hidráulico , Contaminantes Químicos del Agua , Canadá , China , Ecosistema , América del Norte , Aguas Residuales , Agua , Ciclo Hidrológico , Contaminantes Químicos del Agua/análisis
11.
Environ Technol ; 42(24): 3736-3746, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32149585

RESUMEN

Shale gas fracturing flowback fluid contains various degradation difficulty organic compounds after hydraulic fracturing. A hybrid treatment method was developed for treating flowback and produced water (FPW) using pre-treatment (NaClO) followed by the expanded granular sludge bed (EGSB) and moving bed biofilm reactor (MBBR). Gas chromatography-mass spectrometry (GC-MS) was employed to detect organic composition in the FPW, the pre-treated FPW, EGSB and MBBR effluent. FPW had high chemical oxygen demand (COD) (3278 mg/L) and the majority of organic compounds in the FPW composed of alkanes and heteroatomic compounds with polymers and polarity. 20% COD removal was achieved after adding 5 g/L of NaClO in FPW (pH = 7, stirring for 20 mins) as pre-treatment and > C30 alkanes in FPW were decomposed a lot in the pre-treatment process. The pre-treated FPW was diluted (volumetric ratio of 20%/50%) with synthetic wastewater/pure water. In the final stage of operation, Cl- and COD concentration of influent to EGSB-MBBR system was around 7000 ± 100 mg/L and 3000 mg/L. EGSB-MBBR system achieved 93.84% COD removal rate, in which EGSB dominated COD removal (>80%). According to the GC-MS results, EGSB had an increase of C11-C30 compounds and a decrease of less C1-C10 content due to the consumption of > C30 compounds and low molecular weight (LWM) compounds. Meanwhile, aerobic microorganisms in MBBR metabolized LWM organics which contributed a lot to the COD removal (25.06∼68. 22%). The results indicated that the pre-treatment and biological EGSB-MBBR system could be an efficient option used for FPW treating.


Asunto(s)
Gas Natural , Aguas del Alcantarillado , Biopelículas , Reactores Biológicos , Eliminación de Residuos Líquidos
12.
J Hazard Mater ; 405: 124166, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33087288

RESUMEN

Low-cost and efficient treatment processes are urgently needed to manage highly decentralized shale gas wastewater, which seriously threatens the environment if not properly treated. We propose a simple integrated pretreatment process for on-site treatment, whereby gravity driven membrane filtration is combined with granular activated carbon (GAC) adsorption and solar aeration. The rationale of exploitment of sustainable solar energy is that most shale gas production areas are decentralized and located in desert/rural areas characterized by relatively scarce transportation and power facilities but also by abundant sunshine. In this study, GAC and aeration significantly increased the stable flux (170%) and improved effluent quality. Specifically, the dissolved organic carbon removal rate of the integrated system was 44.9%. The high stable flux was attributed to a reduction of extracellular polymeric substances accumulated on the membrane, as well as to the more porous and heterogeneous biofilm formed by eukaryotes with stronger active predation behavior. The prevailing strains, Gammaproteobacteria (35.5%) and Alphaproteobacteria (56.5%), played an important active role in organic carbon removal. The integrated system has great potential as pretreatment for shale gas wastewater due to its low energy consumption, low operational costs, high productivity, and effluent quality.

13.
Environ Sci Pollut Res Int ; 27(21): 26532-26542, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32372354

RESUMEN

Large amounts of fracturing flowback and wastewater with complex compositions are produced during hydraulic fracturing. Characterization of hydraulic fracturing flowback and produced water (HF-FPW) is an important initial step in efforts to determine a suitable treatment method for this type of wastewater. In the present study, fracturing flowback and produced water samples were obtained from well CN-F and well CN-E in the prophase and anaphase stages of the Changning shale gas mining area. Chemical characterization of inorganic and organic substances was then conducted. Metal contents were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), and all inorganic anions involved were determined by ion chromatography. The organic pollutant components were analyzed in detail by combining Fourier transform infrared spectrometer (FTIR) and gas chromatography-mass spectrometer (GC-MS). Results showed that samples contained salt (TDS = 30,000-50,000 mg/L), metals (e.g., 650 ± 50 mg/L calcium), and total organic carbon (TOC = 32-178 mg/L). The organic substances detected in all samples could be divided into six categories, alkanes, aromatics, halogenated hydrocarbons, alcohols, esters, and ketones. C6-C21 straight-chain alkanes and C7-C13 naphthenes had the highest amount of organic matter, reaching more than 48%. The organic matter contained fracturing fluid additives, such as surfactants (e.g., ethylene glycol), and nitrotrichloromethane, which is a chlorinated product of some additives. These results provide information on the chemical composition of HF-FPW in Sichuan, China, as well as a basis for subsequent processing.


Asunto(s)
Fracking Hidráulico , Contaminantes Químicos del Agua/análisis , China , Gas Natural , Aguas Residuales , Agua
14.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32286608

RESUMEN

The response of microbial communities to releases of hydraulic fracturing flowback and produced water (PW) may influence ecosystem functions. However, knowledge of the effects of PW spills on freshwater microbiota is limited. Here, we conducted two separate experiments: 16S rRNA gene sequencing combined with random forests modelling was used to assess freshwater community changes in simulated PW spills by volume from 0.05% to 50%. In a separate experiment, live/dead cell viability in a freshwater community was tested during exposure to 10% PW by volume. Three distinct patterns of microbial community shifts were identified: (i) indigenous freshwater genera remained dominant in <2.5% PW, (ii) from 2.5% to 5% PW, potential PW organic degraders such as Pseudomonas, Rheinheimera and Brevundimonas became dominant, and (iii) no significant change in the relative abundance of taxa was observed in >5% PW. Microbial taxa including less abundant genera such as Cellvibrio were potential bioindicators for the degree of contamination with PW. Additionally, live cells were quickly damaged by adding 10% PW, but cell counts recovered in the following days. Our study shows that the responses of freshwater microbiota vary by spill size, and these responses show promise as effective fingerprints for PW spills in aquatic environments.


Asunto(s)
Fracking Hidráulico , Microbiota , Biomarcadores Ambientales , ARN Ribosómico 16S/genética , Aguas Residuales/análisis , Agua
15.
Water Res ; 173: 115467, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32006805

RESUMEN

Hydraulic fracturing (HF), or "fracking," is the driving force behind the "shale gas revolution," completely transforming the United States energy industry over the last two decades. HF requires that 4-6 million gallons per well (15,000-23,000 m3/well) of water be pumped underground to stimulate the release of entrapped hydrocarbons from unconventional (i.e., shale or carbonate) formations. Estimated U.S. produced water volumes exceed 150 billion gallons/year across the industry from unconventional wells alone and are projected to grow for at least another two decades. Concerns over the environmental impact from accidental or incidental release of produced water from HF wells ("U-PW"), along with evolving regulatory and economic drivers, has spurred great interest in technological innovation to enhance U-PW recycling and reuse. In this review, we analyze U-PW quantity and composition based on the latest U.S. Geographical Survey data, identify key contamination metrics useful in tracking water quality improvement in the context of HF operations, and suggest "fit-for-purpose treatment" to enhance cost-effective regulatory compliance, water recovery/reuse, and resource valorization. Drawing on industrial practice and technoeconomic constraints, we further assess the challenges associated with U-PW treatment for onshore U.S. operations. Presented are opportunities for targeted end-uses of treated U-PW. We highlight emerging technologies that may enhance cost-effective U-PW management as HF activities grow and evolve in the coming decades.


Asunto(s)
Fracking Hidráulico , Yacimiento de Petróleo y Gas , Objetivos , Gas Natural , Estados Unidos , Aguas Residuales , Pozos de Agua
16.
J Environ Manage ; 260: 110100, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941631

RESUMEN

Unconventional oil and gas development (UOG) generates high volumes of flowback and produced water, byproducts of hydraulic fracturing operations, that are often released or spilled on the soil surface. Soil contamination with these wastewaters, commonly referred to as brine, has the potential to inhibit vegetation growth indefinitely. Natural attenuation of brine is not expedient in arid and semi-arid regions where most United States UOG developments are located, including the Bakken region of North Dakota. In situ (at-site) and ex situ (off-site) soil treatment techniques are commonly employed to remediate brine-contaminated soils in the Bakken. However, little is known regarding each technique's efficacy despite differences in application, cost, and efficiency. We selected 10 sites previously remediated with chemical amendments (in situ) and 11 sites with topsoil excavation (ex situ) in the United States Forest Service Little Missouri National Grasslands. We paired each remediated site with a reference to examine the ability of each strategy to return brine-contaminated sites to conditions reflective of the current state of the surrounding semi-arid rangeland ecosystem. At each site, we quantified soil electrical conductivity (ECe) as an indicator of soil salinity and measured vegetation cover, biomass production, bare ground, and litter. The difference between paired reference and remediated sites was used for analysis. Brine contamination was still evident as soil ECe was similarly increased on chemical amendment and topsoil excavation remediated sites over paired references at all soil depths tested. Due to the nature of the topsoil excavation treatment, elevated ECe in the 0-15 cm depth suggested resalinization of the new topsoil. Remediation techniques also resulted in similar plant community composition marked by an increase in exotic forb biomass, largely due to the invasion of kochia (Bassia scoparia) which was absent from reference sites. However, remediation techniques differed substantially in vegetation establishment. We found 15% more bare ground on sites remediated with chemical amendment treatment than paired references and 55% more with topsoil excavation. Our results indicate that in situ strategies may be more suitable than ex situ strategies for brine-spill remediation in semi-arid rangelands like the Bakken in North Dakota as they cause less disturbance and likely require less post-remediation management to establish adequate vegetation cover to protect the soil from further erosion.


Asunto(s)
Contaminantes del Suelo , Suelo , Ecosistema , Missouri , North Dakota , Sales (Química)
17.
Sci Total Environ ; 713: 136591, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31955095

RESUMEN

The worldwide expansion of shale gas production and increased use of hydraulic fracturing have raised public concerns about safety and risks of groundwater resources in shale gas extraction areas. China has the largest shale gas resources in the world, most of which are located in the Sichuan Basin. Shale gas extraction in the Sichuan Basin has been increasing rapidly in recent years. However, the potential impact on shallow groundwater quality has not yet been systematically investigated. In order to evaluate the possible impact of shale gas extraction on groundwater quality, we present, for the first time, the hydrochemistry and Sr isotopic data of shallow groundwater, as well as flowback and produced water (FP water) in the Changning shale gas field in Sichuan Basin, one of the major shale gas fields in China. The Changning FP water is characterized by high salinity (TDS of 13,100-53,500 mg/L), Br/Cl (2.76 × 10-3) and 87Sr/86Sr (0.71849), which are distinguished from the produced waters from nearby conventional gas fields with higher Br/Cl (4.5 × 10-3) and lower 87Sr/86Sr (0.70830-0.71235). The shallow groundwater samples were collected from a Triassic karst aquifer in both active and nonactive shale gas extraction areas. They are dominated by low salinity (TDS of 145-1100 mg/L), Ca-HCO3 and Ca-Mg-HCO3 types water, which are common in carbonate karst aquifers. No statistical difference of the groundwater quality was observed between samples collected in active versus nonactive shale gas extraction areas. Out of 66 analyzed groundwater, three groundwater samples showed relatively higher salinity above the background level, with low 87Sr/86Sr (0.70824-0.7110) and Br/Cl (0.5-1.8 × 10-3) ratios relatively to FP water, excluding the possibility of contamination from FP water. None of the groundwater samples had detected volatile organic compounds (VOCs). The integration of geochemical and statistical analysis shows no direct evidence of groundwater contamination caused by shale gas development.

18.
Environ Int ; 131: 104944, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31284105

RESUMEN

Hydraulic fracturing (HF) flowback and produced water (FPW) can be toxic to aquatic life but its chemical content is largely unknown, variable and complex. Seven FPW samples were collected from a HF operation in the Duvernay Formation (Alberta, Canada) over 30 days of flowback and characterized by a nontarget workflow based on high performance liquid chromatography - high resolution mass spectrometry (HRMS). A modified Kendrick mass defect plot and MS/MS spectral interpretation revealed seven series of homologues composed of ethylene oxide (i.e. -CH2CH2O-), among which a series of aldehydes was proposed as degradation products of polyethylene glycols, and two series of alkyl ethoxylate carboxylates could be proprietary HF additives. Many other ions were confidently assigned a formula by accurate mass measurement and were subsequently prioritized for identification by matching to records in ChemSpider and the US EPA's CompTox Chemistry Dashboard. Quaternary ammonium compounds, amine oxides, organophosphorous compounds, phthalate diesters and hydroxyquinoline were identified with high confidence by MS/MS spectra (Level 3), matching to reference spectra in MassBank (Level 2) or to authentic standards (Level 1). Temporal trends showed that most of the compounds declined in abundance over the first nine days of flowback, except for phthalate diesters and hydroxyquinoline that were still observed on Day 30 and had disappearance half-lives of 61 and 91 days, respectively. All the compounds followed first-order disappearance kinetics in flowback, except for polyoxygenated acids which followed second-order kinetics. This analysis and the workflow, based largely on public on-line databases, enabled profiling of complex organic compounds in HF-FPW, and will likely be useful for further understanding the toxicity and chemical fate of HF-FPW.


Asunto(s)
Monitoreo del Ambiente , Fracking Hidráulico , Compuestos Orgánicos/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Alberta , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem
19.
Sci Total Environ ; 689: 47-56, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31260898

RESUMEN

The shale gas flowback and produced water (FPW) from hydraulic fracturing in the Sichuan province of China has relatively low to moderate levels of total dissolved solids (<20 g/L) and organics (<50 mg/L of dissolved organic carbon). As such, a combined ultrafiltration (UF), reverse osmosis (RO) system can be successfully applied to desalinate this feed water with the goal of reuse. However, the concentration of influent organic matter and particulates in the UF and RO stage is high, and the overall ionic and organics composition is highly complex, so that the membrane processes do not perform well, also due to fouling. To ensure the long-term and efficient operation of the UF-RO stages, a combined pretreatment of the FPW with coagulation and adsorption was investigated. The effect of different parameters on the performance on the system was studied in detail. Overall, the coagulation-adsorption pre-treatment greatly reduced fouling of the membrane processes, thanks to the high removal rate of turbidity (98.8%) and dissolved organic carbon (86.3%). The adsorption of organic matter by powdered activated carbon was best described by the Freundlich equilibrium model, with a pseudo second-order model representing the adsorption kinetics. Also, the various ions had competitive removal rates during the adsorption step, a phenomenon reported for the first time for FPW treatment. Also, an optimal dose of activated carbon existed to maximize fouling reduction and effluent quality. The overall treatment system produced a high-quality water streams, suitable for reuse.

20.
Environ Int ; 130: 104869, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31228783

RESUMEN

BACKGROUND: Increasing attention is being paid to the treatment of shale gas fracturing wastewater, including flowback and produced water (FPW). Energy-efficient pretreatment technologies suitable for desalinating and reusing FPW are of paramount importance. OBJECTIVES: This work focused on enhanced fouling alleviation of ultrafiltration (UF) as a pretreatment for desalinating shale gas FPW in Sichuan Basin, China. The UF fouling behaviors under various backwash water sources or coagulant dosages were evaluated, and membrane surface characteristics were correlated with UF fouling. The feasibility of Fourier transform infrared (FTIR) microscope mapping technique in quantifying UF fouling was also assessed. METHODS: Various backwash water sources, including UF permeate, ultrapure water, nanofiltration (NF) permeate, reverse osmosis (RO) permeate, RO concentrate and forward osmosis (FO) draw solution, were used to clean UF membranes fouled by shale gas FPW. The UF fouling behaviors were characterized by total and non-backwashable fouling rates. Membrane surface characteristics were analyzed by scanning electron microscopy (SEM), total tension surface and FTIR spectra. RESULTS: Protein-like substances in terms of fluorescence intensity in the backwash water decreased with the order of UF permeate, RO concentrate, NF permeate, RO permeate and FO draw solution. Compared with UF permeate backwashing, alleviated UF fouling was observed by using demineralized backwash water including ultrapure water and RO permeate, irrespective of hollow fiber and flat-sheet membranes. NF permeate and RO concentrate after NF used as backwash water resulted in low and comparable membrane fouling with that in integrated coagulation-UF process under optimal dosage. Among the backwash water tested, FO draw solution backwashing corresponded to the lowest UF fouling rates, which were even lower than that in the presence of coagulant under optimal dosage. The superiority of these backwash water sources to UF permeate was further confirmed by SEM images and FTIR spectra. The residual foulant mass on membrane surface and the total surface tension correlated well with non-backwashable and total fouling rates, respectively. CONCLUSIONS: FTIR microscopy was a powerful surface mapping technique to characterize UF membrane fouling caused by shale gas FPW. Backwash water sources significantly influenced the fouling of UF membranes. In the integrated UF-NF-RO or UF-FO process, RO concentrate or FO draw solution were proposed as backwash water to enhance UF fouling control and decrease waste discharge simultaneously.


Asunto(s)
Residuos Industriales , Membranas Artificiales , Gas Natural , Ultrafiltración/instrumentación , Aguas Residuales , Purificación del Agua/instrumentación , Ósmosis , Salinidad , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA