Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.608
Filtrar
1.
Anat Sci Int ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256283

RESUMEN

Despite advancements in automatic approaches for histomorphometry analysis of peripheral nerves, manual and semi-automated methods are widely utilized. Standard software functions are often unsuitable for analysis due to their irregular shapes, especially in pathological conditions. This study aims to assess the reproducibility of nerves morphometric analysis and compare results obtained using both default and new alternative algorithms. Sciatic nerves from Wistar rats (untreated and after administration of intraperitoneal hydrargyrum chloride), previously embedded in resin, were used. Morphometric analysis (diameters, myelin thickness, g-ratio, and circularity) was conducted using ImageJ on semithin sections, with axon and myelin boundaries manually outlined. Default diameters were calculated as the mean of Feret diameters, with subsequent calculations for myelin thickness and g-ratio. The alternative approach estimated diameters based on the geometric center of axons, iterating through selected coordinates; myelin thickness was obtained using line equations. In the control group, inter-rater agreement was higher or within expected reliability (0.8 ± 0.05). However, in the experimental group, myelin thickness, g-ratio, and axon circularity showed lower agreement (0.66, 0.58, and 0.68, respectively) without visible patterns on Bland-Altman plots. The alternative approach did not reveal significant differences between approaches, except for g-ratio in the control group and fiber diameter in the experimental group (p < 0.05), with effect sizes of 0.29-0.30 and 0.19-0.20, respectively. This study highlights reduced agreement among investigators analyzing nerve fibers under pathological conditions, raising concerns about the current standard measurement methods. The proposed approach, based on a single geometric center, provides more natural estimations for irregular fibers, and can be implemented in automated nerve fibers acquisition systems.

2.
Sci Rep ; 14(1): 20844, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242721

RESUMEN

Concrete is used worldwide as a construction material in many projects. It exhibits a brittle nature, and fibers' addition to it improves its mechanical properties. Polypropylene (PP) fibers stand out as widely employed fibers in concrete. However, conventional micro-PP fibers pose challenges due to their smooth texture, affecting bonding within concrete and their propensity to clump during mixing due to their thin and soft nature. Addressing these concerns, a novel type of PP fiber is proposed by gluing thin fibers jointly and incorporating surface indentations to enhance mechanical anchorage. This study investigates the incorporation of macro-PP fibers into high-strength concrete, examining its fresh and mechanical properties. Three different concrete strengths 40 MPa, 45 MPa, and 50 MPa, were studied with fiber content of 0-1.5% v/f. ASTM specifications were utilized to test the fresh and mechanical properties, while the RILEM specifications were adopted to test the bond of bar reinforcements in concrete. Test results indicate a decrease in workability, increased air content, and no substantial shift in fresh concrete density. Hardened concrete tests, adding macro-PP fibers, show a significant increase in splitting tensile strength, bond strength, and flexural strength with a maximum increase of 34.5%, 35%, and 100%, respectively. Concrete exhibits strain-hardening behavior with 1% and 1.5% fiber content, and the flexural toughness increases remarkably from 2.2 to 47.1. Thus, macro PP fibers can effectively improve concrete's mechanical properties and resistance against crack initiation and spread.

3.
Sci Total Environ ; 953: 176000, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233080

RESUMEN

Αirborne microplastics (MPs) are considered an important exposure hazard to humans, especially in the indoor environment. Deposition and clearance of MPs in the human respiratory tract (HRT) was investigated using the ExDoM2 dosimetry model, modified to incorporate the deposition and clearance of MPs fibers. Fiber deposition was calculated via the fiber equivalent aerodynamic diameter determined using their properties such as size, density and dynamic shape factor. Scenario simulations were performed for elongated particles of cylindrical (base) diameters 1 µm and 10 µm and aspect ratios (ratio of fiber length to base diameter) 3, 10 and 100. Modelling results showed that the highest fiber deposition occurred in the extra-thoracic region due to large particles (fiber cylindrical diameter dp > 0.1 µm), whereas particle length (via the aspect ratio) had an influence mainly on smaller base-diameter fibers (dp < 0.1 µm) that deposited predominantly in the alveolar region. The ExDoM2 dosimetry model was also used to calculate fiber deposition in the HRT using experimental data for microplastic fiber and fragment concentrations in different microenvironments. The highest deposited number dose (220 fibers) after a 24-hour exposure was calculated in the microenvironment (bus) that had the highest fiber concentration (17.3 ± 2.4 fibers/m3). After clearance, the majority (66.4 %) of the average deposited fiber mass was transferred from the respiratory tract to the esophagus via mucociliary clearance, 32.6 % was retained in the respiratory tract, 1 % passed into the blood, and a very small amount (0.0004 %) was transferred to the lymph nodes.

4.
Int J Biol Macromol ; 279(Pt 3): 135284, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233156

RESUMEN

Rhododendron ponticum (R. ponticum), a rapidly spreading invasive species in Ireland, was investigated for its potential use in creating sustainable bioproducts. This study explored the utilization of R. ponticum biomass as a source of microfibrillated cellulose (MFC) for fungal cultivation. The production of MFC was evaluated employing a novel cryocrushing treatment combined with a twin-screw extruder (TSE). The results demonstrated a significant increase in film strength, up to 332.3 MPa, with increasing TSE steps compared to 72.5 MPa in untreated samples. X-ray diffraction (XRD) analysis revealed a decrease in crystallinity from 68.93 % to 59.2 %, following cryocrushing and TSE treatment. Additionally, MFC subjected to the highest TSE treatment (12 steps) was successfully used as a substrate for cultivating Agaricus blazei mushrooms using 0.2 wt%, 0.5 wt%, and 1 wt% MFC over a period of 7 days. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of chitin/chitin glucan within the fungal fibers. This research highlights the potential for transforming the invasive R. ponticum into valuable biocomposite materials. These MFC-fungus composites hold promise for various applications, including sustainable packaging, biodegradable plastics, and eco-friendly textiles.

5.
Heliyon ; 10(16): e35885, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224272

RESUMEN

High-energy gamma rays produced in inertial confinement fusion (ICF) experiments are crucial for studying implosion dynamics. These gamma rays, characterized by their extremely short durations, represent the least disturbed products of fusion, preserving vital birth information. To detect such γ-rays, ultrafast radiation detectors with high time resolution are necessary. This study introduces a newly developed Cherenkov optical image screen designed for ultra-fast gamma-ray imaging. Composed of pure quartz fiber material, the imaging screen features a single fiber pixel size of 0.6 mm and a thickness of 3 cm. Theoretical investigations explore the luminous time response and efficiency of the Cherenkov optical imaging screen under gamma-ray irradiation. Experimental validation was conducted using a steady-state gamma-ray source with an average energy of 1.25 MeV. Results demonstrate that the image screen achieves a spatial resolution limit of 0.75 mm. The temporal response exhibits a full width at half maximum of less than 0.4 ns when excited by a high-energy electron beam with a single pulse duration of several picoseconds.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125104, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39260240

RESUMEN

A novel method for the rapid identification of hemp fibers is proposed in this paper, utilizing terahertz time-domain spectroscopy (THz-TDS) combined with the LargeVis (LV) dimensionality reduction technique. This approach takes advantage of the strengths of THz-TDS while enhancing classification accuracy through LV. To verify the efficacy of this method, terahertz absorption spectral data from three types of hemp fibers were processed. The THz absorption spectra were initially preprocessed using Hanning filtering. Following this, the filtered data underwent dimensionality reduction through three distinct methods: linear Principal Component Analysis (PCA), nonlinear t-Distributed Stochastic Neighbor Embedding (t-SNE), and the LV method. This sequence of steps resulted in a two-dimensional feature data matrix derived from the THz source spectral data. The resultant feature data matrices were then input into both K-Nearest Neighbors (KNN) and Decision Tree (DT) classifiers for analysis. The classification accuracies of six models were evaluated, revealing that the LV-KNN model achieved a 86.67% accuracy rate for the three hemp fiber types. Impressively, the LV-DT model achieved a perfect 100.00% accuracy rate for the same fibers. The LV-DT model, when integrated with THz spectroscopy technology, offers a quick and precise method for identifying various types of hemp fibers. This development introduces an innovative optical measurement scheme for the characterization of textile materials.

7.
Crit Rev Food Sci Nutr ; : 1-23, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264366

RESUMEN

The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.

8.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273557

RESUMEN

The electrospinning process is an effective technique for creating micro- and nanofibers from synthetic and natural polymers, with significant potential for biomedical applications and drug delivery systems due to their high drug-loading capacity, large surface area, and tunable release times. Poly(L-lactic acid) (PLLA) stands out for its excellent thermo-mechanical properties, biodegradability, and bioabsorbability. Electrospun PLLA nanofibrous structures have been extensively investigated as wound dressings, sutures, drug delivery carriers, and tissue engineering scaffolds. This study aims to create and characterize electrospun PLLA membranes loaded with spironolactone (SP), mimicking active compounds of Ganoderma lucidum (GL), to develop a biodegradable patch for topical wound-healing applications. GL, a medicinal mushroom, enhances dermal wound healing with its bioactive compounds, such as polysaccharides and ganoderic acids. Focusing on GL extracts-obtained through green extraction methods-and innovative drug delivery, we created new fibers for wound-healing potential applications. To integrate complex mixtures of bioactive compounds into the fibers, we developed a prototype using a single pure substance representing the extract mixture. This painstaking work presents the results of the fabricating, wetting, moisture properties, material resilience, and full characterization of the product, providing a robust rationale for the fabrication of fibers imbued with more complex extracts.


Asunto(s)
Vendajes , Poliésteres , Espironolactona , Cicatrización de Heridas , Espironolactona/química , Cicatrización de Heridas/efectos de los fármacos , Poliésteres/química , Nanofibras/química , Reishi/química , Sistemas de Liberación de Medicamentos/métodos , Humanos
9.
Polymers (Basel) ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274055

RESUMEN

This research paper aims to enhance the fatigue resistance of polylactic acid (PLA) in Material Extrusion (ME) by incorporating natural reinforcement, focusing on rotational bending fatigue. The study investigates the fatigue behavior of PLA in ME, using various natural fibers such as cellulose, coffee, and flax as potential reinforcements. It explores the optimization of printing parameters to address challenges like warping and shrinkage, which can affect dimensional accuracy and fatigue performance, particularly under the rotational bending conditions analyzed. Cellulose emerges as the most promising natural fiber reinforcement for PLA in ME, exhibiting superior resistance to warping and shrinkage. It also demonstrates minimal geometrical deviations, enabling the production of components with tighter dimensional tolerances. Additionally, the study highlights the significant influence of natural fiber reinforcement on the dimensional deviations and rotational fatigue behavior of printed components. The fatigue resistance of PLA was significantly improved with natural fiber reinforcements. Specifically, PLA reinforced with cellulose showed an increase in fatigue life, achieving up to 13.7 MPa stress at 70,000 cycles compared to unreinforced PLA. PLA with coffee and flax fibers also demonstrated enhanced performance, with stress values reaching 13.6 MPa and 13.5 MPa, respectively, at similar cycle counts. These results suggest that natural fiber reinforcements can effectively improve the fatigue resistance and dimensional stability of PLA components produced by ME. This paper contributes to the advancement of additive manufacturing by introducing natural fiber reinforcement as a sustainable solution to enhance PLA performance under rotational bending fatigue conditions. It offers insights into the comparative effectiveness of natural fibers and synthetic counterparts, particularly emphasizing the superior performance of cellulose.

10.
Polymers (Basel) ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274063

RESUMEN

Alpha-cellulose, a unique, natural, and essential polymer for the fiber industry, was isolated in an ecofriendly manner using eleven novel systems comprising recycling, defibrillation, and delignification of prosenchyma cells (vessels and fibers) of ten lignocellulosic resources. Seven hardwood species were selected, namely Conocorpus erectus, Leucaena leucocephala, Simmondsia chinensis, Azadirachta indica, Moringa perigrina, Calotropis procera, and Ceiba pentandra. Moreover, three recycled cellulosic wastes were chosen due to their high levels of accumulation annually in the fibrous wastes of Saudi Arabia, namely recycled writing papers (RWPs), recycled newspapers (RNPs), and recycled cardboard (RC). Each of the parent samples and the resultant alpha-cellulose was characterized physically, chemically, and anatomically. The properties examined differed significantly among the ten resources studied, and their mean values lies within the cited ranges. Among the seven tree species, L. leucocephala was the best cellulosic precursor due to its higher fiber yield (55.46%) and holocellulose content (70.82%) with the lowest content of Klasson lignin (18.86%). Moreover, RWP was the best α-cellulose precursor, exhibiting the highest holocellulose (87%) and the lowest lignin (2%) content. Despite the high content of ash and other additives accompanied with the three lignocellulosic wastes that were added upon fabrication to enhance their quality (10%, 11%, and 14.52% for RWP, RNP, and RC, respectively), they can be considered as an inexhaustible treasure source for cellulose production due to the ease and efficiency of discarding their ash minerals using the novel CaCO3-elimination process along with the other innovative techniques. Besides its main role for adjusting the pH of the delignification process, citric acid serves as an effective and environmentally friendly additive enhancing lignin breakdown while preserving cellulose integrity. Comparing the thermal behavior of the ten cellulosic resources, C. procera and C. pentandra exhibited the highest moisture content and void volume as well as having the lowest specific gravity, crystallinity index, and holocellulose content and were found to yield the highest mass loss during their thermal degradation based on thermogravimetric and differential thermal analysis in an inert atmosphere. However, the other resources used were found to yield lower mass losses. The obtained results indicate that using the innovative procedures of recycling, defibrillation, and delignification did not alter or distort either the yield or structure of the isolated α-cellulose. This is a clear indicator of their high efficiency for isolating cellulose from lignocellulosic precursors.

11.
Materials (Basel) ; 17(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39274587

RESUMEN

Drought can significantly impact fiber crop cultivation due to the plants' specific water requirements and their extended vegetative period. The purpose of the research was to examine how drought stress affects the quality and chemical composition of hemp (Cannabis sativa L.) fibers. A three-year pot experiment was conducted in a plant growth facility, using controlled drought stress for hemp plants. Soil moisture levels were maintained at three levels, where 45% field water capacity was the control and 35% and 25% FWC were drought. A comprehensive suite of fiber quality characterization techniques, including linear density measurement, tenacity assessment, Fourier Transform Infrared Spectroscopy (FTIR), and Wide-Angle X-ray Diffraction (WAXD), was employed to evaluate the impact of drought stress on fiber properties. The chemical composition of hemp fibers was thoroughly analyzed, quantifying the content of cellulose, hemicellulose, pectin, and lignin. The findings indicate that drought conditions significantly influence linear density, wax and fat content, as well as the crystallinity of the fibers.

12.
Materials (Basel) ; 17(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274634

RESUMEN

Fiber-reinforced composites (FRCs) represent a promising class of engineering materials due to their mechanical performance. However, the vast majority of FRCs are currently manufactured using carbon and glass fibers, which raises concerns because of the difficulties in recycling and the reliance on finite fossil resources. On the other hand, the use of natural fibers is still hampered due to the problems such as, e.g., differences in polarity between the reinforcement and the polymer matrix components, leading to a significant decrease in composite durability. In this work, we present a natural fiber-reinforced composite (NFRC), incorporating plasma pre-treated flax fibers as the reinforcing element, thermoplastic polylactic acid (PLA) as a matrix, and a key point of the current study-a thermoset coating based on epoxidized linseed oil for adhesion improvement. Using atmospheric plasma-jet treatment allows for increasing the fiber's surface energy from 20 to 40 mN/m. Furthermore, a thermoset coating layer based on epoxidized linseed oil, in conjunction with dodecyl succinic anhydride (DDSA) as a curing agent and 2,4,6-tris(dimethyl amino methyl) phenol (DMP-30) as a catalyst, has been developed. This coated layer exhibits a decomposition temperature of 350 °C, and there is a substantial increase in the dispersive surface-energy part of the coated flax fibers from 8 to 30 mN/m. The obtained natural fiber-reinforced composite (NFRC) was prepared by belt-pressing with a PLA film, and its mechanical properties were evaluated by tensile testing. The results showed an elastic modulus up to 18.3 GPa, which is relevant in terms of mechanical properties and opens up a new pathway to use natural-based fiber-reinforced bio-based materials as a convenient approach to greener FRCs.

13.
Biomater Adv ; 165: 214018, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39226677

RESUMEN

A high vascular patency was realized in the bulk or surface heparinized small-diameter in situ tissue-engineered vascular grafts (TEVGs) via a rabbit carotid artery replacement model in our previous studies. Those surface heparinized TEVGs could reduce the occurrence of aneurysms, but with a low level of the remodeled elastin, whereas those bulk heparinized TEVGs displayed a faster degradation and an increasing occurrence of aneurysms, but with a high level of the regenerated elastin. To combine the advantages of the bulk and surface graft heparinization to boost the remodeling of elastin and defer the occurrence of aneurysms, a coaxial electro-spinning technique was used to fabricate a kind of small-diameter core/shell fibrous structural in situ TEVGs with a faster degradable poly(lactic-co-glycolic acid) (PLGA) as a core layer and a relatively lower degradable poly(ε-caprolactone) (PCL) as a shell layer followed by the surface heparinization. The in vitro mechanical performance and enzymatic degradation tests revealed the resulting PLGA@PCL-Hep in situ TEVGs possessing not only a faster degradation rate, but also the mechanical properties comparable to those of human saphenous veins. After implanted in the rat abdominal aorta for 12 months, the good endothelialization, low inflammation, and no calcification were evidenced. Furthermore, the neointima layer of regenerated new blood vessels was basically constructed with a well-organized arrangement of elastin and collagen proteins. The results showed the great potential of these in situ TEVGs to be used as a novel type of long-term small-diameter vascular grafts.


Asunto(s)
Prótesis Vascular , Ingeniería de Tejidos , Animales , Ratas , Ingeniería de Tejidos/métodos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Poliésteres/química , Aorta Abdominal/patología , Implantación de Prótesis Vascular/métodos , Elastina/metabolismo , Masculino , Andamios del Tejido/química , Ratas Sprague-Dawley , Humanos , Conejos , Ensayo de Materiales
14.
J Hazard Mater ; 480: 135713, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39278035

RESUMEN

Radioactive nuclides and highly toxic organophosphates are typical deadly threats. Materials with the function of radioactive substances adsorption and organophosphates degradation provide double protection. Herein, dual-functional polyamide (PA)/polyethyleneimine (PEI)@Zr-MOF fiber composite membranes, fabricated by in-situ solvothermal growth of Zr-MOF on PA/PEI electrospun fiber membranes, are designed for protection against two typical model compounds of iodine and dimethyl 4-nitrophenyl phosphate (DMNP). Benefiting from the unique core-sheath structure composed of inner nitrogen-rich fibers and outer porous Zr-MOF, the composite membranes rapidly enrich iodine through abundant active sites of the outer sheath and form complexes with the amine of inner PEI, exhibiting a highly competitive adsorption capacity of 609 mg g-1. Moreover, it can adsorb and degrade DMNP with the synergy of PEI component and Zr-MOF, achieving an 80 % removal of DMNP within 7 min without any additional co-catalyst. This work provides a feasible strategy to fabricate dual-functional materials that protect against radioactive and organophosphorus contaminants.

15.
Nanomaterials (Basel) ; 14(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39269124

RESUMEN

Structural health monitoring (SHM) of composite materials is of great significance in various practical applications. However, it is a challenge to accurately monitor the damage of composites without affecting their mechanical properties. In this paper, an embedded sensing layer based on carbon nanotube-coated glass fiber is designed, combined with electrical resistance tomography (ERT) for in situ damage monitoring. Multi-wall carbon nanotube-coated glass fiber (MWCNT-GF) is prepared and embedded into laminates as an in situ sensing layer. Low-velocity impact experiments demonstrate that the embedded sensing layer has high compatibility with the composite laminates and has no adverse effect on its impact response; although, the energy absorption behavior of glass fiber-reinforced polymer (GFRP) laminates containing MWCNT-GF occurs about 10% earlier than that of GFRP laminates overall. ERT technology is used to analyze the laminates after a low-velocity impact test. The results show that the in situ monitoring method with the embedded MWCNT-GF sensing layer can achieve high precision in imaging localization of impact damage, and the error of the detected damage area is only 4.5%.

16.
Int J Biol Macromol ; 279(Pt 4): 135425, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39245113

RESUMEN

Most conventional wound dressings do not meet the clinical requisites owing to their limited multifunctionality. Herein, a bilayer wound dressing containing both hydrogel and fibrous structures with multifunctional features was developed for effective skin rehabilitation. Sodium alginate (SA)/gelatin (Gel) hydrogel comprising Matricaria chamomilla L extract and silver sulfadiazine (AgSD) drug as antibacterial agents was cross-linked using genipin and CaCl2. Then, the surface of the hydrogel was covered by electrospun polyacrylonitrile (PAN) nanofibers to fabricate a bilayer dressing. FESEM images revealed formation of continuous, smooth, and bead-free PAN nanofibers with excellent compatibility between hydrogel and fibers. The bilayer wound dressing exhibited satisfactory mechanical virtues including elastic modulus (2.4 ± 0.2 MPa), tensile strength (6.2 ± 0.5 MPa) and elongation at break (21.8 ± 1 %) as well as suitable swelling ratio. Such bilayer dressing revealed biodegradability, cytocompatibility and effective antibacterial performance against gram positive and gram negative strains. Release kinetics of AgSD drug followed a Fickian diffusion mechanism, ensuring sustained drug release. In vivo studies demonstrated bilayer dressing could promote rate of wound closure, re-epithelialization and collagen deposition, facilitating the replacement of damaged skin with healthy tissue. Such engineered wound dressing has a high potency for inducing skin repair and could be used in skin tissue engineering.

17.
Crit Rev Toxicol ; : 1-51, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287182

RESUMEN

Fiber dimension, durability/dissolution, and biopersistence are critical factors for the risk of fibrogenesis and carcinogenesis. In the modern era, to reduce, refine, and replace animals in toxicology research, the application of in vitro test methods is paramount for hazard evaluation and designing synthetic vitreous fibers (SVFs) for safe use. The objectives of this review are to: (1) summarize the international frameworks and acceptability criteria for implementation of new approach methods (NAMs), (2) evaluate the adverse outcome pathways (AOPs), key events (KEs), and key event relationships (KERs) for fiber-induced fibrogenesis and carcinogenesis in accordance with Organization for Economic Co-operation and Development (OECD) guidelines, (3) consider existing and emerging technologies for in silico and in vitro toxicity testing for the respiratory system and the ability to predict effects in vivo, (4) outline a recommended testing strategy for evaluating the hazard and safety of novel SVFs, and (5) reflect on methods needs for in vitro in vivo correlation (IVIVC) and predictive approaches for safety assessment of new SVFs. AOP frameworks following the conceptual model of the OECD were developed through an evaluation of available molecular and cellular initiating events, which lead to KEs and KERs in the development of fiber-induced fibrogenesis and carcinogenesis. AOP framework development included consideration of fiber physicochemical properties, respiratory deposition and clearance patterns, biosolubility, and biopersistence, as well as cellular, organ, and organism responses. Available data support that fiber AOPs begin with fiber physicochemical characteristics which influence fiber exposure and biosolubility and subsequent key initiating events are dependent on fiber biopersistence and reactivity. Key cellular events of pathogenic fibers include oxidative stress, chronic inflammation, and epithelial/fibroblast proliferation and differentiation, which ultimately lead to hyperplasia, metaplasia, and fibrosis/tumor formation. Available in vitro models (e.g. single-, multi-cellular, organ system) provide promising NAMs tools to evaluate these intermediate KEs. However, data on SVFs demonstrate that in vitro biosolubility is a reasonable predictor for downstream events of in vivo biopersistence and biological effects. In vitro SVF fiber dissolution rates >100 ng/cm2/hr (glass fibers in pH 7 and stone fibers in pH 4.5) and in vivo SVF fiber clearance half-life less than 40 or 50 days were not associated with fibrosis or tumors in animals. Long (fiber lengths >20 µm) biodurable and biopersistent fibers exceeding these fiber dissolution and clearance thresholds may pose a risk of fibrosis and cancer. In vitro fiber dissolution assays provide a promising avenue and potentially powerful tool to predict in vivo SVF fiber biopersistence, hazard, and health risk. NAMs for fibers (including SVFs) may involve a multi-factor in vitro approach leveraging in vitro dissolution data in complement with cellular- and tissue- based in vitro assays to predict health risk.

18.
Sci Total Environ ; 953: 176160, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260475

RESUMEN

Microplastics (MPs) are an anthropogenic emerging pollutant, with global contamination of both marine and freshwater systems extensively documented. The interplay of MP particle properties and environmental conditions needs to be understood in order to assess the environmental fate and evaluate mitigation measures. In cold climate, ice formation has appeared to significantly affect the distribution of MPs, but so far, limited research is available comparing different aquatic systems, especially freshwater. Experiments often rely on artificial water and specific MP model particles. This study used laboratory tests to investigate the ice-water distribution of a variety of environmentally relevant MP particle types (PP, PE, PS and PVC fragments (25-1000 µm), PET fibers (average length 821 µm, diameter 15 µm)) across different water types, including artificial water of high and low salinity, as well as natural water from a lake and a treatment wetland. Overall, ice entrapment of MPs occurred in almost all tests, but the ice-water distribution of MPs differed across the different water types tested. Among the tests with artificial water, salinity clearly increased MP concentrations in the ice, but it cannot be resolved whether this is caused by increased buoyancy, changes in ice structure, or thermohaline convection during freezing. In the natural freshwater tests, the partition of MPs was shifted towards the ice compared to what was seen in the artificial freshwater. The influence of different types of dissolved and particulate substances in the different waters on MPs fate should be considered important and further explored. In this study, the higher content of suspended solids in the lake water might have enhanced MP settling to the bottom and thereby contributed to the absence of MPs in the ice of the lake test, compared to the wetland test with low suspended solids and considerably more MPs in the ice. Furthermore, the higher negative charge in the lake water possibly stabilized the negatively charged MPs in suspension, and reduced ice entrapment. Regarding particle properties, shape had a distinct effect, with fibers being less likely incorporated into ice than fragments. No fibers were found in freshwater ice. However, it became clear that ice entrapment of MPs depends on factors other than the particles' buoyancy based on density differences and particle size and shape alone.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39289265

RESUMEN

In this work, biochars were used as adsorbents to remove Cu, Cd, and Zn ions in a real stabilized leachate from a controlled landfill. Oak fruit shells biochar (OFSBC) and date palm fibers biochar (DPFBC) were obtained by pyrolysis of oak fruit shells and date palm fibers at 700 °C and 400 °C, respectively. OFSBC and DPFBC showed well-developed structures and high specific surface areas (520.16 m2/g and 470.46 m2/g, respectively). Equilibrium adsorption of heavy metal ions on DPFBC and OFSBC occurred after 4 h and 2 h of stirring. The removal efficiencies of Cu, Cd, and Zn ions were 97.01%, 94.40%, and 80.59% with DPFBC and 90.10%, 88.33%, and 76.16% using OFSBC, respectively. The Avrami fractional order model was appropriate for describing kinetic adsorption. Increasing the dose of adsorbent improves heavy metal ion retention. Thermodynamic tests have proven the spontaneous and endothermic adsorption of these heavy metals. The electrostatic attraction, ion exchange, complexation, metal-π bending, and surface precipitation and pore filling were regarded as the most predominant heavy metal retention mechanisms from the landfill leachate onto the biochar surface. Separately, the DPFBC showed the best performance than OFSBC regarding the improvement of leachate quality. Chemical oxygen demand (COD), biological oxygen demand (BOD5), ammoniacal nitrogen (NH3-N), and phosphorus (P) were respectively removed at an efficiency of 53.57%, 29.17%, 36.07%, and 37.5%, respectively. Thus, the results allow highlighting that the adsorption on DPFBC and OFSBC can be an effective alternative in the practice of landfill leachate treatment.

20.
ACS Appl Mater Interfaces ; 16(37): 49823-49833, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230249

RESUMEN

Porous spindle-knot structures have been found in many creatures, such as spider silk and the root of the soybean plant, which show interesting functions such as droplet collection or biotransformation. However, continuous fabrication of precisely controlled porous spindle-knots presents a big challenge, particularly in striking a balance among good structural controllability, low-cost, and functions. Here, we propose a concept of a fiber-microfluidics phase separation (FMF-PS) strategy to address the above challenge. This FMF-PS combines the advantages of a microchannel regulated Rayleigh instability of polymer solution coated onto a fiber with the nonsolvent-induced phase separation of the polymer solution, which enables continuous and cost-effective production of porous spindle-knot fiber (PSKF) with well-controlled size and porous structures. The critical factors controlling the geometry and the porous structures of the spindle-knot by FMF-PS have been systematically investigated. For applications, the PSKF exhibited faster water droplet nucleation, growth, and maximum water collection capability, compared to the control samples, as revealed by in situ water collection growth curves. Furthermore, high-level fabrics of the PSKFs, including a two-dimensional network and three-dimensional architecture, have been demonstrated for both large-scale water collection and art performance. Finally, the PSKF is demonstrated as a programmable building block for surface nanopatterning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA