Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.238
Filtrar
1.
Biosens Bioelectron ; 267: 116773, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39277920

RESUMEN

Prostate Imaging Reporting and Data System (PI-RADS) score, a reporting system of prostate MRI cases, has become a standard prostate cancer (PCa) screening method due to exceptional diagnosis performance. However, PI-RADS 3 lesions are an unmet medical need because PI-RADS provides diagnosis accuracy of only 30-40% at most, accompanied by a high false-positive rate. Here, we propose an explainable artificial intelligence (XAI) based PCa screening system integrating a highly sensitive dual-gate field-effect transistor (DGFET) based multi-marker biosensor for ambiguous lesions identification. This system produces interpretable results by analyzing sensing patterns of three urinary exosomal biomarkers, providing a possibility of an evidence-based prediction from clinicians. In our results, XAI-based PCa screening system showed a high accuracy with an AUC of 0.93 using 102 blinded samples with the non-invasive method. Remarkably, the PCa diagnosis accuracy of patients with PI-RADS 3 was more than twice that of conventional PI-RADS scoring. Our system also provided a reasonable explanation of its decision that TMEM256 biomarker is the leading factor for screening those with PI-RADS 3. Our study implies that XAI can facilitate informed decisions, guided by insights into the significance of visualized multi-biomarkers and clinical factors. The XAI-based sensor system can assist healthcare professionals in providing practical and evidence-based PCa diagnoses.

2.
Discov Nano ; 19(1): 140, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227488

RESUMEN

In this paper, we introduce a novel Forkshape nanosheet Inductive Tunnel Field-Effect Transistor (FS-iTFET) featuring a Gate-All-Around structure and a full-line tunneling heterojunction channel. The overlapping gate and source contact regions create a strong and uniform electric field in the channel. Furthermore, the metal-semiconductor Schottky junction in the intrinsic source region induces the required carriers without the need for doping. This innovative design achieves both a steeper subthreshold swing (SS) and a higher ON-state current (ION). Using calibration-based simulations with Sentaurus TCAD, we compare the performance of three newly designed device structures: the conventional Nanosheet Tunnel Field-Effect Transistor (NS-TFET), the Nanosheet Line-tunneling TFET (NS-LTFET), and the proposed FS-iTFET. Simulation results show that, compared to the traditional NS-TFET, the NS-LTFET with its full line-tunneling structure improves the average subthreshold swing (SSAVG) by 19.2%. More significantly, the FS-iTFET, utilizing the Schottky-inductive source, further improves the SSAVG by 49% and achieves a superior ION/IOFF ratio. Additionally, we explore the impact of Trap-Assisted Tunneling on the performance of the three different integrations. The FS-iTFET consistently demonstrates superior performance across various metrics, highlighting its potential in advancing tunnel field-effect transistor technology.

3.
ACS Sens ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268764

RESUMEN

This paper presents an aptameric graphene nanosensor for rapid and sensitive measurement of arginine vasopressin (AVP) toward continuous monitoring of critical care patients. The nanosensor is a field-effect transistor (FET) with monolayer graphene as the conducting channel and is functionalized with a new custom-designed aptamer for specific AVP recognition. Binding between the aptamer and AVP induces a change in the carrier density in the graphene and resulting in measurable changes in FET characteristics for determination of the AVP concentration. The aptamer, based on the natural enantiomer D-deoxyribose, possess optimized kinetic binding properties and is attached at an internal position to the graphene for enhanced sensitivity to low concentrations of AVP. Experimental results show that this aptameric graphene nanosensor is highly sensitive (with a limit of detection of 0.3 pM and a resolution of 0.1 pM) to AVP, and rapidly responsive (within 90 s) to both increasing and decreasing AVP concentration changes. The device is also reversable (within 4%), repeatable (within 4%) and reproducible (within 5%) in AVP measurements.

4.
Nanotechnology ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284313

RESUMEN

The charge neutrality point (CNP) is one of the essential parameters in the development of graphene field-effect transistors (GFET). For GFET with an intrinsic graphene channel layer, the CNP is typically near-zero-volt gate voltage, implying that a well-balanced density of electrons and holes exists in the graphene channel layer. Fabricated GFET, however, typically exhibits CNP that is either positively or negatively shifted from the near-zero-volt gate voltage, implying that the graphene channel layer is unintentionally doped, leading to a unipolar GFET transfer characteristic. Furthermore, the CNP is also modulated in time, indicating that charges are dynamically induced in the graphene channel layer. In this work, understanding and mitigating the CNP shift were attempted by introducing passivation layers made of polyvinyl alcohol (PVA) and polydimethylsiloxane (PDMS) onto the graphene channel layer. The CNP was found to be negatively shifted, recovered back to near-zero-volt gate voltage, and then positively shifted in time. By analyzing the charge density, carrier mobility, and correlation between the CNP and the charge density, it can be concluded that positive CNP shifts can be attributed to the charge trapping at the graphene/SiO2 interface. The negative CNP shift, on the other hand, is caused by dipole coupling between dipoles in the polymer layer and carriers on the surface of the graphene layer. By gaining a deeper understanding of the intricate mechanisms governing the CNP shifts, an ambiently stable GFET suitable for next-generation electronics could be realized. .

5.
ACS Appl Mater Interfaces ; 16(32): 42597-42607, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39102741

RESUMEN

Field-effect transistor (FET) biosensors based on two-dimensional (2D) materials are highly sought after for their high sensitivity, label-free detection, fast response, and ease of on-chip integration. However, the subthreshold swing (SS) of FETs is constrained by the Boltzmann limit and cannot fall below 60 mV/dec, hindering sensor sensitivity enhancement. Additionally, the gate-leakage current of 2D material biosensors in liquid environments significantly increases, adversely affecting the detection accuracy and stability. Based on the principle of negative capacitance, this paper presents for the first time a two-dimensional material WSe2 negative capacitance field-effect transistor (NCFET) with a minimum subthreshold swing of 56 mV/dec in aqueous solution. The NCFET shows a significantly improved biosensor function. The pH detection sensitivity of the NCFET biosensor reaches 994 pH-1, nearly an order of magnitude higher than that of the traditional two-dimensional WSe2 FET biosensor. The Al2O3/HfZrO (HZO) bilayer dielectric in the NCFET not only contributes to negative capacitance characteristics in solution but also significantly reduces the leakage in solution. Utilizing an enzyme catalysis method, the WSe2 NCFET biosensor demonstrates a specific detection of glucose molecules, achieving a high sensitivity of 4800 A/A in a 5 mM glucose solution and a low detection limit (10-9 M). Further experiments also exhibit the ability of the biosensor to detect glucose in sweat.


Asunto(s)
Técnicas Biosensibles , Capacidad Eléctrica , Glucosa , Transistores Electrónicos , Técnicas Biosensibles/instrumentación , Glucosa/análisis , Óxido de Aluminio/química , Hafnio/química , Concentración de Iones de Hidrógeno , Óxidos
6.
ACS Nano ; 18(34): 22917-22925, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39146319

RESUMEN

Ion transport is a critical phenomenon underpinning numerous biological, physical, and chemical systems. Proton transistors leveraging proton transport face significant limitations, such as a low on-off ratio and deficient carrier mobility, which restrict their applicability in biological and other scenarios. This study explores the use of two-dimensional (2D) vacancy-residing transition metal phosphorus trichallcogenide-based membranes as the active layer for proton field-effect transistors. The synthesized Cd0.85PS3Li0.15H0.15 membrane exhibits a well-organized layered structure and high hydrophilicity, with nanometer-sized interlayers containing interconnected water networks. These distinct features facilitate proton conduction, leading to a high proton conductivity value of 0.83 S cm-1 at 98% relative humidity and 90 °C, with an activation energy of 0.26 eV. The Cd0.85PS3Li0.15H0.15-based proton transistor demonstrates tunability via gate voltage, thereby enabling effective modulation of proton flow across source and drain electrodes. The transistor notably showcases superior switching characteristics, with an on/off ratio surpassing 5.51 and a carrier mobility of 8.84 × 10-2 cm2 V-1 s-1. The underlying mechanism for this performance enhancement is attributed to electric-field-induced switching in Cd vacancies. This research boosts the development of highly versatile ionotropic devices by introducing advanced 2D ion-conductive membranes.

7.
ACS Nano ; 18(33): 21873-21885, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39115266

RESUMEN

The silicon nanowire field-effect transistor (SiNW FET) has been developed for over two decades as an ultrasensitive, label-free biosensor for biodetection. However, inconsistencies in manufacturing and surface functionalization at the nanoscale have led to poor sensor-to-sensor consistency in performance. Despite extensive efforts to address this issue through process improvements and calibration methods, the outcomes have not been satisfactory. Herein, based on the strong correlation between the saturation response of SiNW FET biosensors and both their feature size and surface functionalization, we propose a calibration strategy that combines the sensing principles of SiNW FET with the Langmuir-Freundlich model. By normalizing the response of the SiNW FET biosensors (ΔI/I0) with their saturation response (ΔI/I0)max, this strategy fundamentally overcomes the issues mentioned above. It has enabled label-free detection of nucleic acids, proteins, and exosomes within 5 min, achieving detection limits as low as attomoles and demonstrating a significant reduction in the coefficient of variation. Notably, the nucleic acid test results exhibit a strong correlation with the ultraviolet-visible (UV-vis) spectrophotometer measurements, with a correlation coefficient reaching 0.933. The proposed saturation response calibration strategy exhibits good universality and practicability in biological detection applications, providing theoretical and experimental support for the transition of mass-manufactured nanosensors from theoretical research to practical application.


Asunto(s)
Técnicas Biosensibles , Nanocables , Silicio , Transistores Electrónicos , Silicio/química , Técnicas Biosensibles/instrumentación , Nanocables/química , Calibración , Ácidos Nucleicos/análisis
8.
Biosensors (Basel) ; 14(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39194623

RESUMEN

Herein, we present a novel approach to quantify ferritin based on the integration of an Enzyme-Linked Immunosorbent Assay (ELISA) protocol on a Graphene Field-Effect Transistor (gFET) for bioelectronic immunosensing. The G-ELISA strategy takes advantage of the gFET inherent capability of detecting pH changes for the amplification of ferritin detection using urease as a reporter enzyme, which catalyzes the hydrolysis of urea generating a local pH increment. A portable field-effect transistor reader and electrolyte-gated gFET arrangement are employed, enabling their operation in aqueous conditions at low potentials, which is crucial for effective biological sample detection. The graphene surface is functionalized with monoclonal anti-ferritin antibodies, along with an antifouling agent, to enhance the assay specificity and sensitivity. Markedly, G-ELISA exhibits outstanding sensing performance, reaching a lower limit of detection (LOD) and higher sensitivity in ferritin quantification than unamplified gFETs. Additionally, they offer rapid detection, capable of measuring ferritin concentrations in approximately 50 min. Because of the capacity of transistor miniaturization, our innovative G-ELISA approach holds promise for the portable bioelectronic detection of multiple biomarkers using a small amount of the sample, which would be a great advancement in point-of-care testing.


Asunto(s)
Técnicas Biosensibles , Ensayo de Inmunoadsorción Enzimática , Ferritinas , Grafito , Transistores Electrónicos , Ferritinas/análisis , Grafito/química , Límite de Detección , Humanos
9.
Nanomaterials (Basel) ; 14(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39195363

RESUMEN

The impact of radiation on MoS2-based devices is an important factor in the utilization of two-dimensional semiconductor-based technology in radiation-sensitive environments. In this study, the effects of gamma irradiation on the electrical variations in MoS2 field-effect transistors with buried local back-gate structures were investigated, and their related effects on Al2O3 gate dielectrics and MoS2/Al2O3 interfaces were also analyzed. The transfer and output characteristics were analyzed before and after irradiation. The current levels decreased by 15.7% under an exposure of 3 kGy. Additionally, positive shifts in the threshold voltages of 0.50, 0.99, and 1.15 V were observed under irradiations of 1, 2, and 3 kGy, respectively, compared to the non-irradiated devices. This behavior is attributable to the comprehensive effects of hole accumulation in the Al2O3 dielectric interface near the MoS2 side and the formation of electron trapping sites at the interface, which increased the electron tunneling at the MoS2 channel/dielectric interface.

10.
Biosens Bioelectron ; 264: 116679, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39167889

RESUMEN

Various organisms produce several products to defend themselves from the environment and enemies. These natural products have pharmacological and biological activities and are used for therapeutic purposes, retaining bitter taste because of chemical defense mechanisms. Cnicin is a plant-derived bitter sesquiterpene lactone with pharmacological characteristics such as anti-bacterial, anti-myeloma, anti-cancer, anti-tumor, anti-oxidant, anti-inflammatory, allelopathic, and cytotoxic properties. Although many studies have focused on cnicin detection, they have limitations and novel cnicin-detecting strategies are required. In this study, we developed the bioelectronics for screening cnicin using its distinct taste. hTAS2R46 was produced using an Escherichia coli expression system and reconstituted into nanodiscs (NDs). The binding sites and energy between hTAS2R46 and cnicin were investigated using biosimulations. hTAS2R46-NDs were combined with a side-gated graphene micropatterned field-effect transistor (SGMFET) to construct hTAS2R46-NDs bioelectronics. The construction was examined by chemical and electrical characterization. The developed system exhibited unprecedented performance, 10 fM limit of detection, rapid response time (within 10 s), 0.1354 pM-1 equilibrium constant, and high selectivity. Furthermore, the system was stable as the sensing performance was maintained for 15 days. Therefore, the hTAS2R46-NDs bioelectronics can be utilized to screen cnicin from natural products and applied in the food and drug industries.


Asunto(s)
Técnicas Biosensibles , Receptores Acoplados a Proteínas G , Humanos , Técnicas Biosensibles/métodos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Gusto , Nanoestructuras/química , Sesquiterpenos/análisis , Sesquiterpenos/química , Transistores Electrónicos , Escherichia coli , Fitoquímicos/química , Fitoquímicos/farmacología
11.
Beilstein J Nanotechnol ; 15: 977-994, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136041

RESUMEN

Over the last few decades, field-effect transistor (FET)-based biosensors have demonstrated great potential across various industries, including medical, food, agriculture, environmental, and military sectors. These biosensors leverage the electrical properties of transistors to detect a wide range of biomolecules, such as proteins, DNA, and antibodies. This article presents a comprehensive review of advancements in the architectures of FET-based biosensors aiming to enhance device performance in terms of sensitivity, detection time, and selectivity. The review encompasses an overview of emerging FET-based biosensors and useful guidelines to reach the best device dimensions, favorable design, and realization of FET-based biosensors. Consequently, it furnishes researchers with a detailed perspective on design considerations and applications for future generations of FET-based biosensors. Finally, this article proposes intriguing avenues for further research on the topology of FET-based biosensors.

12.
ACS Nano ; 18(32): 21198-21210, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39099110

RESUMEN

The real-time monitoring of low-concentration cytokines such as TNF-α in sweat can aid clinical physicians in assessing the severity of inflammation. The challenges associated with the collection and the presence of impurities can significantly impede the detection of proteins in sweat. This issue is addressed by incorporating a nanosphere array designed for automatic sweat transportation, coupled with a reusable sensor that employs a Nafion/aptamer-modified MoS2 field-effect transistor. The nanosphere array with stepwise wettability enables automatic collection of sweat and blocks impurities from contaminating the detection zone. This device enables direct detection of TNF-α proteins in undiluted sweat, within a detection range of 10 fM to 1 nM. The use of an ultrathin, ultraflexible substrate ensures stable electrical performance, even after up to 30 extreme deformations. The findings indicate that in clinical scenarios, this device could potentially provide real-time evaluation and management of patients' immune status via sweat testing.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Sudor , Sudor/química , Humanos , Biomarcadores/análisis , Técnicas Biosensibles/instrumentación , Nanotecnología/instrumentación , Factor de Necrosis Tumoral alfa/análisis , Citocinas/análisis , Automatización , Disulfuros , Molibdeno
13.
Nanomaterials (Basel) ; 14(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39120412

RESUMEN

In this article, we propose a dual-gate dielectric face tunnel field-effect transistor (DGDFTFET) that can exhibit three different output voltage states. Meanwhile, according to the requirements of the ternary operation in the ternary inverter, four related indicators representing the performance of the DGDFTFET are proposed, and we explain the impact of these indicators on the inverter and confirm that better indicators can be obtained by choosing appropriate design parameters for the device. Then, the ternary inverter implemented with this device can exhibit voltage transfer characteristics (VTCs) with three stable output voltage levels and bigger static noise margins (SNMs). In addition, by comparing the indicators of the DGDFTFET and a face tunnel field-effect transistor (FTFET), as well as the SNM of inverters, it is demonstrated that the performance of the DGDFTFET far surpasses the FTFET.

14.
Sensors (Basel) ; 24(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39204816

RESUMEN

Molecularly imprinted membranes (MIMs) have been a focal research interest since 1990, representing a breakthrough in the integration of target molecules into membrane structures for cutting-edge sensing applications. This paper traces the developmental history of MIMs, elucidating the diverse methodologies employed in their preparation and characterization on two-dimensional solid-supported substrates. We then explore the principles and diverse applications of MIMs, particularly in the context of emerging technologies encompassing electrochemistry, surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), and the quartz crystal microbalance (QCM). Furthermore, we shed light on the unique features of ion-sensitive field-effect transistor (ISFET) biosensors that rely on MIMs, with the notable advancements and challenges of point-of-care biochemical sensors highlighted. By providing a comprehensive overview of the latest innovations and future trajectories, this paper aims to inspire further exploration and progress in the field of MIM-driven sensing technologies.

15.
ACS Nano ; 18(35): 24262-24268, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39158860

RESUMEN

Controlling the surface diffusion of particles on 2D devices creates opportunities for advancing microscopic processes such as nanoassembly, thin-film growth, and catalysis. Here, we demonstrate the ability to control the diffusion of F4TCNQ molecules at the surface of clean graphene field-effect transistors (FETs) via electrostatic gating. Tuning the back-gate voltage (VG) of a graphene FET switches molecular adsorbates between negative and neutral charge states, leading to dramatic changes in their diffusion properties. Scanning tunneling microscopy measurements reveal that the diffusivity of neutral molecules decreases rapidly with a decreasing VG and involves rotational diffusion processes. The molecular diffusivity of negatively charged molecules, on the other hand, remains nearly constant over a wide range of applied VG values and is dominated by purely translational processes. First-principles density functional theory calculations confirm that the energy landscapes experienced by neutral vs charged molecules lead to diffusion behavior consistent with experiment. Gate-tunability of the diffusion barrier for F4TCNQ molecules on graphene enables graphene FETs to act as diffusion switches.

16.
ACS Appl Mater Interfaces ; 16(36): 48556-48564, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39186441

RESUMEN

One of the primary factors hindering the development of 2D material-based devices is the difficulty of overcoming fabrication processes, which pose a challenge in achieving low-resistance contacts. Widely used metal deposition methods lead to unfavorable Fermi level pinning effect (FLP), which prevents control over the Schottky barrier height at the metal/2D material junction. We propose to harness the FLP effect to lower contact resistance in field-effect transistors (FETs) by using an additional 2D interlayer at the conducting channel and metallic contact interface (under-contact interlayer). To do so, we developed a new approach using the gold-assisted transfer method, which enables the fabrication of heterostructures consisting of TMDs monolayers with complex shapes, prepatterned using e-beam lithography, with lateral dimensions even down to 100 nm. We designed and demonstrated tungsten disulfide (WS2) monolayer-based devices in which the molybdenum disulfide (MoS2) monolayer is placed only in the contact area of the FET, creating an Au/MoS2/WS2 junction, which effectively reduces contact resistance by over 60% and improves the Ion/Ioff ratio 10 times in comparison to WS2-based devices without MoS2 under-contact interlayer. The enhancement in the device operation arises from the FLP effect occurring only at the interface between the metal and the first layer of the MoS2/WS2 heterostructure. This results in favorable band alignment, which enhances the current flow through the junction. To ensure the reproducibility of our devices, we systematically analyzed 160 FET devices fabricated with under-contact interlayer and without it. Statistical analysis shows a consistent improvement in the operation of the device and reveals the impact of contact resistance on key FET performance indicators.

17.
Bioelectrochemistry ; 160: 108794, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39142024

RESUMEN

Accurate, convenient, label-free, and cost-effective biomolecules detection platforms are currently in high demand. In this study, we showcased the utilization of electrolyte-gated InGaZnO field-effect transistors (IGZO FETs) featuring a large on-off current ratio of over 106 and a low subthreshold slope of 78.5 mV/dec. In the DNA biosensor, the modification of target DNA changed the effective gate voltage of IGZO FETs, enabling an impressive low detection limit of 0.1 pM and a wide linear detection range from 0.1 pM to 1 µM. This label-free detection method also exhibits high selectivity, allowing for the discrimination of single-base mismatch. Furthermore, the reuse of gate electrodes and channel films offers cost-saving benefits and simplifies device fabrication processes. The electrolyte-gated IGZO FET biosensor presented in this study shows great promise for achieving low-cost and highly sensitive detection of various biomolecules.


Asunto(s)
Técnicas Biosensibles , ADN , Electrólitos , Límite de Detección , Transistores Electrónicos , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , ADN/análisis , Electrólitos/química , Indio/química , Electrodos
18.
Small ; : e2404770, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105335

RESUMEN

Fullerene (C60) crystals have attracted considerable attention in the field of optoelectronic devices owing to their excellent performance as n-type semiconductor material. However, a challenge still remains unbeaten as to the continuous crystallization of non-solvated C60 single-crystal films with high coverage and uniform alignment using low-cost solution techniques. Here, a facile bar coating method is used to prepare ribbon-shaped non-solvated C60 crystals with a large area (up to centimeters) and high coverage (>95%) by precisely controlling the crystallization process from specific solvents. Benefiting from the non-solvated crystalline structure, well-distributed thickness, uniform morphological alignment, and crystallographic orientation, organic field-effect transistors fabricated from the C60 single-crystal films exhibit a high average electron mobility of 2.28 cm2 V-1s-1, along with the coefficient of variance (CV) as small as 13.6%. This efficient manufacturing method will lay a strong foundation for C60 single-crystal films to fit into the future high-performance integrated optoelectronic application.

19.
Nano Lett ; 24(35): 10957-10963, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39171725

RESUMEN

Logic-in-memory (LIM) architecture holds great potential to break the von Neumann bottleneck. Despite the extensive research on novel devices, challenges persist in developing suitable engineering building blocks for such designs. Herein, we propose a reconfigurable strategy for efficient implementation of Boolean logics based on a hafnium oxide-based ferroelectric field effect transistor (HfO2-based FeFET). The logic results are stored within the device itself (in situ) during the computation process, featuring the key characteristics of LIM. The fast switching speed and low power consumption of a HfO2-based FeFET enable the execution of Boolean logics with an ultralow energy of lower than 8 attojoule (aJ). This represents a significant milestone in achieving aJ-level computing energy consumption. Furthermore, the system demonstrates exceptional reliability with computing endurance exceeding 108 cycles and retention properties exceeding 1000 s. These results highlight the remarkable potential of a FeFET for the realization of high performance beyond the von Neumann LIM computing architectures.

20.
Talanta ; 279: 126604, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39068827

RESUMEN

Cancer, a life-threatening genetic disease caused by abnormalities in normal cell growth regulatory functions, poses a significant challenge that current medical technologies cannot fully overcome. The current desired breakthrough is to diagnose cancer as early as possible and increase survival rates through treatments tailored to the prognosis and appropriate follow-up. From a perspective that reflects this contemporary paradigm of cancer diagnostics, exosomes are emerging as promising biomarkers. Exosomes, serving as mobile biological information repositories of cancer cells, have been known to create a microtumor environment in surrounding cells, and significant insight into the clinical significance of cancer diagnosis targeting them has been reported. Therefore, there are growing interests in constructing a system that enables continuous screening with a focus on patient-friendly and flexible diagnosis, aiming to improve cancer screening rates through exosome detection. This review focuses on a proposed exosome-embedded biological information-detecting platform employing a field-effect transistor (FET)-based biosensor that leverages portability, cost-effectiveness, and rapidity to minimize the stages of sacrifice attributable to cancer. The FET-applied biosensing technique, stemming from variations in an electric field, is considered an early detection system, offering high sensitivity and a prompt response frequency for the qualitative and quantitative analysis of biomolecules. Hence, an in-depth discussion was conducted on the understanding of various exosome-based cancer biomarkers and the clinical significance of recent studies on FET-based biosensors applying them.


Asunto(s)
Técnicas Biosensibles , Exosomas , Nanoestructuras , Neoplasias , Transistores Electrónicos , Exosomas/metabolismo , Exosomas/química , Humanos , Técnicas Biosensibles/métodos , Neoplasias/diagnóstico , Nanoestructuras/química , Biomarcadores de Tumor/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA