Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Cell Physiol ; : e31404, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129212

RESUMEN

Skin wound healing is a well-coordinated process in which various cells and factors participate, during which fibroblast exhibits a critical role by exerting its multiple activities, including proliferation, migration, invasion, and differentiation. Previous studies have identified that fibromodulin (FMOD) could enhance dermal wound healing by promoting skin fibroblast activities, but little is known about its upstream regulator. We occasionally found that FMOD expression was downregulated in skin fibroblast by transforming growth factor-ß1 treatment. It was hypothesized that microRNAs (miRNA) in skin fibroblast could downregulate FMOD production and blocking them would increase FMOD expression, as well as promote skin wound healing. Here, by utilizing combined analysis of miRNA microarray from the Gene Expression Omnibus database and miRNA targets prediction, we successfully identified a miRNA, termed miR-494-3p, could regulate FMOD production in human skin fibroblast (BJ fibroblast). The functional analysis revealed that miR-494-3p mimics could inhibit BJ fibroblast migration and invasion but not proliferation and differentiation, while miR-494-3p inhibition markedly promotes migration, invasion, and differentiation of BJ fibroblast. Moreover, we established FMOD overexpression (OE) and knockout BJ fibroblast. We found that FMOD OE could rescue the inhibitory effects of miR-494-3p mimics on the migration and invasion of BJ fibroblast. In contrast, the miR-494-3p inhibitor transfection could not enhance migration, invasion, and differentiation of FMOD KO BJ fibroblast. Together, our results suggest that miR-494-3p may be a potential target for skin wound management via regulating FMOD production.

2.
Immun Inflamm Dis ; 11(10): e1003, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37904680

RESUMEN

BACKGROUND: Myocardial fibrosis is an important factor in the induction and maintenance of atrial fibrillation (AF). Fibromodulin (FMOD) promotes fibrotic gene expression. However, its specific role in spontaneously hypertensive rats (SHR)-AF remains unclear. METHODS: We analyzed FMOD mRNA and protein expression in rat atrial tissues using RT-qPCR, Western blot analysis, and immunohistochemistry. Histopathological examination of atrial tissues was performed using hematoxylin and eosin (H&E), Masson's trichrome, and Picrosirius red staining. The levels of inflammatory and fibrosis-related proteins were measured using Western blot analysis. RESULTS: FMOD relative mRNA and protein expression levels were notably upregulated in atrial tissues of both AF groups (normal-AF and SHR-AF groups) than that in atrial tissues of the no-AF group (normal and SHR group). This effect was particularly pronounced in the SHR-AF group. Pathological changes revealed that the extracellular matrix, collagen, collagen fibers, and left atrial diameter were notably increased in the atrial tissues from the SHR-AF group compared to those in the atrial tissues from the SHR group, whereas the left ventricular fractional shortening and left ventricular ejection fraction were notably lower. Expression of TLR4, MyD88, NLRP3, TGF-ß1, collagen I, and collagen II mRNA were clearly higher in atrial tissues from the SHR-AF group than in those from the SHR group. Protein levels of TLR4, MyD88, NLRP3, Cleavage-Caspase-1, Cleavage-IL-1ß, TGF-ß1, p-Smad2, collagen I, and collagen II were clearly higher in atrial tissues from the SHR-AF group than in those from the SHR group. FMOD knockdown inhibited atrial fibrosis, collagen accumulation, and the TLR4/MyD88/NLRP3 signaling pathway. CONCLUSION: Downregulation of FMOD attenuated inflammatory signaling and atrial fibrosis in SHR-AF by inhibiting the TLR4/NLRP3 signaling pathway. Therefore, FMOD may be a promising therapeutic target in AF.


Asunto(s)
Fibrilación Atrial , Animales , Ratas , Fibrilación Atrial/genética , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/patología , Colágeno , Regulación hacia Abajo , Fibromodulina/genética , Fibromodulina/metabolismo , Fibrosis , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Endogámicas SHR , ARN Mensajero/metabolismo , Transducción de Señal , Volumen Sistólico , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Función Ventricular Izquierda
3.
Front Immunol ; 14: 1191787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483637

RESUMEN

Inflammation is an immune response that the host organism eliminates threats from foreign objects or endogenous signals. It plays a key role in the progression, prognosis as well as therapy of diseases. Chronic inflammatory diseases have been regarded as the main cause of death worldwide at present, which greatly affect a vast number of individuals, producing economic and social burdens. Thus, developing drugs targeting inflammation has become necessary and attractive in the world. Currently, accumulating evidence suggests that small leucine-rich proteoglycans (SLRPs) exhibit essential roles in various inflammatory responses by acting as an anti-inflammatory or pro-inflammatory role in different scenarios of diseases. Of particular interest was a well-studied member, termed fibromodulin (FMOD), which has been largely explored in the role of inflammatory responses in inflammatory-related diseases. In this review, particular focus is given to the role of FMOD in inflammatory response including the relationship of FMOD with the complement system and immune cells, as well as the role of FMOD in the diseases associated with inflammation, such as skin wounding healing, osteoarthritis (OA), tendinopathy, atherosclerosis, and heart failure (HF). By conducting this review, we intend to gain insight into the role of FMOD in inflammation, which may open the way for the development of new anti-inflammation drugs in the scenarios of different inflammatory-related diseases.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Fibromodulina
4.
Clin Immunol ; 251: 109638, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149118

RESUMEN

According to epidemiological research, skin autoimmune diseases are more prevalent among black Americans. We postulated that pigment-producing melanocytes may contribute to local immune regulation in the microenvironment. We examined murine epidermal melanocytes in vitro to determine the role of pigment production in immune responses mediated by dendritic cell (DC) activation. Our study revealed that darkly pigmented melanocytes produce more IL-3 and the pro-inflammatory cytokines, IL-6 and TNF-α, and consequently induce plasmacytoid DC (pDC) maturation. Additionally, we demonstrate that low pigment-associated fibromodulin (FMOD) interferes with cytokine secretion and subsequent pDC maturation.


Asunto(s)
Citocinas , Interleucina-3 , Humanos , Animales , Ratones , Interleucina-3/metabolismo , Interleucina-3/farmacología , Fibromodulina/metabolismo , Citocinas/metabolismo , Pigmentación , Células Dendríticas
5.
Pharmaceutics ; 15(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986805

RESUMEN

Colorectal cancer (CRC) is the leading cause of cancer-related deaths worldwide. Fibromodulin (FMOD) is the main proteoglycan that contributes to extracellular matrix (ECM) remodeling by binding to matrix molecules, thereby playing an essential role in tumor growth and metastasis. There are still no useful drugs that target FMOD for CRC treatment in clinics. Here, we first used public whole-genome expression datasets to analyze the expression level of FMOD in CRC and found that FMOD was upregulated in CRC and associated with poor patient prognosis. We then used the Ph.D.-12 phage display peptide library to obtain a novel FMOD antagonist peptide, named RP4, and tested its anti-cancer effects of RP4 in vitro and in vivo. These results showed that RP4 inhibited CRC cell growth and metastasis, and promoted apoptosis both in vitro and in vivo by binding to FMOD. In addition, RP4 treatment affected the CRC-associated immune microenvironment in a tumor model by promoting cytotoxic CD8+ T and NKT (natural killer T) cells and inhibiting CD25+ Foxp3+ Treg cells. Mechanistically, RP4 exerted anti-tumor effects by blocking the Akt and Wnt/ß-catenin signaling pathways. This study implies that FMOD is a potential target for CRC treatment, and the novel FMOD antagonist peptide RP4 can be developed as a clinical drug for CRC treatment.

6.
Bioeng Transl Med ; 8(1): e10355, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684085

RESUMEN

A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.

7.
Methods Mol Biol ; 2619: 187-209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662471

RESUMEN

Composite agarose-polyacrylamide gel electrophoresis (CAPAGE) in gels of 1.2% w/v polyacrylamide and 0.6% w/v agarose can be used to examine the heterogeneity of full-length native proteoglycan populations and their fragments in crude tissue extracts, and when used in conjunction with immunoblotting and specific antibodies to proteoglycan core protein and glycosaminoglycan, side chain epitopes can provide significant information on the level of proteoglycan polydispersity/heterogeneity and a number of proteoglycan populations present in tissue samples. This can be a technically difficult technique, but it reveals significant information on proteoglycans from small tissue samples not possible by any other separation methodology. Native full-length and proteoglycan fragments are examined in this technique something which cannot be done in the popular SDS-PAGE format unless the glycosaminoglycan side chains are first removed. Furthermore, since proteoglycans do not require renaturation from SDS-protein complexes, the proteoglycan populations separated by native electrophoresis are highly reactive with antibodies in immunoblotting procedures. Despite the massive sizes of proteoglycans, transfer conditions have been determined which provide close to quantitative transfer to nitrocellulose membranes without exceeding the binding capacity of such membranes, avoiding bleed-through of the transferred proteoglycans. Development of biotinylated hyaluronan and its application in an affinity blotting procedure has also yielded significant information on aggregatable proteoglycan populations separated by CAPAGE from a number of cartilages and vascular tissues in health and disease. While the CAPAGE system can be a technically demanding technique to master particularly in gel preparation, all other steps are straightforward, and the method yields invaluable information on proteoglycan populations extracted from connective tissues in health and disease that cannot be ascertained by any other technique. Further improvements in the detection of proteoglycan features with the development of novel bio-affinity probes or new antibody preparations are expected to further improve the utility of CAPAGE separation methodology.


Asunto(s)
Proteínas de la Matriz Extracelular , Proteoglicanos , Proteoglicanos/metabolismo , Sefarosa , Immunoblotting , Glicosaminoglicanos , Electroforesis en Gel de Poliacrilamida , Proteoglicanos Tipo Condroitín Sulfato
8.
Dev Dyn ; 252(2): 227-238, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35137473

RESUMEN

BACKGROUND: Initial lymphatic vessels do not have a continuous basement membrane. Therefore, the ability of lymphatic endothelial cells (LECs) to produce extracellular matrix (ECM) has received little attention. Untreated lymphedema is a chronic disease that progresses to massive fibrosclerosis in advanced stages. Expansion of the intercellular space and fibrosclerosis cause hypoxia, which also affects the LECs. RESULTS: We studied the expression of genes in human LECs in vitro by RNA sequencing, analyzed the effects of hypoxia (1% O2 ) vs. normoxia (21% O2 ), and focused on ECM genes. LECs express fibrillin-1 and many typical components of a basement membrane such as type IV, VIII, and XVIII collagen, laminin ß1, ß2, and α4, perlecan, and fibronectin. Under hypoxia, we found significant upregulation of expression of genes controlling hydroxylation of procollagen (PLOD2, P4HA1), and also cross-linking, bundling, and stabilization of collagen fibrils and fibers. Also striking was the highly significant downregulation of elastin expression, whereas fibulin-5, which controls the assembly of tropoelastin monomers, was upregulated under hypoxia. In the dermis from genital lymphedema, we observed significant PLOD2 expression in initial lymphatics. CONCLUSIONS: Overall, hypoxia results in the picture of a dysregulated ECM production of LECs, which might be partly responsible for the progression of fibrosclerosis in lymphedema.


Asunto(s)
Células Endoteliales , Linfedema , Humanos , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Laminina/metabolismo , Hipoxia/metabolismo , Linfedema/metabolismo
9.
J Dent Res ; 102(2): 125-134, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36515321

RESUMEN

Fibromodulin (FMOD) is an archetypal member of the class II small leucine-rich proteoglycan family. By directly binding to extracellular matrix structural components, such as collagen and lysyl oxidase, FMOD regulates collagen cross-linking, packing, assembly, and fibril architecture via a multivalent interaction. Meanwhile, as a pluripotent molecule, FMOD acts as a ligand of various cytokines and growth factors, especially those belonging to the transforming growth factor (TGF) ß superfamily, by interacting with the corresponding signaling molecules involved in cell adhesion, spreading, proliferation, migration, invasion, differentiation, and metastasis. Consequently, FMOD exhibits promigratory, proangiogenic, anti-inflammatory, and antifibrogenic properties and plays essential roles in cell fate determination and maturation, progenitor cell recruitment, and tissue regeneration. The multifunctional nature of FMOD thus enables it to be a promising therapeutic agent for a broad repertoire of diseases, including but not limited to arthritis, temporomandibular joint disorders, caries, and fibrotic diseases among different organs, as well as to be a regenerative medicine candidate for skin, muscle, and tendon injuries. Moreover, FMOD is also considered a marker for tumor diagnosis and prognosis prediction and a potential target for cancer treatment. Furthermore, FMOD itself is sufficient to reprogram somatic cells into a multipotent state, creating a safe and efficient cell source for various tissue reconstructions and thus opening a new avenue for regenerative medicine. This review focuses on the recent preclinical efforts bringing FMOD research and therapies to the forefront. In addition, a contemporary understanding of the mechanism underlying FMOD's function, particularly its interaction with TGFß superfamily members, is also discussed at the molecular level to aid the discovery of novel FMOD-based treatments.


Asunto(s)
Colágeno , Cicatrización de Heridas , Fibromodulina/metabolismo , Colágeno/metabolismo , Adhesión Celular , Diferenciación Celular , Factor de Crecimiento Transformador beta , Proteínas de la Matriz Extracelular
10.
J Inflamm Res ; 15: 4515-4526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966006

RESUMEN

Introduction: Epidemiological studies have associated pigment production with protection against certain human diseases. In contrast to African Americans, European descendants are more likely to suffer from angiogenesis-dependent and inflammatory diseases, such as wet age-related macular degeneration (ARMD) and ulcerative colitis (UC), respectively. Methods: In a mouse model of dextran sulfate sodium (DSS)-induced acute colitis, the effect of fibromodulin (FMOD) depletion was examined on colitis severity. Results: In this study, albino mice that produce high levels of FMOD developed less severe acute colitis compared with mice lacking in FMOD as assessed by clinical symptoms and histopathological changes. FMOD depletion affected the expression of tight junction proteins, contributing to the destruction of the epithelial barrier. Furthermore, this study revealed a stronger inflammatory response after DSS treatment in the absence of FMOD, where FMOD depletion led to an increase in activated T cells, plasmacytoid dendritic cells (pDCs), and type I interferon (IFN) production. Discussion: These findings point to FMOD as a potential biomarker of disease severity in UC among light-skinned individuals of European descent.

11.
Breast Cancer ; 29(6): 1121-1132, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35982394

RESUMEN

BACKGROUND: Triple-negative breast cancers (TNBCs) are highly aggressive and metastatic. To date, finding efficacious targeted therapy molecules might be the only window of hope to cure cancer. Fibromodulin (FMOD), is ectopically highly expressed on the surface of Chronic Lymphocytic Leukemia (CLL) and bladder carcinoma cells; thus, it could be a promising molecule for targeted therapy of cancer. The objective of this study was to evaluate cell surface expression of FMOD in two TNBC cell lines and develop an antibody-drug conjugate (ADC) to target FMOD positive TNBC in vitro and in vivo. MATERIALS AND METHODS: Two TNBC-derived cell lines 4T1 and MDA-MB-231 were used in this study. The specific binding of anti-FMOD monoclonal antibody (mAb) was evaluated by flow cytometry and its internalization was verified using phAb amine reactive dye. A microtubulin inhibitor Mertansine (DM1) was used for conjugation to anti-FMOD mAb. The binding efficacy of FMOD-ADC was assessed by immunocytochemistry technique. The anti-FMOD mAb and FMOD-ADC apoptosis induction were measured using Annexin V-FITC and flow cytometry. Tumor growth inhibition of anti-FMOD mAb and FMOD-ADC was evaluated using BALB/c mice injected with 4T1 cells. RESULTS: Our results indicate that both anti-FMOD mAb and FMOD-ADC recognize cell surface FMOD molecules. FMOD-ADC could induce apoptosis in 4T1 and MDA-MB-231 cells in vitro. In vivo tumor growth inhibition was observed using FMOD-ADC in 4T1 inoculated BALB/c mice. CONCLUSION: Our results suggests high cell surface FMOD expression could be a novel bio-marker TNBCs. Furthermore, FMOD-ADC could be a promising candidate for targeting TNBCs.


Asunto(s)
Inmunoconjugados , Maitansina , Neoplasias de la Mama Triple Negativas , Ratones , Animales , Humanos , Neoplasias de la Mama Triple Negativas/patología , Fibromodulina/uso terapéutico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Maitansina/uso terapéutico , Modelos Animales de Enfermedad , Anticuerpos Monoclonales/uso terapéutico , Aminas/uso terapéutico , Línea Celular Tumoral
12.
Elife ; 112022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35642785

RESUMEN

Cancer stem cells (CSCs) alone can initiate and maintain tumors, but the function of non-cancer stem cells (non-CSCs) that form the tumor bulk remains poorly understood. Proteomic analysis showed a higher abundance of the extracellular matrix small leucine-rich proteoglycan fibromodulin (FMOD) in the conditioned medium of differentiated glioma cells (DGCs), the equivalent of glioma non-CSCs, compared to that of glioma stem-like cells (GSCs). DGCs silenced for FMOD fail to cooperate with co-implanted GSCs to promote tumor growth. FMOD downregulation neither affects GSC growth and differentiation nor DGC growth and reprogramming in vitro. DGC-secreted FMOD promotes angiogenesis by activating integrin-dependent Notch signaling in endothelial cells. Furthermore, conditional silencing of FMOD in newly generated DGCs in vivo inhibits the growth of GSC-initiated tumors due to poorly developed vasculature and increases mouse survival. Collectively, these findings demonstrate that DGC-secreted FMOD promotes glioma tumor angiogenesis and growth through paracrine signaling in endothelial cells and identifies a DGC-produced protein as a potential therapeutic target in glioma.


Asunto(s)
Células Endoteliales , Glioma , Animales , Células Endoteliales/metabolismo , Fibromodulina/metabolismo , Glioma/patología , Integrinas/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Neovascularización Patológica/metabolismo , Proteómica
13.
Clin Immunol ; 241: 109055, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35640789

RESUMEN

Skin pigmentation has been linked to the development, prevalence, and severity of several immune-mediated diseases such as SLE. Here, we asked whether fibromodulin (FMOD), which is highly expressed in skin with light complexion, can explain the known differences in the magnitude of inflammation. C57 mice with different levels of pigmentation and FMOD were injected with human lupus serum to induce skin inflammation. Histopathologic studies revealed that black C57 FMOD+/+ that produce low levels of FMOD and white C57 FMOD -/- mice develop more severe inflammation compared with white FMOD +/+ mice. This study also revealed that dark pigmentation and FMOD deletion correlates with the increased numbers of Langerhans cells. Altogether, we identify low pigmentation and FMOD are linked to low severity of inflammation and approaches to promote FMOD expression should offer clinical benefit.


Asunto(s)
Fibromodulina , Inflamación , Melanocitos , Piel , Animales , Fibromodulina/metabolismo , Humanos , Inflamación/metabolismo , Lupus Eritematoso Sistémico , Ratones , Piel/metabolismo , Piel/patología , Pigmentación de la Piel
14.
Adv Wound Care (New Rochelle) ; 11(4): 202-214, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34978952

RESUMEN

Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.


Asunto(s)
Proteoglicanos Pequeños Ricos en Leucina , Traumatismos de los Tendones , Animales , Biglicano , Decorina , Ratones , Tendones , Cicatrización de Heridas
15.
Matrix Biol ; 105: 53-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863915

RESUMEN

The cervix undergoes rapid and dramatic shifts in collagen and elastic fiber structure to achieve its disparate physiological roles of competence during pregnancy and compliance during birth. An understanding of the structure-function relationships of collagen and elastic fibers to maintain extracellular matrix (ECM) homeostasis requires an understanding of the mechanisms executed by non-structural ECM molecules. Small-leucine rich proteoglycans (SLRPs) play key functions in biology by affecting collagen fibrillogenesis and regulating enzyme and growth factor bioactivities. In the current study, we evaluated collagen and elastic fiber structure-function relationships in mouse cervices using mice with genetic ablation of decorin and/or biglycan genes as representative of Class I SLRPs, and lumican gene representative of Class II SLRP. We identified structural defects in collagen fibril and elastic fiber organization in nonpregnant mice lacking decorin, or biglycan or lumican with variable resolution of defects noted during pregnancy. The severity of collagen and elastic fiber defects was greater in nonpregnant mice lacking both decorin and biglycan and defects were maintained throughout pregnancy. Loss of biglycan alone reduced tissue extensibility in nonpregnant mice while loss of both decorin and biglycan manifested in decreased rupture stretch in late pregnancy. Collagen cross-link density was similar in the Class I SLRP null mice as compared to wild-type nonpregnant and pregnant controls. A broader range in collagen fibril diameter along with an increase in mean fibril spacing was observed in the mutant mice compared to wild-type controls. Collectively, these findings uncover functional redundancy and hierarchical roles of Class I and Class II SLRPs as key regulators of cervical ECM remodeling in pregnancy. These results expand our understating of the critical role SLRPs play to maintain ECM homeostasis in the cervix.


Asunto(s)
Proteoglicanos Pequeños Ricos en Leucina , Neoplasias del Cuello Uterino , Animales , Biglicano/genética , Biglicano/metabolismo , Cuello del Útero/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Decorina/genética , Decorina/metabolismo , Proteínas de la Matriz Extracelular/genética , Femenino , Fibromodulina , Humanos , Lumican/genética , Ratones , Embarazo , Proteoglicanos Pequeños Ricos en Leucina/genética
16.
Adv Exp Med Biol ; 1348: 127-138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34807417

RESUMEN

Proteoglycans consist of protein cores to which at least one glycosaminoglycan chain is attached. They play important roles in the physiology and biomechanical function of tendons, ligaments, cardiovascular system, and other systems through their involvement in regulation of assembly and maintenance of extracellular matrix, and through their participation in cell proliferation together with growth factors. They can be divided into two main groups, small and large proteoglycans. The small proteoglycans are also known as small leucine-rich proteoglycans (SLRPs) which are encoded by 18 genes and are further subclassified into Classes I-V. Several members of Class I and II, such as decorin and biglycan from Class I, and Class II fibromodulin and lumican, are known to regulate collagen fibrillogenesis. Decorin limits the diameter of collagen fibrils during fibrillogenesis. The function of biglycan in fibrillogenesis is similar to that of decorin. Though biomechanical function of tendon is compromised in decorin-deficient mice, decorin can substitute for lack of biglycan in biglycan-deficient mice. New data also indicate an important role for biglycan in disorders of the cardiovascular system, including aortic valve stenosis and aortic dissection. Two members of the Class II of SLRPs, fibromodulin and lumican bind to the same site within the collagen molecule and can substitute for each other in fibromodulin- or lumican-deficient mice.Aggrecan and versican are the major representatives of the large proteoglycans. Though they are mainly found in the cartilage where they provide resilience and toughness, they are present also in tensile portions of tendons and, in slightly different biochemical form in fibrocartilage. Degradation by aggrecanase is responsible for the appearance of different forms of aggrecan and versican in different parts of the tendon where these cleaved forms play different roles. In addition, they are important components of the ventricularis of cardiac valves. Mutations in the gene for versican or in the gene for elastin (which binds to versican ) lead to severe disruptions of normal developmental of the heart at least in mice.


Asunto(s)
Matriz Extracelular , Sulfato de Queratano , Animales , Colágeno , Decorina/genética , Ratones , Versicanos/genética
17.
Cells ; 10(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34440852

RESUMEN

The objective of this study was to investigate fibromodulin (FMOD) and myostatin (MSTN) gene expressions during skeletal muscle aging and to understand their involvements in this process. The expressions of genes related to muscle aging (Atrogin 1 and Glb1), diabetes (RAGE and CD163), and lipid accumulation (CD36 and PPARγ) and those of FMOD and MSTN were examined in CTX-injected, aged, MSTN-/-, and high-fat diet (HFD) mice and in C2C12 myoblasts treated with ceramide or grown under adipogenic conditions. Results from CTX-injected mice and gene knockdown experiments in C2C12 cells suggested the involvement of FMOD during muscle regeneration and myoblast proliferation and differentiation. Downregulation of the FMOD gene in MSTN-/- mice, and MSTN upregulation and FMOD downregulation in FMOD and MSTN knockdown C2C12 cells, respectively, during their differentiation, suggested FMOD negatively regulates MSTN gene expression, and MSTN positively regulates FMOD gene expression. The results of our in vivo and in vitro experiments indicate FMOD inhibits muscle aging by negatively regulating MSTN gene expression or by suppressing the action of MSTN protein, and that MSTN promotes muscle aging by positively regulating the expressions of Atrogin1, CD36, and PPARγ genes in muscle.


Asunto(s)
Fibromodulina/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ceramidas/farmacología , Dieta Alta en Grasa , Fibromodulina/antagonistas & inhibidores , Fibromodulina/genética , Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Mioblastos/citología , Mioblastos/metabolismo , Miostatina/antagonistas & inhibidores , Miostatina/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
18.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298915

RESUMEN

Retinal diseases such as age-related macular degeneration (AMD), retinopathy of prematurity (ROP), and diabetic retinopathy (DR) are the leading causes of visual impairment worldwide. There is a critical need to understand the structural and cellular components that play a vital role in the pathophysiology of retinal diseases. One potential component is the family of structural proteins called small leucine-rich proteoglycans (SLRPs). SLRPs are crucial in many fundamental biological processes involved in the maintenance of retinal homeostasis. They are present within the extracellular matrix (ECM) of connective and vascular tissues and contribute to tissue organization and modulation of cell growth. They play a vital role in cell-matrix interactions in many upstream signaling pathways involved in fibrillogenesis and angiogenesis. In this comprehensive review, we describe the expression patterns and function of SLRPs in the retina, including Biglycan and Decorin from class I; Fibromodulin, Lumican, and a Proline/arginine-rich end leucine-rich repeat protein (PRELP) from class II; Opticin and Osteoglycin/Mimecan from class III; and Chondroadherin (CHAD), Tsukushi and Nyctalopin from class IV.


Asunto(s)
Leucina/metabolismo , Retina/metabolismo , Proteoglicanos Pequeños Ricos en Leucina/metabolismo , Animales , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos
19.
Cells ; 10(5)2021 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923324

RESUMEN

Lymphedema (LE) affects millions of people worldwide. It is a chronic progressive disease with massive development of fibrosclerosis when untreated. There is no pharmacological treatment of lymphedema. The disease is associated with swelling of the interstitium of the affected organ, mostly arm or leg, impressive development of adipose tissue, fibrosis and sclerosis with accumulation of huge amounts of collagen, and Papillomatosis cutis. Malnutrition and reduced oxygenation of the affected tissues is a hallmark of lymphedema. Here, we investigated if the hypoxia of lymphatic endothelial cells (LECs) might contribute to fibrosis. We applied RNASeq and qPCR to study the concordant changes of the exome of three human foreskin-derived LEC isolates after 4 days of hypoxia (1% O2) vs. normoxia (21% O2). Of the approximately 16,000 genes expressed in LECs, 162 (1%) were up- or down-regulated by hypoxia. Of these, 21 genes have important functions in the production or modification of the extracellular matrix (ECM). In addition to the down-regulation of elastin, we found up-regulation of druggable enzymes and regulators such as the long non-coding RNA H19, inter-alpha-trypsin inhibitor heavy chain family member 5 (ITIH5), lysyl-oxidase (LOX), prolyl 4-hydroxylase subunit alpha 1 (P4HA1), procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2), and others that are discussed in the paper. Initial lymphatics do not produce a continuous basement membrane; however, our study shows that hypoxic LECs have an unexpectedly high ability to alter the ECM.


Asunto(s)
Células Endoteliales/patología , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Hipoxia/fisiopatología , Transcriptoma , Células Cultivadas , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Regulación de la Expresión Génica , Humanos
20.
Exp Eye Res ; 207: 108594, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894227

RESUMEN

The TGF beta-1, -2 and -3 isoforms are transcribed from different genes but bind to the same receptors and signal through the same canonical and non-canonical signal transduction pathways. There are numerous regulatory mechanisms controlling the action of each isoform that include the organ-specific cells producing latent TGF beta growth factors, multiple effectors that activate the isoforms, ECM-associated SLRPs and basement membrane components that modulate the activity and localization of the isoforms, other interactive cytokine-growth factor receptor systems, such as PDGF and CTGF, TGF beta receptor expression on target cells, including myofibroblast precursors, receptor binding competition, positive and negative signal transduction effectors, and transcription and translational regulatory mechanisms. While there has long been the view that TGF beta-1and TGF beta-2 are pro-fibrotic, while TGF beta-3 is anti-fibrotic, this review suggests that view is too simplistic, at least in adult tissues, since TGF beta-3 shares far more similarities in its modulation of fibrotic gene expression with TGF beta-1 and TGF beta-2, than it does differences, and often the differences are subtle. Rather, TGF beta-3 should be seen as a fibro-modulatory partner to the other two isoforms that modulates a nuanced and better controlled response to injury. The complex interplay between the three isoforms and numerous interactive proteins, in the context of the cellular milieu, controls regenerative non-fibrotic vs. fibrotic healing in a response to injury in a particular organ, as well as the resolution of fibrosis, when that occurs.


Asunto(s)
Córnea/patología , Factor de Crecimiento Transformador beta1/fisiología , Factor de Crecimiento Transformador beta2/fisiología , Factor de Crecimiento Transformador beta3/fisiología , Animales , Córnea/metabolismo , Fibrosis/metabolismo , Humanos , Isoformas de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA