Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Eye Mov Res ; 17(1)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966235

RESUMEN

Gaze behaviour has been used as a proxy for information processing capabilities that underlie complex skill performance in real-world domains such as aviation. These processes are highly influenced by task requirements, expertise and can provide insight into situation awareness (SA). Little research has been done to examine the extent to which gaze behaviour, task performance and SA are impacted by various task manipulations within the confines of early-stage skill development. Accordingly, the current study aimed to understand the impact of task difficulty on landing performance, gaze behaviour and SA across different phases of flight. Twenty-four low-time (<300 hours) pilots completed simulated landing scenarios under visual flight rules conditions. Traditional gaze metrics, entropybased metrics, and blink rate provided meaningful insight about the extent to which information processing is modulated by flight phase and task difficulty. The results also suggested that gaze behavior changes compensated for increased task demands and minimized the impact on task performance. Dynamic gaze analyses were shown to be a robust measure of task difficulty and pilot flight hours. Recommendations for the effective implementation of gaze behaviour metrics and their utility in examining information processing changes are discussed.

2.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38400332

RESUMEN

High mental workload reduces human performance and the ability to correctly carry out complex tasks. In particular, aircraft pilots enduring high mental workloads are at high risk of failure, even with catastrophic outcomes. Despite progress, there is still a lack of knowledge about the interrelationship between mental workload and brain functionality, and there is still limited data on flight-deck scenarios. Although recent emerging deep-learning (DL) methods using physiological data have presented new ways to find new physiological markers to detect and assess cognitive states, they demand large amounts of properly annotated datasets to achieve good performance. We present a new dataset of electroencephalogram (EEG) recordings specifically collected for the recognition of different levels of mental workload. The data were recorded from three experiments, where participants were induced to different levels of workload through tasks of increasing cognition demand. The first involved playing the N-back test, which combines memory recall with arithmetical skills. The second was playing Heat-the-Chair, a serious game specifically designed to emphasize and monitor subjects under controlled concurrent tasks. The third was flying in an Airbus320 simulator and solving several critical situations. The design of the dataset has been validated on three different levels: (1) correlation of the theoretical difficulty of each scenario to the self-perceived difficulty and performance of subjects; (2) significant difference in EEG temporal patterns across the theoretical difficulties and (3) usefulness for the training and evaluation of AI models.


Asunto(s)
Cognición , Carga de Trabajo , Humanos , Cognición/fisiología , Carga de Trabajo/psicología , Electroencefalografía/métodos , Memoria
3.
J Eye Mov Res ; 16(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965286

RESUMEN

Eye movements have been used to examine the cognitive function of pilots and understand how information processing abilities impact performance. Traditional and advanced measures of gaze behaviour effectively reflect changes in cognitive load, situational awareness, and expert-novice differences. However, the extent to which gaze behaviour changes during the early stages of skill development has yet to be addressed. The current study investigated the impact of task difficulty on gaze behaviour in low-time pilots (N=18) while they completed simulated landing scenarios. An increase in task difficulty resulted in longer fixation of the runway, and a reduction in the stationary gaze entropy (gaze dispersion) and gaze transition entropy (sequence complexity). These findings suggest that pilots' gaze became less complex and more focused on fewer areas of interest when task difficulty increased. Additionally, a novel approach to identify and track instances when pilots restrict their attention outside the cockpit (i.e., gaze tunneling) was explored and shown to be sensitive to changes in task difficulty. Altogether, the gaze-related metrics used in the present study provide valuable information for assessing pilots gaze behaviour and help further understand how gaze contributes to better performance in low-time pilots.

4.
Eur J Dent Educ ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37431787

RESUMEN

This article reviews progress in the development of technologies used in flight simulation and in the training of dentists, drawing out the similarities in training objectives and the limitations of the training devices. It summarises the advances in pilot training with recognised international standards for the construction and acceptance of training devices, noting the impact of flight simulation as a major contributor to the improvements in flight safety. Attention is drawn to the positive transfer of training from synthetic training to airborne operations. The evolution of training methods in dentistry is described covering virtual reality and haptic simulation. The distinction is drawn that tactile feel and visualisation, which is very different from other forms of simulation, is critical to the introduction of synthetic training in dentistry. In particular, progress in methods to provide haptic technologies is reviewed and the importance of novel methods of visualisation, specific to dentistry, are reviewed. This article concludes by outlining progress in flight simulation that is relevant to synthetic training in dentistry but also stresses the differences between the two disciplines. The progress and limitations of flight simulation and the current status and future of synthetic training in dentistry are described, highlighting the potential benefits of lower-cost haptic devices and the lack of standardisation.

5.
Appl Ergon ; 113: 104048, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37390618

RESUMEN

The black hole illusion (BHI) is a subtype of spatial disorientation that can result in fatal consequences in aviation. Research on the BHI has generally focused on altitude deviation, and few studies have examined the effect across different flight phases. In a simulation-based experiment, 18 participants performed 12 simulated approach and landing tasks in normal and BHI environments. Flight performance was analyzed with 14 flight parameters and was compared across five points and three phases, which were referenced from a National Transportation Safety Board report and other previous studies. Results showed that multiple flight parameters were significantly impaired and that their influences varied from the initial approach to the final touchdown. In the BHI environment, participants tended to descend aggressively during the approach phase and flew a lower but similar glidepath during the last approach phase. They might have realized the abnormal situation induced by the BHI but usually were unable to recover from the dangerous maneuver in time. Additionally, the result of glide path error, one of the most commonly used variables in previous BHI research, was only significant during the last approach phase. Flight stability was also impaired in the BHI environment. This is the first study to systematically analyze the BHI effects on multiple flight parameters at different flight phases. The use of this experimental paradigm could facilitate future research to evaluate and prevent the BHI in a more comprehensive way.


Asunto(s)
Accidentes de Aviación , Aviación , Ilusiones , Pilotos , Humanos , Confusión , Simulación por Computador
6.
J Comput High Educ ; : 1-28, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37359043

RESUMEN

Aviation is a multidisciplinary subject that has influenced human development over the last century. Learning about aviation exposes students to principles of flight, earth science, aeronautical engineering, language, aviation communication and airmanship. In higher education, many non-aviation undergraduates participate in aviation related activities to have a first glimpse of the aviation industry and equip themselves with basic concepts. This study aims to examine learning perception among 82 university students who have participated in a series of online aviation career exploration activities during the pandemic in Hong Kong and China. They participated in virtual visits and career talks led by aviation professionals, hands-on flight simulation activities and online discussion in an online lab setting. A mixed research method was employed with the use of a motivational survey, teachers' observation and semi-structured interviews to understand students' learning perceptions. This study found that flying laboratory activities could effectively motivate students to learn aviation and improve their aviation knowledge. This could promote students' aviation industry optimism, which may help the industry to recover in the post-pandemic world. This article offers recommendations for online engineering educators to use emerging technologies to teach aviation for future career preparation.

7.
CEAS Aeronaut J ; 14(2): 491-508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743353

RESUMEN

The primary purpose of this paper is to investigate the possibility of using a Full Flight Simulator (FFS) as an experimental setup for passengers' comfort analysis. Results based on subjective measurements are thus presented to assess comfort levels experienced during a simulated flight. A preliminary investigation has been conducted on a sample of 125 candidates to gain insight into the elements influencing the comfort level perceived based on the participants' actual flight experience; this suggested that the seat configuration is of great importance. Then, the experiment carried out by means of the FFS have been conducted on a reduced sample of 20 candidates for economic and organizational reasons. The behaviour of the 65% of the candidates has been analysed in a seating configuration comparable to the seat of a business-class aircraft. While the experience of the remaining 35% has been studied in an economy-type seat arrangement. Although the main variable under consideration was the seat, several environmental parameters were also considered during the experimental tests to evaluate their effects on perceived comfort level. During each simulated flight, passengers have been subjected to different levels of light intensity, noise, temperature and vibration associated with the different flight phases. Subjective data were collected using a questionnaire concerning every parameter and submitted to the passengers for each flight phase. The aim of varying the environmental parameters inside the cabin was to look for a relation between the subjective comfort level and each comfort parameter. In addition to perceived comfort based on the questionnaire, statistical analysis with parametric and non parametric tests revealed significant effects of environmental variables.

8.
Front Neurosci ; 17: 1286854, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260016

RESUMEN

Blink-related oscillations (BRO) are newly discovered neurophysiological phenomena associated with spontaneous blinking and represent cascading neural mechanisms including visual sensory, episodic memory, and information processing responses. These phenomena have been shown to be present at rest and during tasks and are modulated by cognitive load, creating the possibility for brain function assessments that can be integrated seamlessly into real-world settings. Prior works have largely examined the BRO phenomenon within controlled laboratory environments using magnetoencephalography and high-density electroencephalography (EEG) that are ill-suited for real-world deployment. Investigating BROs using low-density EEG within complex environments reflective of the real-world would further our understanding of how BRO responses can be utilized in real-world settings. We evaluated whether the BRO response could be captured in a high-fidelity flight simulation environment using a portable, low-density wireless EEG system. The effects of age and task demands on BRO responses were also examined. EEG data from 30 licensed pilots (age 43.37 +/- 17.86, 2 females) were collected during simulated flights at two cognitive workload levels. Comparisons of signal amplitudes were undertaken to confirm the presence of BRO responses and mixed model ANOVAs quantified the effects of workload and age group on BRO amplitudes. Significant increases in neural activity were observed post-blink compared to the baseline period (p < 0.05), confirming the presence of BRO responses. In line with prior studies, results showed BRO time-domain responses from the delta band (0.5-4 Hz) consisting of an early negative peak followed by a positive peak post-blink in temporal and parietal electrodes. Additionally, task workload and age-related effects were also found, with observations of the enhancement of BRO amplitudes with older age and attenuation of BRO responses in high workloads (p < 0.05). These findings demonstrate that it is possible to capture BRO responses within simulated flight environments using portable, low-cost, easy-to-use EEG systems. Furthermore, biological and task salience were reflected in these BRO responses. The successful detection and demonstration of both task-and age-related modulation of BRO responses in this study open the possibility of assessing human brain function across the lifespan with BRO responses in complex and realistic environments.

9.
Front Physiol ; 13: 942249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910556

RESUMEN

Introduction: In military aviation during high-altitude operations, an oxygen or cabin pressure emergency can impair brain function and performance. There are variations in individuals' physiological responses to low partial pressure of oxygen and hypoxia symptoms can vary from one exposure to another. The aim of this study was to evaluate how normobaric hypoxia (NH) affects pilots' minute ventilation and 10 min afterwards on Instrument Landing System (ILS) flight performance in Hawk simulator during a tactical flight sortie. Methods: Fifteen volunteer fighter pilots from the Finnish Air Force participated in this double blinded, placebo controlled and randomized study. The subjects performed three flights in a tactical Hawk simulator in a randomized order with full flight gear, regulators and masks on. In the middle of the flight without the subjects' knowledge, 21% (control), 8% or 6% oxygen in nitrogen was turned on. Minute ventilation (VE) was measured before, during NH and after NH. Forehead peripheral oxygen saturation (SpO2), wireless ECG and subjective symptoms were documented. The flights were conducted so that both subjects and flight instructors were blinded to the gas mixture. The pilots performed tactical maneuvers at simulated altitude of 20,000 ft or 26,000 ft until they recognized the symptoms of hypoxia. Thereafter they performed hypoxia emergency procedures with 100% oxygen and returned to base (RTB). During the ILS approach, flight performance was evaluated. Results: The mean VE increased during NH from 12.9 L/min (21% O2 on the control flight) to 17.8 L/min with 8% oxygen (p < 0.01), and to 21.0 L/min with 6% oxygen (p < 0.01). Ten minutes after combined hyperventilation and hypoxia, the ILS flight performance decreased from 4.4 (control flight) to 4.0 with 8% oxygen (p = 0.16) and to 3.2 with 6% oxygen (p < 0.01). A significant correlation (r = -0.472) was found between the subjects' VE during 6% oxygen exposure and the ILS flight performance. Discussion: Hyperventilation during NH has a long-lasting and dose-dependent effect on the pilot's ILS flight performance, even though the hypoxia emergency procedures are executed 10 min earlier. Hyperventilation leads to body loss of carbon dioxide and hypocapnia which may even worsen the hypoxia hangover.

10.
Sensors (Basel) ; 22(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35590947

RESUMEN

The article presents the analysis of the impact point dispersion reduction using lateral correction thrusters. Two types of control algorithms are used and four sources of uncertainties are taken into account: aerodynamic parameters, thrust curve, initial conditions and IMU errors. The Monte Carlo approach was used for simulations and Circular Error Probable was used as a measure of dispersion. Generic rocket mathematical and simulation model was created in MATLAB/Simulink 2020b environment. Results show that the use of control algorithms greatly reduces the impact point dispersion.


Asunto(s)
Algoritmos , Radiometría , Simulación por Computador , Matemática , Método de Montecarlo , Radiometría/métodos , Incertidumbre
11.
Sensors (Basel) ; 22(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35161809

RESUMEN

This paper discusses the challenge of modeling in-flight startle causality as a precursor to enabling the development of suitable mitigating flight training paradigms. The article presents an overview of aviation human factors and their depiction in fuzzy cognitive maps (FCMs), based on the Human Factors Analysis and Classification System (HFACS) framework. The approach exemplifies system modeling with agents (causal factors), which showcase the problem space's characteristics as fuzzy cognitive map elements (concepts). The FCM prototype enables four essential functions: explanatory, predictive, reflective, and strategic. This utility of fuzzy cognitive maps is due to their flexibility, objective representation, and effectiveness at capturing a broad understanding of a highly dynamic construct. Such dynamism is true of in-flight startle causality. On the other hand, FCMs can help to highlight potential distortions and limitations of use case representation to enhance future flight training paradigms.


Asunto(s)
Cognición , Lógica Difusa , Análisis Factorial , Humanos
12.
Front Neurogenom ; 3: 883962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38235479

RESUMEN

Background: Vestibular flight illusions remain a significant source of concern for aviation training. Most fixed-based simulation training environments, including new virtual reality (VR) technology, lack the ability to recreate vestibular flight illusions as vestibular cues cannot be provided without stimulating the vestibular end organs. Galvanic vestibular stimulation (GVS) has long been used to create vestibular perception. The purpose of this study is to evaluate the ability of GVS to simulate common flight illusions by intentionally providing mismatched GVS during flight simulation scenarios in VR. Methods: Nineteen participants performed two flight simulation tasks-take off and sustained turn-during two separate VR flight simulation sessions, with and without GVS (control). In the GVS session, specific multi-axis GVS stimulation (i.e., electric currents) was provided to induce approximate somatogravic and Coriolis illusions during the take-off and sustained turn tasks, respectively. The participants used the joystick to self-report their subjective motion perception. The angular joystick movement along the roll, yaw, and pitch axes was used to measure cumulative angular distance and peak angular velocity as continuous variables of motion perception across corresponding axes. Presence and Simulator Sickness Questionnaires were administered at the end of each session. Results: The magnitude and variability of perceived somatogravic illusion during take-off task in the form of cumulative angular distance (p < 0.001) and peak velocity (p < 0.001) along the pitch-up axis among participants were significantly larger in the GVS session than in the NO GVS session. Similarly, during the sustained turn task, perceived Coriolis illusion in the form of cumulative angular distances (roll: p = 0.005, yaw: p = 0.015, pitch: p = 0.007) and peak velocities (roll: p = 0.003, yaw: p = 0.01, pitch: p = 0.007) across all three axes were significantly larger in the GVS session than in the NO GVS session. Subjective nausea was low overall, but significantly higher in the GVS session than in the NO GVS session (p = 0.026). Discussion: Our findings demonstrated that intentionally mismatched GVS can significantly affect motion perception and create flight illusion perceptions during fixed-based VR flight simulation. This has the potential to enhance future training paradigms, providing pilots the ability to safely experience, identify, and learn to appropriately respond to flight illusions during ground training.

13.
Materials (Basel) ; 14(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572745

RESUMEN

Our recently developed non-destructive imaging technique was applied for the characterisation of nanoparticles synthesised by X-ray radiolysis and the sol-gel method. The interfacial conditions between the nanoparticles and the substrates were observed by subtracting images taken by scanning electron microscopy at controlled electron acceleration voltages to allow backscattered electrons to be generated predominantly below and above the interfaces. The interfacial adhesion was found to be dependent on the solution pH used for the particle synthesis or particle suspension preparation, proving the change in the particle formation/deposition processes with pH as anticipated and agreed with the prediction based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We found that our imaging technique was useful for the characterisation of interfaces hidden by nanoparticles to reveal the formation/deposition mechanism and can be extended to the other types of interfaces.

14.
Conscious Cogn ; 83: 102958, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32674062

RESUMEN

Despite a high prevalence and broad interest in flying dreams, these exceptional experiences remain infrequent. Our study aimed to (1) induce flying dreams using a custom-built virtual reality (VR) flying task, (2) examine their phenomenological correlates and (3) investigate their relations to participant state and trait factors. 137 participants underwent VR-flying followed by a morning nap. They also completed home dream journals for 5 days before and 10 days after the VR exposure. VR-flying successfully increased the reporting of flying dreams during the laboratory nap and on the following morning compared to both baseline frequencies and a control cohort. Flying dreams were also changed qualitatively, exhibiting higher levels of Lucid-control and emotional intensity, after VR exposure. Factors such as prior dream-flying experiences and level of VR sensory immersion modulated flying dream induction. Findings are consistent with a new vection-based explanation of dream-flying and may facilitate development of dream flight-induction technologies.


Asunto(s)
Sueños/fisiología , Sensación de Gravedad/fisiología , Imaginación/fisiología , Realidad Virtual , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
15.
Sensors (Basel) ; 19(24)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847210

RESUMEN

The present work tries to fill part of the gap regarding the pilots' emotions and their bio-reactions during some flight procedures such as, takeoff, climbing, cruising, descent, initial approach, final approach and landing. A sensing architecture and a set of experiments were developed, associating it to several simulated flights ( N f l i g h t s = 13 ) using the Microsoft Flight Simulator Steam Edition (FSX-SE). The approach was carried out with eight beginner users on the flight simulator ( N p i l o t s = 8 ). It is shown that it is possible to recognize emotions from different pilots in flight, combining their present and previous emotions. The cardiac system based on Heart Rate (HR), Galvanic Skin Response (GSR) and Electroencephalography (EEG), were used to extract emotions, as well as the intensities of emotions detected from the pilot face. We also considered five main emotions: happy, sad, angry, surprise and scared. The emotion recognition is based on Artificial Neural Networks and Deep Learning techniques. The Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) were the main methods used to measure the quality of the regression output models. The tests of the produced output models showed that the lowest recognition errors were reached when all data were considered or when the GSR datasets were omitted from the model training. It also showed that the emotion surprised was the easiest to recognize, having a mean RMSE of 0.13 and mean MAE of 0.01; while the emotion sad was the hardest to recognize, having a mean RMSE of 0.82 and mean MAE of 0.08. When we considered only the higher emotion intensities by time, the most matches accuracies were between 55% and 100%.


Asunto(s)
Emociones/fisiología , Expresión Facial , Adulto , Electroencefalografía , Femenino , Respuesta Galvánica de la Piel/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Adulto Joven
16.
JMIR Serious Games ; 7(3): e12324, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31464194

RESUMEN

BACKGROUND: In recent years, many studies have associated sedentary behavior in front of screens with health problems in infants, children, and adolescents. Yet options for exergaming-playing video games that require rigorous physical exercise-seem to fall short of the physical activity levels recommended by the World Health Organization. OBJECTIVE: The purpose of this study was to investigate the effect of a fully immersive virtual reality (VR)-based training system on cardiovascular and muscular parameters of young adults. METHODS: A cross-sectional experiment design was used to analyze muscle activity (surface electromyography), heart rate, perceived exertion (RPE), cybersickness symptoms, perceived workload, and physical activity enjoyment (PACES) in 33 participants performing two 5-minute flights on a new training device. RESULTS: Participants' performance of the planking position required to play the game resulted in moderate aerobic intensity (108 [SD 18.69] bpm). Due to the mainly isometric contraction of the dorsal muscle chain (with a mean activation between 20.6% [SD 10.57] and 26.7% [SD 17.39] maximum voluntary isometric contraction), participants described the exercise as a moderate to vigorous activity (RPE 14.6 [SD 1.82]). The majority reported that they enjoyed the exercise (PACES 3.74 [SD 0.16]). However, six participants had to drop out because of cybersickness symptoms and two because of muscle pain due to prior injuries. CONCLUSIONS: Our findings suggest that fully immersive VR training systems can contribute to muscle-strengthening activities for healthy users. However, the dropout rate highlights the need for technological improvements in both software and hardware. In prevention and therapy, movement quality is a fundamental part of providing effective resistance training that benefits health. Exergaming on a regular basis has the potential to develop strong muscles and a healthy back. It is essential that future VR-based training systems take into account the recommendations of sport and exercise science.

17.
Hum Factors ; 60(6): 793-805, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29913086

RESUMEN

OBJECTIVE: This study tested whether simulator-based training of pilot responses to unexpected or novel events can be improved by including unpredictability and variability in training scenarios. BACKGROUND: Current regulations allow for highly predictable and invariable training, which may not be sufficient to prepare pilots for unexpected or novel situations in-flight. Training for surprise will become mandatory in the near future. METHOD: Using an aircraft model largely unfamiliar to the participants, one group of 10 pilots (the unpredictable and variable [U/V] group) practiced responses to controllability issues in a relatively U/V manner. A control group of another 10 pilots practiced the same failures in a highly predictable and invariable manner. After the practice, performance of all pilots was tested in a surprise scenario, in which the pilots had to apply the learned knowledge. To control for surprise habituation and familiarization with the controls, two control tests were included. RESULTS: Whereas the U/V group required more time than the control group to identify failures during the practice, the results indicated superior understanding and performance in the U/V group as compared to the control group in the surprise test. There were no significant differences between the groups in surprise or performance in the control tests. CONCLUSION: Given the results, we conclude that organizing pilot training in a more U/V way improves transfer of training to unexpected situations in-flight. APPLICATION: The outcomes suggest that the inclusion of U/V simulator training scenarios is important when training pilots for unexpected situations.


Asunto(s)
Aeronaves , Aviación , Simulación por Computador , Pilotos/educación , Práctica Psicológica , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Int J Psychophysiol ; 128: 62-69, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29627585

RESUMEN

In aviation, emotion and cognitive workload can considerably increase the probability of human error. An accurate online physiological monitoring of pilot's mental state could prevent accidents. The heart rate (HR) and heart rate variability (HRV) of 21 private pilots were analysed during two realistic flight simulator scenarios. Emotion was manipulated by a social stressor and cognitive workload with the difficulty of a secondary task. Our results confirmed the sensitivity of the HR to cognitive demand and training effects, with increased HR when the task was more difficult and decreased HR with training (time-on-task). Training was also associated with an increased HRV, with increased values along the flight scenario time course. Finally, the social stressor seemed to provoke an emotional reaction that enhanced motivation and performance on the secondary task. However, this was not reflected by the cardiovascular activity.


Asunto(s)
Aeronaves , Emociones/fisiología , Función Ejecutiva/fisiología , Frecuencia Cardíaca/fisiología , Desempeño Psicomotor/fisiología , Estrés Psicológico/fisiopatología , Adulto , Simulación por Computador , Electrocardiografía , Humanos , Masculino , Entrenamiento Simulado , Adulto Joven
20.
Artículo en Inglés | MEDLINE | ID: mdl-29487564

RESUMEN

Aims: To determine if clotting, platelet, and endothelial function were affected by simulated short-haul commercial air flight conditions (SF) in participants with type 2 diabetes (T2DM) compared to controls. Methods: 10 participants with T2DM (7 females, 3 males) and 10 controls (3 females, 7 males) completed the study. Participants were randomized to either spend 2 h in an environmental chamber at sea level conditions (temperature: 23°C, oxygen concentration 21%, humidity 45%), or subject to a simulated 2-h simulated flight (SF: temperature: 23°C, oxygen concentration 15%, humidity 15%), and crossed over 7 days later. Main outcome measures: clot formation and clot lysis parameters, functional platelet activation markers, and endothelial function measured by reactive hyperemia index (RHI) by EndoPAT and serum microparticles. Results: Comparing baseline with SF conditions, clot maximal absorption was increased in controls (0.375 ± 0.05 vs. 0.39 ± 0.05, p < 0.05) and participants with T2DM (0.378 ± 0.089 vs. 0.397 ± 0.089, p < 0.01), while increased basal platelet activation for both fibrinogen binding and P-selectin expression (p < 0.05) was seen in participants with T2DM. Parameters of clot formation and clot lysis, stimulated platelet function (stimulated platelet response to ADP and sensitivity to prostacyclin), and endothelial function were unchanged. Conclusion: While SF resulted in the potential of denser clot formation with enhanced basal platelet activation in T2DM, the dynamic clotting, platelet, and endothelial markers were not affected, suggesting that short-haul commercial flying adds no additional hazard for venous thromboembolism for participants with T2DM compared to controls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA