Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 987
Filtrar
1.
Am J Vet Res ; : 1-6, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255836

RESUMEN

OBJECTIVE: To investigate whether a humeral intracondylar fissure (HIF) alters bone strain in the French Bulldog humerus, we developed a quantitative CT-based 3-D finite element (FE) model for virtual mechanical testing. We hypothesized that higher strains would be seen in the intracondylar region and lateral epicondylar crest if there was a HIF. METHODS: Patient CT scans from 3 (n = 3) French Bulldogs were selected. Dog 1 had a closed distal physis and no HIF. Dog 2 had an open distal humeral physis but no HIF. Dog 3 had an open distal physis and a HIF. A 3-D FE model was built for FE analysis, and pressure was applied to the humerus over the region that contacts the radial head. RESULTS: The maximum principal bone strain patterns differed in each of the models. A path of strain concentration mimicking the typical pattern of a lateral condylar fracture was only found in dog 3. Maximum principal strain exceeded 1% in parts of the lateral epicondylar crest in all 3 dogs. CONCLUSIONS: We developed a patient-specific, quantitative CT-based 3-D FE model for virtual mechanical testing. We accepted our hypothesis. Strain concentration occurred in the intracondylar region and along the lateral epicondylar crest only when a HIF was present. CLINICAL RELEVANCE: The presence of a HIF in French Bulldogs elevates maximum principal bone strain in this region and alters its path in an FE model, which suggests an increased risk of a lateral humeral condylar fracture.

2.
Materials (Basel) ; 17(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274664

RESUMEN

A precise Johnson-Cook (J-C) constitutive model is the foundation for precise calculation of finite-element simulation. In order to obtain the J-C constitutive model accurately for a new cast and forged alloy GH4198, an inverse identification of J-C constitutive model was proposed based on a genetic-particle swarm algorithm. Firstly, a quasi-static tensile test at different strain rates was conducted to determine the initial yield strength A, strain hardening coefficient B, and work hardening exponent n for the material's J-C model. Secondly, a new method for orthogonal cutting model was constructed based on the unequal division shear theory and considering the influence of tool edge radius. In order to obtain the strain-rate strengthening coefficient C and thermal softening coefficient m, an orthogonal cutting experiment was conducted. Finally, in order to validate the precision of the constitutive model, an orthogonal cutting thermo-mechanical coupling simulation model was established. Meanwhile, the sensitivity of J-C constitutive model parameters on simulation results was analyzed. The results indicate that the parameter m significantly affects chip morphology, and that the parameter C has a notable impact on the cutting force. This study addressed the issue of missing constitutive parameters for GH4198 and provided a theoretical reference for the optimization and identification of constitutive models for other aerospace materials.

3.
Materials (Basel) ; 17(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274671

RESUMEN

The aim of the work presented in this paper was development of a thermodynamically consistent constitutive model for orthotopic metals and determination of its parameters based on standard characterisation methods used in the aerospace industry. The model was derived with additive decomposition of the strain tensor and consisted of an elastic part, derived from Helmholtz free energy, Hill's thermodynamic potential, which controls evolution of plastic deformation, and damage orthotopic potential, which controls evolution of damage in material. Damage effects were incorporated using the continuum damage mechanics approach, with the effective stress and energy equivalence principle. Material characterisation and derivation of model parameters was conducted with standard specimens with a uniform cross-section, although a number of tests with non-uniform cross-sections were also conducted here. The tests were designed to assess the extent of damage in material over a range of plastic deformation values, where displacement was measured locally using digital image correlation. The new model was implemented as a user material subroutine in Abaqus and verified and validated against the experimental results for aerospace-grade aluminium alloy 2024-T3. Verification was conducted in a series of single element tests, designed to separately validate elasticity, plasticity and damage-related parts of the model. Validation at this stage of the development was based on comparison of the numerical results with experimental data obtained in the quasistatic characterisation tests, which illustrated the ability of the modelling approach to predict experimentally observed behaviour. A validated user material subroutine allows for efficient simulation-led design improvements of aluminium components, such as stiffened panels and the other thin-wall structures used in the aerospace industry.

4.
Mol Pharm ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259772

RESUMEN

Dissolving microneedle (DMN)-assisted transdermal drug delivery (TDD) has received attention from the scientific community in recent years due to its ability to control the rate of drug delivery through its design, the choice of polymers, and its composition. The dissolution of the polymer depends strongly on the polymer-solvent interaction and polymer physics. Here, we developed a mathematical model based on the physicochemical parameters of DMNs and polymer physics to determine the drug release profiles. An annular gap width is defined when the MN is inserted in the skin, accumulating interstitial fluid (ISF) from the surrounding skin and acting as a boundary layer between the skin and the MN. Poly(vinylpyrrolidone) (PVP) is used as a model dissolving polymer, and ceftriaxone is used as a representative drug. The model agrees well with the literature data for ex vivo permeation studies, along with the percent height reduction of the MN. Based on the suggested mathematical model, when loading 0.39 mg of ceftriaxone, the prediction indicates that approximately 93% of the drug will be cleared from the bloodstream within 24 h. The proposed modeling strategy can be utilized to optimize drug transport behavior using DMNs.

5.
Sci Rep ; 14(1): 20468, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227675

RESUMEN

Ossicular fixation disturbs the mobility of the ossicular chain and causes conductive hearing loss. To diagnose the lesion area, otologists typically assess ossicular mobility through intraoperative palpation. Quantification of ossicular mobility and evidence-based diagnostic criteria are necessary for accurate assessment of each pathology, because diagnosis via palpation can rely on the surgeons' experiences and skills. In this study, ossicular mobilities were simulated in 92 pathological cases of ossicular fixation as compliances using a finite-element (FE) model of the human middle ear. The validity of the ossicular mobilities obtained from the FE model was verified by comparison with measurements of ossicular mobilities in cadavers using our newly developed intraoperative ossicular mobility measurement system. The fixation-induced changes in hearing were validated by comparison with changes in the stapedial velocities obtained from the FE model with measurements reported in patients and in temporal bones. The 92 cases were classified into four groups by conducting a cluster analysis based on the simulated ossicular compliances. Most importantly, the cases of combined fixation of the malleus and/or the incus with otosclerosis were classified into two different surgical procedure groups by degree of fixation, i.e., malleo-stapedotomy and stapedotomy. These results suggest that pathological characteristics can be detected using quantitatively measured ossicular compliances followed by cluster analysis, and therefore, an effective diagnosis of ossicular fixation is achievable.


Asunto(s)
Simulación por Computador , Osículos del Oído , Humanos , Osículos del Oído/cirugía , Otosclerosis/cirugía , Otosclerosis/fisiopatología , Análisis de Elementos Finitos , Masculino , Femenino , Pérdida Auditiva Conductiva/fisiopatología , Pérdida Auditiva Conductiva/cirugía , Pérdida Auditiva Conductiva/diagnóstico , Adulto , Persona de Mediana Edad , Cirugía del Estribo/métodos , Anciano , Martillo/cirugía , Yunque/cirugía
6.
Ann Biomed Eng ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120770

RESUMEN

The risk of aseptic loosening in cementless hip stems can be reduced by improving osseointegration with osteoinductive coatings favoring long-term implant stability. Osseointegration is usually evaluated in vivo studies, which, however, do not reproduce the mechanically driven adaptation process. This study aims to develop an in silico model to predict implant osseointegration and the effect of induced micromotion on long-term stability, including a calibration of the material osteoinductivity with conventional in vivo studies. A Finite Element model of the tibia implanted with pins was generated, exploiting bone-to-implant contact measures of cylindrical titanium alloys implanted in rabbits' tibiae. The evolution of the contact status between bone and implant was modeled using a finite state machine, which updated the contact state at each iteration based on relative micromotion, shear and tensile stresses, and bone-to-implant distance. The model was calibrated with in vivo data by identifying the maximum bridgeable gap. Afterward, a push-out test was simulated to predict the axial load that caused the macroscopic mobilization of the pin. The bone-implant bridgeable gap ranged between 50 µm and 80 µm. Predicted push-out strength ranged from 19 N to 21 N (5.4 MPa-3.4 MPa) depending on final bone-to-implant contact. Push-out strength agrees with experimental measurements from a previous animal study (4 ± 1 MPa), carried out using the same implant material, coated, or uncoated. This method can partially replace in vivo studies and predict the long-term stability of cementless hip stems.

7.
Polymers (Basel) ; 16(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125125

RESUMEN

Polymer composite materials are increasingly used in civil aircraft structures. The failure mode and energy-absorption characteristics of polymer composite structures have garnered significant attention from academia and industry. For thin-walled polymer composite C-channels with layups of [0/90]3s, [45/-45]3s, and [45/90/-45/0]3, low-speed axial compression tests were performed to investigate the failure modes, failure mechanisms, and energy-absorbing characteristics. After parametric studies using [0] and [90] single-element models, stacked shell models of thin-walled composite C-channels were established using the Lavadèze single-layer damage constitutive model, Puck 2000, and Yamada Sun failure criteria. The results show that these thin-walled composite C-channels exhibit a stable progressive crushing process with a local buckling failure mode, encompassing local buckling, fiber break-age, matrix cracks, delamination, and corner cracking. The stacked shell model demonstrates reasonable agreement with the progressive crushing process of thin-walled composites, accurately capturing interlayer matrix failure and interface delamination cracking behavior. A comparison of the specific energy absorption (SEA) and mean crushing force (Fmean) between the simulation and test results yields a difference of less than 6%, indicating a strong correlation between the simulation results and the experimental energy-absorbing characteristics. It also shows that a deep understanding of the parameters is helpful for accurate numerical modeling.

8.
Bioinspir Biomim ; 19(5)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39178899

RESUMEN

Like other odontocetes, Risso's dolphins actively emit clicks and passively listen to the echoes during echolocation. However, the head anatomy of Risso's dolphins differs from that of other odontocetes by a unique vertical cleft along the anterior surface of the forehead and a differently-shaped lower jaw. In this study, 3D finite-element sound reception and production models were constructed based on computed tomography (CT) data of a deceased Risso's dolphin. Our results were verified by finding good agreement with experimental measurements of hearing sensitivity. Moreover, the acoustic pathway for sounds to travel from the seawater into the dolphin's tympanoperiotic complexes (TPCs) was computed. The gular reception mechanism, previously discovered inDelphinus delphisandZiphius cavirostris, was also found in this species. The received sound pressure levels and relative displacement at TPC surfaces were compared between the cases with and without the mandibular fats or mandible. The results demonstrate a pronounced wave-guiding role of the mandibular fats and a limited bone-conductor role of the mandible. For sound production modelling, we digitally filled the cleft with neighbouring soft tissues, creating a hypothetical 'cleftless' head. Comparison between sound travelling through a 'cleftless' head vs. an original head indicates that the distinctive cleft plays a limited role in biosonar sound propagation.


Asunto(s)
Delfines , Análisis de Elementos Finitos , Cabeza , Mandíbula , Animales , Delfines/fisiología , Delfines/anatomía & histología , Cabeza/fisiología , Cabeza/anatomía & histología , Mandíbula/fisiología , Mandíbula/anatomía & histología , Ecolocación/fisiología , Imagenología Tridimensional/métodos , Modelos Biológicos , Tomografía Computarizada por Rayos X , Tejido Adiposo/fisiología , Tejido Adiposo/anatomía & histología
9.
Comput Biol Med ; 181: 109063, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39178807

RESUMEN

Investigating and understanding the biomechanical kinematics and kinetics of human brain axonal fibers during head impact process is crucial to study the mechanisms of Traumatic Axonal Injury (TAI). Such a study may require the explicit incorporation of brain fiber tracts into the host brain in order to distinguish the mechanical states of axonal fibers and brain tissue. Herein we extend our previously developed human head model by using an embedded element method to include fiber tracts reconstructed from diffusion tensor images in a host brain with the purpose of numerically tracking the deformation state of axonal fiber tracts during a head impact simulation. The updated model is validated by comparing its prediction of intracranial pressures with experimental data, followed by a thorough study of the effects of element types used for fiber tracts and the stiffness ratios of fiber to host brain. The validated model is also used to predict and visualize the damaged region of fiber tracts during the head impact process based on different injury criteria. The model is promising in tracking the state of fiber tracts and can add more objective functions such as axonal fiber deformation if used in the future design optimization of head protective equipment such as a football helmet.


Asunto(s)
Axones , Encéfalo , Análisis de Elementos Finitos , Humanos , Axones/fisiología , Modelos Neurológicos , Fenómenos Biomecánicos/fisiología , Imagen de Difusión Tensora , Simulación por Computador
10.
Materials (Basel) ; 17(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39203115

RESUMEN

Indentation is a versatile method to assess the hardness of different materials along with their elastic properties. Recently, powerful approaches have been developed to determine further material properties, like yield strength, ultimate tensile strength, work-hardening rate, and even cyclic plastic properties, by a combination of indentation testing and computer simulations. The basic idea of these approaches is to simulate the indentation with known process parameters and to iteratively optimize the initially unknown material properties until just a minimum error between numerical and experimental results is achieved. In this work, we have developed a protocol for instrumented indentation tests and a procedure for the inverse analysis of the experimental data to obtain material parameters for time-dependent viscoplastic material behavior and kinematic and isotropic work-hardening. We assume the elastic material properties and the initial yield strength to be known because these values can be determined independently from indentation tests. Two optimization strategies were performed and compared for identification of the material parameters. The new inverse method for spherical indentation has been successfully applied to martensitic steel.

11.
Materials (Basel) ; 17(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39203202

RESUMEN

To optimize the assembly methods of honeycomb structures and enhance their design flexibility, this study investigated the impact mechanical responses of tandem honeycomb-core sandwich structures with varying misalignment assembly lengths. Impact tests were conducted across different energy levels on single-layer and tandem honeycomb-core sandwiches to observe their impact processes and failure behaviors. Our findings indicate that tandem honeycomb cores significantly enhance the impact resistance compared with single-layer configurations, even though a misaligned assembly can deteriorate this property. A finite element model was developed and validated experimentally; the model showed good agreement with the experiments, thereby allowing the simulation and evaluation of the impact responses. Herein, we reveal that specific misalignment lengths can either increase or decrease the impact resistance, providing insights into improving the resilience of tandem honeycomb-core structures. Our results not only contribute to enhancing the impact resistance of honeycomb-core sandwich structures but also offer a valuable basis for their practical applications in engineering.

12.
J Mech Behav Biomed Mater ; 159: 106685, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173497

RESUMEN

Micro-scale models of lung tissue have been employed by researchers to investigate alveolar mechanics; however, they have been limited by the lack of biofidelic material properties for the alveolar wall. To address this challenge, a finite element model of an alveolar cluster was developed comprising a tetrakaidecahedron array with the nominal characteristics of human alveolar structure. Lung expansion was simulated in the model by prescribing a pressure and monitoring the volume, to produce a pressure-volume (PV) response that could be compared to experimental PV data. The alveolar wall properties in the model were optimized to match experimental PV response of lungs filled with saline, to eliminate surface tension effects and isolate the alveolar wall tissue response. When simulated in uniaxial tension, the model was in agreement with reported experimental properties of uniaxial tension on excised lung tissue. The work presented herein was able to link micro-scale alveolar response to two disparate macroscopic experimental datasets (stress-stretch and PV response of lung) and presents hyperelastic properties of the alveolar wall for use in alveolar scale finite element models and multi-scale models. Future research will incorporate surface tension effects, and investigate alveolar injury mechanisms.


Asunto(s)
Elasticidad , Análisis de Elementos Finitos , Presión , Alveolos Pulmonares , Estrés Mecánico , Alveolos Pulmonares/fisiología , Humanos , Modelos Biológicos , Fenómenos Biomecánicos
13.
J Mech Behav Biomed Mater ; 159: 106679, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39180890

RESUMEN

Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration. Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure. Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests. Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence.


Asunto(s)
Hueso Esponjoso , Análisis de Elementos Finitos , Hueso Esponjoso/fisiología , Hueso Esponjoso/diagnóstico por imagen , Humanos , Pruebas Mecánicas , Ensayo de Materiales , Fenómenos Mecánicos , Fenómenos Biomecánicos , Densidad Ósea , Anciano , Masculino , Femenino
14.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 341-347, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38953258

RESUMEN

Objective To demonstrate the feasibility of oblique lumbar interbody fusion (OLIF) combined with 4-screw fixation for treating two-level lumbar degenerative diseases.Methods An intact finite element model of L3-S1 (M0) was constructed and validated.Then,we constructed the M1 model by simulating OLIF surgery at L3/4 and L4/5 segments on the M0 model.By attachment of posterior 4-screw or 6-screw fixation to the M1 model,three 4-screw fixation models (M2-M4) and one 6-screw fixation model (M5) were established.The segmental and overall range of motion (ROM) and the peak von Mises stresses of superior endplate,cage,and posterior screw-rod were investigated under each implanted condition.Results Under the motion modes of forward flexion,backward extension,bilateral (left and right) flexion,and left and right rotation,the L3/4 ROM of M2 model and L4/5 ROM of M3 model increased,while the L3/4 and L4/5 ROM of M4 and M5 models significantly decreased compared with those of M1 model.Under all motion modes,the L4 superior endplate in M2 model and the L5 superior endplate in M3 model showed the maximum peak von Mises stress,and the peak von Mises stresses of L4 and L5 superior endplates in M4 and M5 models were close.The L3/4 cage in M2 model and the L4/5 cage in M3 model showcased the largest peak von Mises stress,and the peak von Mises stresses of cages in M4 and M5 models were close.The peak stresses of internal fixation in M2-M5 models were close.Conclusion Four-screw fixation can replace 6-screw fixation in the OLIF surgery for treating two-level degenerative lumbar diseases.


Asunto(s)
Tornillos Óseos , Análisis de Elementos Finitos , Vértebras Lumbares , Fusión Vertebral , Fusión Vertebral/métodos , Fusión Vertebral/instrumentación , Humanos , Vértebras Lumbares/cirugía
15.
Artículo en Inglés | MEDLINE | ID: mdl-38963151

RESUMEN

BACKGROUND: The incidence of cervical spondylosis is increasing, gradually affecting people's normal lives. Establishing a finite element model of the cervical spine is one of the methods for studying cervical spondylosis. MRI (Magnetic Resonance Imaging) still has certain difficulties in transitioning from human imaging to establishing muscle models suitable for finite element analysis. Medical software provides specific morphologies and can generate muscle finite element models. Additionally, there is little research on the static analysis of cervical spine finite element models with solid muscle. PURPOSE: A new method is proposed for establishing a finite element model of the cervical spine based on CT (Computed Tomography) data and medical software, and the model's effectiveness is validated. Human movement characteristics based on the force distribution in various parts are analyzed and predicted. METHODS: The muscle model is reconstructed in medical software and a three-dimensional finite element model of the entire cervical spine (C0-C7) is established by combining muscle models with CT vertebral data models. 1.5 Nm of load is applied to the finite element model to simulate the cervical spine movement. RESULTS: The finite element model was successfully established, and effectiveness was verified. Stress variations in various parts under six movements were obtained. The effectiveness of the model was basically verified. CONCLUSION: The finite element model of the cervical spine for mechanical analysis can be successfully established by using medical software and CT data. In daily life, the C2-3, C3-4, C4-C5 intervertebral discs, rectus capitis posterior major, longus colli, and obliquus capitis inferior are more prone to injury.

16.
Front Bioeng Biotechnol ; 12: 1387768, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040495

RESUMEN

Background: The plantar vault, comprising the transverse and longitudinal arches of the human foot, is essential for impact absorption, elastic energy storage, and propulsion. Recent research underscores the importance of the transverse arch, contributing over 40% to midfoot stiffness. This study aimed to quantify biomechanical responses in the ankle-foot complex by varying the stiffness of the deep metatarsal transverse ligament (DTML). Methods: Using CT image reconstruction, we constructed a complex three-dimensional finite element model of the foot and ankle joint complex, accounting for geometric complexity and nonlinear characteristics. The focus of our study was to evaluate the effect of different forefoot transverse arch stiffness, that is, different Young's modulus values of DTML (from 135 MPa to 405 MPa), on different biomechanical aspects of the foot and ankle complex. Notably, we analyzed their effects on plantar pressure distribution, metatarsal stress patterns, navicular subsidence, and plantar fascial strain. Results: Increasing the stiffness of the DTML has significant effects on foot biomechanics. Specifically, higher DTML stiffness leads to elevate von Mises stress in the 1st, 2nd, and 3rd metatarsals, while concurrently reducing plantar pressure by 14.2% when the Young's modulus is doubled. This stiffening also impedes navicular bone subsidence and foot lengthening. Notably, a 100% increase in the Young's modulus of DTML results in a 54.1% decrease in scaphoid subsidence and a 2.5% decrease in foot lengthening, which collectively contribute to a 33.1% enhancement in foot longitudinal stiffness. Additionally, doubling the Young's modulus of DTML can reduce the strain stretch of the plantar fascia by 38.5%. Conclusion: Preserving DTML integrity sustains the transverse arch, enhancing foot longitudinal stiffness and elastic responsiveness. These findings have implications for treating arch dysfunction and provide insights for shoe developers seeking to enhance propulsion.

17.
Heliyon ; 10(12): e32733, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975150

RESUMEN

Current noninvasive methods of clinical practice often do not identify the causes of conductive hearing loss due to pathologic changes in the middle ear with sufficient certainty. Wideband acoustic immittance (WAI) measurement is noninvasive, inexpensive and objective. It is very sensitive to pathologic changes in the middle ear and therefore promising for diagnosis. However, evaluation of the data is difficult because of large interindividual variations. Machine learning methods like Convolutional neural networks (CNN) which might be able to deal with this overlaying pattern require a large amount of labeled measurement data for training and validation. This is difficult to provide given the low prevalence of many middle-ear pathologies. Therefore, this study proposes an approach in which the WAI training data of the CNN are simulated with a finite-element ear model and the Monte-Carlo method. With this approach, virtual populations of normal, otosclerotic, and disarticulated ears were generated, consistent with the averaged data of measured populations and well representing the qualitative characteristics of individuals. The CNN trained with the virtual data achieved for otosclerosis an AUC of 91.1 %, a sensitivity of 85.7 %, and a specificity of 85.2 %. For disarticulation, an AUC of 99.5 %, sensitivity of 100 %, and specificity of 93.1 % was achieved. Furthermore, it was estimated that specificity could potentially be increased to about 99 % in both pathological cases if stapes reflex threshold measurements were used to confirm the diagnosis. Thus, the procedures' performance is comparable to classifiers from other studies trained with real measurement data, and therefore the procedure offers great potential for the diagnosis of rare pathologies or early-stages pathologies. The clinical potential of these preliminary results remains to be evaluated on more measurement data and additional pathologies.

18.
Front Bioeng Biotechnol ; 12: 1399691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015138

RESUMEN

Introduction: Surgical correction is a common treatment for severe scoliosis. Due to the significant spinal deformation that occurs with this condition, spinal cord injuries during corrective surgery can occur, sometimes leading to paralysis. Methods: Such events are associated with biomechanical changes in the spinal cord during surgery, however, their underlying mechanisms are not well understood. Six patient-specific cases of scoliosis either with or without spinal complications were examined. Finite element analyses (FEA) were performed to assess the dynamic changes and stress distribution of spinal cords after surgical correction. The FEA method is a numerical technique that simplifies problem solving by replacing complex problem solving with simplified numerical computations. Results: In four patients with poor prognosis, there was a concentration of stress in the spinal cord. The predicted spinal cord injury areas in this study were consistent with the clinical manifestations of the patients. In two patients with good prognosis, the stress distribution in the spinal cord models was uniform, and they showed no abnormal clinical manifestations postoperatively. Discussion: This study identified a potential biomechanical mechanism of spinal cord injury caused by surgical correction of scoliosis. Numerical prediction of postoperative spinal cord stress distribution might improve surgical planning and avoid complications.

19.
J Orthop Res ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031826

RESUMEN

Obesity is a known risk factor for development of osteoarthritis (OA). Numerical tools like finite-element (FE) models combined with degenerative algorithms have been developed to understand the interplay between OA and obesity. In this study, we aimed to predict knee cartilage degeneration in a cohort of obese adults to investigate the importance of patient-specific information on degeneration predictions. We used a validated FE modeling approach and three different age-dependent functions (step-wise, exponential, and linear) to simulate cartilage degradation under overloading in the knee joint. Gait motion analysis and magnetic resonance imaging data from 115 obese individuals with knee OA were used for musculoskeletal and FE modeling. Cartilage degeneration predictions were contrasted with Kellgren-Lawrence (KL) and Boston-Leeds Osteoarthritis Knee Score (BLOKS) grades. The findings show that overall, the similarities between numerical predictions and clinical measures were better for the medial (average area under the curve (AUC) = 0.62) compared to the lateral compartment (average AUC = 0.52) of the knee. Classification results for KL grades, full patient-specific models and patient-specific geometry with generic gait data showed higher AUC values (AUC = 0.71 and AUC = 0.68, respectively) compared to generic geometry and patient-specific gait (AUC = 0.48). For BLOKS grades, AUC values for both full patient-specific models and for patient-specific geometry with generic gait locomotion were higher (AUC = 0.66 and AUC = 0.64, respectively) compared to when the generic geometry and patient-specific gait were used (AUC = 0.53). In summary, our study highlights the importance of considering individual information in knee OA prediction. Nevertheless, our findings suggest that personalized gait play a smaller role in the OA prediction and classification capacity than personalized joint geometry.

20.
Polymers (Basel) ; 16(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065373

RESUMEN

Carbon Fiber Reinforced Polymers (CFRP) have become increasingly significant in real-world applications due to their superior strength-to-weight ratio, corrosion resistance, and high stiffness. These properties make CFRP an ideal material for reinforcing concrete structures, particularly in scenarios where weight reduction is crucial, such as in bridges and high-rise buildings. The transformative potential of CFRP lies in its ability to enhance the durability and load-bearing capacity of concrete structures while minimizing maintenance costs and extending the lifespan of the infrastructure. This research explores the impact of reinforcing structural elements with advanced composite materials on the strength and durability of concrete and reinforced concrete structures. By integrating Carbon Fiber Reinforced Polymer (CFRP) reinforcements, we subjected both rectangular and T-section concrete beams to comprehensive three-point bending tests, revealing a substantial increase in flexural strength by 45% and crack resistance due to CFRP reinforcement. The study revealed that CFRP reinforcement increased the flexural strength of concrete beams by 45% and improved crack resistance significantly. Additionally, the load-bearing capacity of the beams was enhanced by 40% compared to unreinforced specimens. These improvements were validated through finite element simulations, which showed a close alignment with the experimental data. Furthermore, an innovative simulation study was conducted using a finely tuned finite element numerical model within the Abaqus calculation code. This model accurately replicated the laboratory specimens in terms of shape, dimensions, and loading conditions. The simulation results not only validated the experimental observations but also provided deeper insights into the stress distribution and failure mechanisms of the reinforced beams. Novel aspects of this study include the identification of specific failure patterns unique to CFRP-reinforced beams and the introduction of an enhanced interaction model that more accurately reflects the composite behavior under load. In CFRP-reinforced beams, specific failure patterns were identified, including flexural cracks in the tension zone and debonding of the CFRP sheets. These patterns indicate the points of maximum stress concentration and potential weaknesses in the reinforcement strategy. The study revealed that while CFRP significantly improves the overall strength and stiffness, careful attention must be given to the bonding process and the quality of the adhesive used to ensure optimal performance. These findings contribute significantly to the understanding of material interactions and structural performance, offering new pathways for the design and optimization of composite-reinforced concrete structures. This research underscores the transformative potential of composite materials in elevating the structural integrity and longevity of concrete infrastructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA