Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genomics ; 116(5): 110929, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39216708

RESUMEN

Even before genome sequencing, genetic resources have supported species management and breeding programs. Current technologies, such as long-read sequencing, resolve complex genomic regions, like those rich in repeats or high in GC content. Improved genome contiguity enhances accuracy in identifying structural variants (SVs) and transposable elements (TEs). We present an improved genome assembly and SV catalogue for the Australasian snapper (Chrysophrys auratus). The new assembly is more contiguous, allowing for putative identification of 14 centromeres and transfer of 26,115 gene annotations from yellowfin seabream. Compared to the previous assembly, 35,000 additional SVs, including larger and more complex rearrangements, were annotated. SVs and TEs exhibit a distribution pattern skewed towards chromosome ends, likely influenced by recombination. Some SVs overlap with growth-related genes, underscoring their significance. This upgraded genome serves as a foundation for studying natural and artificial selection, offers a reference for related species, and sheds light on genome dynamics shaped by evolution.

2.
Evol Appl ; 17(7): e13758, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39040813

RESUMEN

Obtaining reliable estimates of the effective number of breeders (N b) and generational effective population size (N e) for fishery-important species is challenging because they are often iteroparous and highly abundant, which can lead to bias and imprecision. However, recent advances in understanding of these parameters, as well as the development of bias correction methods, have improved the capacity to generate reliable estimates. We utilized samples of both single-cohort young of the year and mixed-age adults from two geographically and genetically isolated stocks of the Australasian snapper (Chrysophrys auratus) to investigate the feasibility of generating reliable N b and N e estimates for a fishery species. Snapper is an abundant, iteroparous broadcast spawning teleost that is heavily exploited by recreational and commercial fisheries. Employing neutral genome-wide SNPs and the linkage-disequilibrium method, we determined that the most reliable N b and N e estimates could be derived by genotyping at least 200 individuals from a single cohort. Although our estimates made from the mixed-age adult samples were generally lower and less precise than those based on a single cohort, they still proved useful for understanding relative differences in genetic effective size between stocks. The correction formulas applied to adjust for biases due to physical linkage of loci and age structure resulted in substantial upward modifications of our estimates, demonstrating the importance of applying these bias corrections. Our findings provide important guidelines for estimating N b and N e for iteroparous species with large populations. This work also highlights the utility of samples originally collected for stock structure and stock assessment work for investigating genetic effective size in fishery-important species.

3.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100370

RESUMEN

Growth is one of the most important traits of an organism. For exploited species, this trait has ecological and evolutionary consequences as well as economical and conservation significance. Rapid changes in growth rate associated with anthropogenic stressors have been reported for several marine fishes, but little is known about the genetic basis of growth traits in teleosts. We used reduced genome representation data and genome-wide association approaches to identify growth-related genetic variation in the commercially, recreationally, and culturally important Australian snapper (Chrysophrys auratus, Sparidae). Based on 17,490 high-quality single-nucleotide polymorphisms and 363 individuals representing extreme growth phenotypes from 15,000 fish of the same age and reared under identical conditions in a sea pen, we identified 100 unique candidates that were annotated to 51 proteins. We documented a complex polygenic nature of growth in the species that included several loci with small effects and a few loci with larger effects. Overall heritability was high (75.7%), reflected in the high accuracy of the genomic prediction for the phenotype (small vs large). Although the single-nucleotide polymorphisms were distributed across the genome, most candidates (60%) clustered on chromosome 16, which also explains the largest proportion of heritability (16.4%). This study demonstrates that reduced genome representation single-nucleotide polymorphisms and the right bioinformatic tools provide a cost-efficient approach to identify growth-related loci and to describe genomic architectures of complex quantitative traits. Our results help to inform captive aquaculture breeding programs and are of relevance to monitor growth-related evolutionary shifts in wild populations in response to anthropogenic pressures.


Asunto(s)
Estudio de Asociación del Genoma Completo , Perciformes , Animales , Australia , Genoma , Perciformes/genética , Perciformes/crecimiento & desarrollo , Fenotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA