Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; : 167515, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278512

RESUMEN

Pancreatic cancer is a highly malignant tumor characterized by high mortality and low survival rates. The mitotic interactor and substrate of Plk1 (MISP) is a cancer-associated protein that regulates mitotic spindle localization and is highly expressed in several malignant tumors, contributing to tumor development. However, the function and regulatory mechanisms of MISP in pancreatic cancer remain unclear. In this study, we analyzed RNA sequencing data related to pancreatic cancer from the TCGA and GEO databases, identifying MISP as a potential prognostic marker for the disease. MISP was significantly upregulated in pancreatic cancer cells and tissues compared to normal pancreatic cells and tissues. Notably, in pancreatic cancer cells, high MISP protein expression promoted cell proliferation and growth. Mechanistically, the upregulation of MISP facilitated the nuclear accumulation of ß-catenin, thereby activating the Wnt/ß-catenin signaling pathway and promoting pancreatic cancer growth. In search of effective inhibitors of MISP expression, we screened an FDA-approved drug library and identified Fisetin as a potential suppressor of MISP expression. Fisetin was found to downregulate the transcription factor MYB, thereby reducing MISP expression. Further experiments demonstrated that Fisetin effectively inhibited the in vitro and in vivo growth of pancreatic cancer by suppressing the MISP/Wnt/ß-catenin signaling axis. In summary, our research has identified MISP as a novel therapeutic target in pancreatic cancer and uncovered its associated regulatory mechanisms.

2.
J Agric Food Chem ; 72(32): 17964-17976, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096281

RESUMEN

Spinal cord injury (SCI) is one of the most serious health problems, with no effective therapy. Recent studies indicate that Fisetin, a natural polyphenolic flavonoid, exhibits multiple functions, such as life-prolonging, antioxidant, antitumor, and neuroprotection. However, the restorative effects of Fisetin on SCI and the underlying mechanism are still unclear. In the present study, we found that Fisetin reduced LPS-induced apoptosis and oxidative damage in PC12 cells and reversed LPS-induced M1 polarization in BV2 cells. Additionally, Fisetin safely and effectively promoted the motor function recovery of SCI mice by attenuating neurological damage and promoting neurogenesis at the lesion. Moreover, Fisetin administration inhibited glial scar formation, modulated microglia/macrophage polarization, and reduced neuroinflammation. Network pharmacology, RNA-seq, and molecular biology revealed that Fisetin inhibited the activation of the JAK2/STAT3 signaling pathway. Notably, Colivelin TFA, an activator of JAK2/STAT3 signaling, attenuated Fis-mediated neuroinflammation inhibition and therapeutic effects on SCI mice. Collectively, Fisetin promotes functional recovery after SCI by inhibiting microglia/macrophage M1 polarization and the JAK2/STAT3 signaling pathway. Thus, Fisetin may be a promising therapeutic drug for the treatment of SCI.


Asunto(s)
Flavonoles , Janus Quinasa 2 , Macrófagos , Microglía , Factor de Transcripción STAT3 , Transducción de Señal , Traumatismos de la Médula Espinal , Animales , Humanos , Masculino , Ratones , Ratas , Polaridad Celular/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/administración & dosificación , Flavonoles/farmacología , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/inmunología , Células PC12 , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/inmunología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
3.
Phytother Res ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091056

RESUMEN

Pancreatic adenocarcinoma (PDAC) is one of the most lethal malignant tumors with an urgent need for precision medicine strategies. The present study seeks to assess the antitumor effects of fisetin, and characterize its impact on PDAC. Multi-omic approaches include proteomic, transcriptomic, and metabolomic analyses. Further validation includes the assessment of mitochondria-derived reactive oxygen species (mtROS), mitochondrial membrane potential, as well as ATP generation. Molecular docking, immunoprecipitation, and proximity ligation assay were used to detect the interactions among fiseitn, superoxide dismutase 2 (SOD2), and sirtuin 2 (SIRT2). We showed that fisetin disrupted mitochondrial homeostasis and induced SOD2 acetylation in PDAC. Further, we produced site mutants to determine that fisetin-induced mtROS were dependent on SOD2 acetylation. Fisetin inhibited SIRT2 expression, thus blocking SOD2 deacetylation. SIRT2 overexpression could impede fisetin-induced SOD2 acetylation. Additionally, untargeted metabolomic analysis revealed an acceleration of folate metabolism with fisetin. Collectively, our findings suggest that fisetin disrupts mitochondrial homeostasis, eliciting an important cancer-suppressive role; thus, fisetin may serve as a promising therapeutic for PDAC.

4.
Foods ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123596

RESUMEN

Fisetin has shown numerous health benefits, whereas its food application is constrained by water insolubility, poor stability, and low bioaccessibility. This work investigated the potential of hyaluronic acid (HA)-coated nanoliposomes for the encapsulation and delivery of fisetin. It was observed that HA can adsorb onto the liposomal membrane through hydrogen bonding and maintain the spherical shape of nanoliposomes. Fluorescence analysis suggested that the HA coating restricted the motion and freedom of phospholipid molecules in the headgroup region and reduced the interior micropolarity of the nanoliposomes but did not affect the fluidity of the hydrophobic core. These effects were more pronounced for the HA with a low molecular weight (35 kDa) and moderate concentration (0.4%). The HA coating improved the storage and thermal stability of the nanoliposomes, as well as the digestive stability and bioaccessibility of the encapsulated fisetin. These findings could guide the development of HA-coated nanoliposomes for the controlled delivery of hydrophobic bioactives such as fisetin in functional foods.

5.
Geroscience ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120687

RESUMEN

Senescent cells accumulate throughout the body and brain contributing to unhealthy aging and Alzheimer's disease (AD). The APPNL-F/NL-F amyloidogenic AD mouse model exhibits increased markers of senescent cells and the senescence-associated secretory phenotype (SASP) in visceral white adipose tissue and the hippocampus before plaque accumulation and cognitive decline. We hypothesized that senolytic intervention would alleviate cellular senescence thereby improving spatial memory in APPNL-F/NL-F mice. Thus, 4-month-old male and female APPNL-F/NL-F mice were treated monthly with vehicle, 5 mg/kg dasatinib + 50 mg/kg quercetin, or 100 mg/kg fisetin. Blood glucose levels, energy metabolism, spatial memory, amyloid burden, and senescent cell markers were assayed. Dasatinib + quercetin treatment in female APPNL-F/NL-F mice increased oxygen consumption and energy expenditure resulting in decreased body mass. White adipose tissue mass was decreased along with senescence markers, SASP, blood glucose, and plasma insulin and triglycerides. Hippocampal senescence markers and SASP were reduced along with soluble and insoluble amyloid-ß (Aß)42 and senescence-associated-ß-gal activity leading to improved spatial memory. Fisetin had negligible effects on these measures in female APPNL-F/NL-F mice while neither senolytic intervention altered these parameters in the male mice. Considering women have a greater risk of dementia, identifying senotherapeutics appropriate for sex and disease stage is necessary for personalized medicine.

6.
Animal Model Exp Med ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136058

RESUMEN

Flavonoids, including fisetin, have been linked to a reduced risk of colorectal cancer (CRC) and have potential therapeutic applications for the condition. Fisetin, a natural flavonoid found in various fruits and vegetables, has shown promise in managing CRC due to its diverse biological activities. It has been found to influence key cell signaling pathways related to inflammation, angiogenesis, apoptosis, and transcription factors. The results of this study demonstrate that fisetin induces colon cancer cell apoptosis through multiple mechanisms. It impacts the p53 pathway, leading to increased levels of p53 and decreased levels of murine double minute 2, contributing to apoptosis induction. Fisetin also triggers the release of important components in the apoptotic process, such as second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI and cytochrome c. Furthermore, fisetin inhibits the cyclooxygenase-2 and wingless-related integration site (Wnt)/epidermal growth factor receptor/nuclear factor kappa B signaling pathways, reducing Wnt target gene expression and hindering colony formation. It achieves this by regulating the activities of cyclin-dependent kinase 2 and cyclin-dependent kinase 4, reducing retinoblastoma protein phosphorylation, decreasing cyclin E levels, and increasing p21 levels, ultimately influencing E2 promoter binding factor 1 and cell division cycle 2 (CDC2) protein levels. Additionally, fisetin exhibits various effects on CRC cells, including inhibiting the phosphorylation of Y-box binding protein 1 and ribosomal S6 kinase, promoting the phosphorylation of extracellular signal-regulated kinase 1/2, and disrupting the repair process of DNA double-strand breaks. Moreover, fisetin serves as an adjunct therapy for the prevention and treatment of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA)-mutant CRC, resulting in a reduction in phosphatidylinositol-3 kinase (PI3K) expression, Ak strain transforming phosphorylation, mTOR activity, and downstream target proteins in CRC cells with a PIK3CA mutation. These findings highlight the multifaceted potential of fisetin in managing CRC and position it as a promising candidate for future therapy development.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39162796

RESUMEN

Pulmonary fibrosis is an important health problem; one of the drugs used in its treatment is pirfenidone (PFD). Fisetin (FST) is a flavonoid with antioxidative, anti-inflammatory, and antifibrotic effects. The aim of this study was to induce PF in rats with bleomycin (BLM) and to investigate the combined effect of PFD and FST in the treatment of fibrosis. In the study, 40 male Wistar rats were divided into five groups (n = 8). Sham group was administered saline on day 0 and BLM (5 mg/kg, i.t.) was administered to the other groups; BLM + PFD group: PFD (50 mg/kg) was administered every day between the first and 15th days; BLM + FST group: FST (25 mg/kg) was administered between the first and 15th days; BLM + PFD + FST group: PFD (50 mg/kg) and FST (25 mg/kg) were administered by gavage every day between the first and 15th days. At the end of the 15th day, BAL was performed under anaesthesia and lung tissues were removed. Histopathological, biochemical, and RT-PCR analyses were performed in the lung tissue. In our study, the concomitant use of FST and PFD caused downregulation of NF-κB p65, TGF-ß1, and α-SMA expressions; downregulation of TIMP-1, MMP-2, and MMP-9 genes; downregulation of HYP, MPO, and MDA activity; decrease in the number of differential cells in BAL; and upregulation of GSH. This shows that FST and PFD have antifibrotic, antioxidative, and anti-inflammatory effects. Our results show that the combined use of PFD and FST in BLM-induced pulmonary fibrosis reduces extracellular matrix accumulation, downregulates the level of gelatinases and their inhibitors, and provides significant improvements in antioxidative defence parameters.

8.
Biofactors ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087587

RESUMEN

The mitogen-activated protein kinase kinase 4 (MKK4), a member of the MAP kinase kinase family, directly phosphorylates and activates the c-Jun NH2-terminal kinases (JNK), in response to proinflammatory cytokines and cellular stresses. Regulation of the MKK4 activity is considered to be a novel approach for the prevention and treatment of inflammation. The aim of this study was to identify whether fisetin, a potential anti-inflammatory compound, targets MKK4-JNK cascade to inhibit lipopolysaccharide (LPS)-stimulated inflammatory response. RAW264 macrophage pretreated with fisetin following LPS stimulation was used as a cell model to investigate the transactivation and expression of related-inflammatory genes by transient transfection assay, electrophoretic mobility shift assay (EMSA), or enzyme-linked immunosorbent assay (ELISA), and cellular signaling as well as binding of related-signal proteins by Western blot, pull-down assay and kinase assay, and molecular modeling. The transactivation and expression of cyclooxygenase-2 (COX-2) gene as well as prostaglandin E2 (PGE2) secretion induced by LPS were inhibited by fisetin in a dose-dependent manner. Signaling transduction analysis demonstrated that fisetin selectively inhibited MKK4-JNK1/2 signaling to suppress the phosphorylation of transcription factor AP-1 without affecting the NF-κB and Jak2-Stat3 signaling as well as the phosphorylation of Src, Syk, and TAK1. Furthermore, in vitro and ex vivo pull-down assay using cell lysate or purified protein demonstrated that fisetin could bind directly to MKK4. Molecular modeling using the Molecular Operating Environment™ software indicated that fisetin docked into the ATP-binding pocket of MKK4 with a binding energy of -71.75 kcal/mol and formed a 1.70 Å hydrogen bound with Asp247 residue of MKK4. The IC50 of fisetin against MKK4 was estimated as 2.899 µM in the kinase assay, and the ATP-competitive effect was confirmed by ATP titration. Taken together, our data revealed that fisetin is a potent selective ATP-competitive MKK4 inhibitor to suppress MKK4-JNK1/2-AP-1 cascade for inhibiting LPS-induced inflammation.

9.
Chem Biodivers ; : e202401207, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088251

RESUMEN

Anxiety and epilepsy are common worldwide and represent a primary global health concern. Fisetin, a flavonoid isolated from Bauhinia pentandra, has a wide range of biological activities may be a promising alternative to combat diseases related to the central nervous system (CNS). The present study aimed to investigate the anxiolytic and anticonvulsant effects of fisetin on adult zebrafish. Furthermore, molecular docking simulations were performed to improve the results. Fisetin did not present toxicity and caused anxiolytic behavior and delayed seizures in animals. This effect may occur through serotonin neurotransmission at 5-HT3A and/or 5-HT3B receptors. Molecular docking simulations showed that fisetin interacts with the orthosteric site of the 5-HT3A receptor with strong H-bond interactions with the Trp156 residue, with a strong contribution from the catechol ring, a behavior similar to that of the antagonist co-crystallized inhibitor granisetron (CWB). Fisetin may be a promising alternative to combat diseases related to the central nervous system. Keywords anxiety • Bauhinia pentandra • Danio rerio • epilepsy • fisetin.

10.
Sci Rep ; 14(1): 17332, 2024 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068167

RESUMEN

Senescent cells have been linked to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the effectiveness of senolytic drugs in reducing liver damage in mice with MASLD is not clear. Additionally, MASLD has been reported to adversely affect male reproductive function. Therefore, this study aimed to evaluate the protective effect of senolytic drugs on liver damage and fertility in male mice with MASLD. Three-month-old male mice were fed a standard diet (SD) or a choline-deficient western diet (WD) until 9 months of age. At 6 months of age mice were randomized within dietary treatment groups into senolytic (dasatinib + quercetin [D + Q]; fisetin [FIS]) or vehicle control treatment groups. We found that mice fed choline-deficient WD had liver damage characteristic of MASLD, with increased liver size, triglycerides accumulation, fibrosis, along increased liver cellular senescence and liver and systemic inflammation. Senolytics were not able to reduce liver damage, senescence and systemic inflammation, suggesting limited efficacy in controlling WD-induced liver damage. Sperm quality and fertility remained unchanged in mice developing MASLD or receiving senolytics. Our data suggest that liver damage and senescence in mice developing MASLD is not reversible by the use of senolytics. Additionally, neither MASLD nor senolytics affected fertility in male mice.


Asunto(s)
Fertilidad , Flavonoles , Quercetina , Senoterapéuticos , Animales , Masculino , Ratones , Fertilidad/efectos de los fármacos , Quercetina/farmacología , Senoterapéuticos/farmacología , Flavonoles/farmacología , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Senescencia Celular/efectos de los fármacos , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado Graso/patología , Dieta Occidental/efectos adversos , Progresión de la Enfermedad , Deficiencia de Colina/complicaciones , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
11.
Medicina (Kaunas) ; 60(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064554

RESUMEN

Background and Objectives: Malignant melanoma (MM) remains one of the most aggressive cancers worldwide, presenting a limited number of therapeutic options at present. Aspirin (ASA), a broadly used non-steroid anti-inflammatory medicine, has recently emerged as a candidate for repurposing in cancer management, due to its therapeutic potential in the treatment of several neoplasms which include MM. Fisetin (FIS) is a flavonoid phytoestrogen instilled with multispectral pharmacological activities, including a potent anti-melanoma property. The present study aimed to assess the potential improved anti-neoplastic effect resulting from the association of ASA and FIS for MM therapy. Materials and Methods: The study was conducted using the A375 cell line as an experimental model for MM. Cell viability was assessed via the MTT test. Cell morphology and confluence were evaluated using bright-field microscopy. The aspect of cell nuclei and tubulin fibers was observed through immunofluorescence staining. The irritant potential and the anti-angiogenic effect were determined on the chorioallantoic membrane of chicken fertilized eggs. Results: The main findings related herein demonstrated that the ASA 2.5 mM + FIS (5, 10, 15, and 20 µM) combination exerted a higher cytotoxicity in A375 MM cells compared to the individual compounds, which was outlined by the concentration-dependent and massive reduction in cell viability, loss of cell confluence, cell shrinkage and rounding, apoptotic-like nuclear features, constriction and disruption of tubulin filaments, increased apoptotic index, and suppressed migratory ability. ASA 2.5 mM + FIS 20 µM treatment lacked irritant potential on the chorioallantoic membrane and inhibited blood-vessel formation in ovo. Conclusion: These results stand as one of the first contributions presenting the anti-melanoma effect of the ASA + FIS combinatorial treatment.


Asunto(s)
Aspirina , Movimiento Celular , Flavonoides , Flavonoles , Melanoma , Humanos , Aspirina/uso terapéutico , Aspirina/farmacología , Melanoma/tratamiento farmacológico , Flavonoles/farmacología , Flavonoles/uso terapéutico , Movimiento Celular/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos
12.
Mol Neurobiol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970766

RESUMEN

Neurodegenerative diseases pose a significant health challenge for the elderly. The escalating presence of toxic metals and chemicals in the environment is a potential contributor to central nervous system dysfunction and the onset of neurodegenerative conditions. Transition metals play a crucial role in various pathophysiological mechanisms associated with prevalent neurodegenerative diseases such as Alzheimer's and Parkinson's. Given the ubiquitous exposure to metals from diverse sources in everyday life, the workplace, and the environment, most of the population faces regular contact with different forms of these metals. Disturbances in the levels and homeostasis of certain transition metals are closely linked to the manifestation of neurodegenerative disorders. Oxidative damage further exacerbates the progression of neurological consequences. Presently, there exists no curative therapy for individuals afflicted by neurodegenerative diseases, with treatment approaches primarily focusing on alleviating pathological symptoms. Within the realm of biologically active compounds derived from plants, flavonoids and curcuminoids stand out for their extensively documented antioxidant, antiplatelet, and neuroprotective properties. The utilization of these compounds holds the potential to formulate highly effective therapeutic strategies for managing neurodegenerative diseases. This review provides a comprehensive overview of the impact of abnormal metal levels, particularly copper, iron, and zinc, on the initiation and progression of neurodegenerative diseases. Additionally, it aims to elucidate the potential of fisetin and curcumin to inhibit or decelerate the neurodegenerative process.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38963551

RESUMEN

Fisetin, a polyphenolic flavonoid, exhibits numerous pharmacological activities against metabolic syndromes. The present research aims to explore the therapeutic efficacy of fisetin in experimental polycystic ovary syndrome (PCOS). Female Sprague-Dawley rats were administered mifepristone (20 mg/kg/day) to induce PCOS. PCOS rats were treated with fisetin (20 mg/kg and 40 mg/kg) and further compared with metformin HCl, the conventional drug for PCOS. The mechanism of fisetin was explored using dorsomorphin (an AMPK inhibitor). Then, rats were sacrificed for further analysis of biochemical and histological parameters. PCOS rats exhibited irregular estrous cycles, increased serum testosterone (4.72 ± 0.139 ng/ml), estradiol (750.2 ± 16.56 pg/ml), LH (30.33 ± 1.563 mIU/ml), HOMA-IR (1.115 ± 0.049), TNF-α (86.59 ± 3.93 pg/ml), IL-6 (55.34 ± 4.432 pg/ml), and TBARS (3.867 ± 0.193 µmol/mg) along with declined progesterone (11.67 ± 1.54 ng/ml), FSH (13.33 ± 1.256 mIU/ml), GSH (33.47 ± 1.348 µmol/mg) levels, and SOD (2.163 ± 0.298 U/mg) activity as compared to normal control group. Fisetin high dose significantly lowers testosterone (3.014 ± 0.234 ng/ml), estradiol (533.7 ± 15.39 pg/ml), LH (16.67 ± 1.62 mIU/ml), HOMA-IR (0.339 ± 0.20), TNF-α (46.02 ± 2.66 pg/ml), IL-6 (31.77 ± 3.47 pg/ml), and TBARS (1.747 ± 0.185 µmol/mg) and enhances progesterone (33.17 ± 1.447 ng/ml), FSH (27.17 ± 1.42 mIU/ml), GSH (60.35 ± 1.1.102 µmol/mg) levels, and SOD (4.513 ± 0.607 U/mg) activity. The histology of ovarian tissues shows a significant increase in cystic follicles in PCOS rats compared with the normal control group. These alterations were attenuated with fisetin treatment. Administration of dorsomorphin with fisetin can reverse the beneficial effects of fisetin in PCOS rats. Altogether, these present findings highlight the potential of fisetin as a promising therapeutic intervention for the management of PCOS by modulating AMPK/SIRT1 signaling in rats.

14.
Int J Biol Macromol ; 274(Pt 2): 133472, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942410

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder marked by cognitive impairment and memory loss. In this study, AD was experimentally induced in rats using aluminum chloride (AlCl3) and D-galactose (D-gal). Fisetin (Fis), a natural compound with antioxidant and anti-inflammatory properties, has potential for neurodegeneration management, but its low bioavailability limits clinical applications. To address this, we synthesized and characterized Pluronic-2-Acrylamido-2-methylpropane sulfonic acid (PLUR-PAMPS) nanogels using gamma radiation and successfully loaded Fis onto them (Fis-PLUR-PAMPS). The optimal formulation exhibited minimal particle size, a highly acceptable polydispersity index, and the highest zeta-potential, enhancing stability and solubilization efficiency. Our goal was to improve Fis's bioavailability and assess its efficacy against AlCl3/D-gal-induced AD. Male albino Wistar rats were pre-treated orally with Fis (40 mg/kg) or Fis-PLUR-PAMPS for seven days, followed by a seven-day intraperitoneal injection of AlCl3 and D-gal. Behavioral assessments, histopathological analysis, and biochemical evaluation of markers related to AD pathology were conducted. Results demonstrated that Fis-PLUR-PAMPS effectively mitigated cognitive impairments and neurodegenerative signs induced by AlCl3/D-gal. These findings suggest that Fis-PLUR-PAMPS nanogels enhance Fis's bioavailability and therapeutic efficacy, offering a promising approach for AD management.


Asunto(s)
Enfermedad de Alzheimer , Apoptosis , Modelos Animales de Enfermedad , Flavonoles , Nanogeles , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Ratas , Masculino , Flavonoles/farmacología , Flavonoles/química , Apoptosis/efectos de los fármacos , Nanogeles/química , Poloxámero/química , Ratas Wistar , Disfunción Cognitiva/tratamiento farmacológico , Cloruro de Aluminio , Flavonoides/farmacología , Flavonoides/química , Flavonoides/síntesis química , Portadores de Fármacos/química , Galactosa/química
15.
EPMA J ; 15(2): 163-205, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841620

RESUMEN

Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38918236

RESUMEN

TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that is capable of apoptosis induction selectively in tumor cells. Although TRAIL has been harnessed in numerous clinical trials, resistance to TRAIL-induced apoptosis is a major challenge ahead of this therapy in various cancer models as well as in leukemia. Since histone deacetylases (HDACs) are known to affect drug resistance in malignant cells, the present study aimed to evaluate the potential of fisetin for sensitization of MOLT-4 and K-562 leukemic cells to TRAIL-induced apoptosis. The MOLT-4 and K-562 cells were treated with increasing concentrations of fisetin and its impact on the growth inhibition and apoptosis induction of TRAIL were evaluated by MTT and Annexin V/7-AAD assays. The impact of fisetin on the mRNA and protein expression levels of apoptosis regulatory genes such as BIRC2/c-IAP1, CFLAR/cFLIP, CASP3, CASP7, CASPP9, TNFRSF10A/DR4, TNFRSF10B/DR5, and BID were examined by PCR array, qRT-PCR, and flow cytometry. Pre-treatment of MOLT-4 and K-562 cells with fisetin reduced the IC50 of TRAIL in growth inhibition along with an improvement in apoptosis induction by TRAIL. The expression of the BIRC2 gene encoding antiapoptotic protein c-IAP1 downregulated in the fisetin-treated cells while the expressions of TNFRSF10A and TNFRSF10B encoding TRAIL death receptors increased. Fisetin demonstrated a potential for alleviating the TRAIL resistance by modulating the apoptosis regulatory factors and improving the expressions of TRAIL receptors that could facilitate the application of TRAIL in cancer therapies.

17.
Drug Deliv Transl Res ; 14(10): 1-17, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38789909

RESUMEN

Fisetin (FS) is a flavonoid that possesses antioxidant and anti-inflammatory properties against ulcerative colitis. FS shows poor dissolution rate and permeability. An attempt has been made to develop colon-targeted solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of FS. Initially, liquid (L) SNEDDS were prepared by loading FS into isotropic mixture of L-SNEDDS was prepared using Labrafil M 1944 CS, Transcutol P, and Tween 80. These L-SNEDDS were further converted into solid (S) SNEDDS by mixing the isotropic mixture with 1:1:1 ratio of guar gum (GG), xanthan gum (XG) and pectin (PC) [GG:XG:PC (1:1:1)]. Aerosil-200 (A-200) was added to enhance their flow characteristics. Further, they were converted into spheroids by extrusion-spheronization technique. The solid-state characterization of S-SNEDDS was done by SEM, DSC, and PXRD, which revealed that the crystalline form of FS was converted into the amorphous form. In the dissolution study, S-SNEDDS spheroids [GG:XG:PC (1:1:1)] exhibited less than 20% drug release within the first 5 h, followed by rapid release of the drug between the 5th and 10th h, indicating its release at colonic site. The site-specific delivery of FS to colon via FS-S-SNEDDS spheroids was confirmed by conducting pharmacokinetic studies on rats. Wherein, results showed delay in absorption of FS loaded in spheroids up to 5 h and achievement of Cmax at 7h, whereas L-SNEDDS showed rapid absorption of FS. Furthermore, FS-L-SNEDDS and FS-S-SNEDDS spheroids [GG:XG:PC (1:1:1)] increased oral bioavailability of FS by 6.86-fold and 4.44-fold, respectively, as compared to unprocessed FS.


Asunto(s)
Disponibilidad Biológica , Colon , Emulsiones , Flavonoides , Flavonoles , Galactanos , Pectinas , Polisacáridos Bacterianos , Flavonoles/farmacocinética , Flavonoles/administración & dosificación , Flavonoles/química , Animales , Colon/metabolismo , Flavonoides/farmacocinética , Flavonoides/administración & dosificación , Flavonoides/química , Masculino , Administración Oral , Galactanos/química , Galactanos/farmacocinética , Galactanos/administración & dosificación , Pectinas/química , Pectinas/farmacocinética , Pectinas/administración & dosificación , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacocinética , Polisacáridos Bacterianos/administración & dosificación , Gomas de Plantas/química , Gomas de Plantas/farmacocinética , Gomas de Plantas/administración & dosificación , Mananos/química , Mananos/farmacocinética , Mananos/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Nanopartículas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Liberación de Fármacos , Solubilidad
18.
Mol Carcinog ; 63(9): 1697-1711, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38801393

RESUMEN

The anticancer potential and associated mechanisms of flavonoid fisetin are yet to be fully investigated on human head and neck squamous cell carcinoma (HNSCC). In the present study, fisetin (25-75 µM for 24-48 h) dose-dependently inhibited growth and induced death in HNSCC Cal33 and UM-SCC-22B cells, without showing any death in normal cells. Fisetin (25-50 µM) induced G2/M phase arrest via decrease in Cdc25C, CDK1, cyclin B1 expression, and an increase in p53(S15). A concentration-dependent increase in fisetin-induced DNA damage and apoptosis in HNSCC cells was authenticated by comet assay, gamma-H2A.X(S139) phosphorylation, and marked cleavage of PARP protein. Interestingly, fisetin-induced cell death occurred independently of p53 and reactive oxygen species production. The activation of JNK and inhibition of PI3K/Akt, ERK1/2, EGFR, and STAT-3 signaling were identified. Further, fisetin-induced apoptosis was mediated, in part, via p21Cip1 and p27Kip1 cleavage by caspase, which was reversed by z-VAD-FMK, a pan-caspase inhibitor. Subsequently, fisetin was also found to induce autophagy; nevertheless, autophagy attenuation exaggerated apoptosis. Oral fisetin (50 mg/kg body weight) treatment to establish Cal33 xenograft in mice for 19 days showed 73% inhibition in tumor volume (p < 0.01) along with a decrease in Ki67-positive cells and an increase in cleaved caspase-3 level in tumors. Consistent with the effect of 50 µM fisetin in vitro, the protein levels of p21Cip1 and P27Kip1 were also decreased by fisetin in tumors. Together, these findings showed strong anticancer efficacy of fisetin against HNSCC with downregulation of EGFR-Akt/ERK1/2-STAT-3 pathway and activation of JNK/c-Jun, caspases and caspase-mediated cleavage of p21Cip1 and p27Kip1.


Asunto(s)
Apoptosis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Flavonoides , Flavonoles , Puntos de Control de la Fase G2 del Ciclo Celular , Carcinoma de Células Escamosas de Cabeza y Cuello , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Flavonoles/farmacología , Animales , Apoptosis/efectos de los fármacos , Ratones , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Flavonoides/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Línea Celular Tumoral , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Caspasas/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Transducción de Señal/efectos de los fármacos , Daño del ADN/efectos de los fármacos
19.
Artículo en Inglés | MEDLINE | ID: mdl-38789632

RESUMEN

Polycystic ovarian syndrome (PCOS) is a highly prevalent condition affecting reproductive-aged women, causing insulin resistance, hyperandrogenism, weight gain, and menstrual problems. The present study intended to investigate the potential role of fisetin (FT) in letrozole (LZ)-induced PCOS in adult female rats and the possible mechanism underlying its action. PCOS was induced by oral administration of LZ (1 mg/kg) for 21 days. Treated rats received FT (1.25 or 2.5 mg/kg) orally once daily for 14 consecutive days. Following the experimental duration, blood samples and ovary tissues were isolated and preserved for biochemical and histopathological examinations. The results revealed that LZ-induced PCOS led to significant abnormalities in sex hormones and metabolic parameters. Additionally, it initiated an inflammatory cascade, evidenced by activation of the NF-κB p65/IL-1ß and AMPK/PI3K/AKT pathways, alongside downregulation of Nrf2 ovarian gene expression and NLRP3 inflammasome activity, which enhanced the production of proinflammatory cytokines. FT demonstrated its beneficial impacts by restoring hormonal disturbance and reversing the imbalanced metabolic parameters. Moreover, FT increased the mRNA of ovarian Nrf2 levels and suppressed the up-regulated inflammatory IL-1ß/NF-κB p65 signaling pathway, consequently alleviating the elevated levels of ovarian NLRP3. The histopathological examination also confirmed that FT has a beneficial effect in ameliorating PCOS, consistent with the aforementioned parameters. Finally, the present results demonstrated that FT ameliorates LZ-induced PCOS through the intricate interplay between the AMPK/PI3K/AKT-mediated Nrf2 antioxidant defense mechanism and the regulation of the inflammasome NLRP3/NF-κB p65/IL-1ß signaling pathways.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38716552

RESUMEN

Fisetin is a bioactive compound found in numerous fruits and vegetables, including strawberries, apples, grapes, persimmon, cucumber, onion, etc. The compound is also wellknown for its neurotrophic, anti-inflammatory, anti-carcinogenic, anti-diabetic, and other healthpromoting properties. Although there is increasing agreement that it has therapeutic properties, but its poor water solubility, high lipophilicity, and lower oral bioavailability make it difficult to use clinically. Extensive research has attempted to overcome these restrictions by developing novel and superior delivery systems. Considering the diverse potential, this review is the first to summarise the available data on Fisetin to collate the information related to analytical methods, pharmacological action, their mechanisms, regulatory aspects, and toxicity profile. It also covers the marketed products, related clinical trials, and patent updates of the moiety. In addition, an endeavor has been attempted to discuss and assess the various drug delivery systems employed to increase the biological attributes of Fisetin. The presented manuscript is the first to present a compendium of up-to-date literature on all of the domains considered necessary for this type of natural molecule to carve down its path from being a mere dietary supplement to a promising therapeutic drug candidate. The manuscript is expected to benefit the researchers working on natural and bioactive compounds, industrial scientists, and the general population interested in Fesitin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA