Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Polymers (Basel) ; 16(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274124

RESUMEN

This study investigates the mechanical and piezoresistive sensing properties of recycled carbon-fiber-reinforced polymer composites (rCFRPs) for self-sensing applications, which were prepared from recycled carbon fibers (rCFs) with fiber lengths of 6, 12, 18, and 24 mm using a vacuum infusion method. Mechanical properties of the rCFRPs were examined using uniaxial tensile tests, while sensing characteristics were examined by monitoring the in situ electrical resistance under cyclic and low fatigue loads. Longer fibers (24 mm) showed the superior tensile strength (92.6 MPa) and modulus (8.4 GPa), with improvements of 962.1% and 1061.1%, respectively. Shorter fibers (6 mm) demonstrated enhanced sensing capabilities with the highest sensitivity under low fatigue testing (1000 cycles at 10 MPa), showing an average maximum electrical resistance change rate of 0.7315% and a gauge factor of 4.5876. All the composites displayed a stable electrical response under cyclic and low fatigue loadings. These results provide insights into optimizing rCF incorporation, balancing structural integrity with self-sensing capabilities and contributing to the development of sustainable multifunctional materials.

2.
Materials (Basel) ; 17(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274634

RESUMEN

Fiber-reinforced composites (FRCs) represent a promising class of engineering materials due to their mechanical performance. However, the vast majority of FRCs are currently manufactured using carbon and glass fibers, which raises concerns because of the difficulties in recycling and the reliance on finite fossil resources. On the other hand, the use of natural fibers is still hampered due to the problems such as, e.g., differences in polarity between the reinforcement and the polymer matrix components, leading to a significant decrease in composite durability. In this work, we present a natural fiber-reinforced composite (NFRC), incorporating plasma pre-treated flax fibers as the reinforcing element, thermoplastic polylactic acid (PLA) as a matrix, and a key point of the current study-a thermoset coating based on epoxidized linseed oil for adhesion improvement. Using atmospheric plasma-jet treatment allows for increasing the fiber's surface energy from 20 to 40 mN/m. Furthermore, a thermoset coating layer based on epoxidized linseed oil, in conjunction with dodecyl succinic anhydride (DDSA) as a curing agent and 2,4,6-tris(dimethyl amino methyl) phenol (DMP-30) as a catalyst, has been developed. This coated layer exhibits a decomposition temperature of 350 °C, and there is a substantial increase in the dispersive surface-energy part of the coated flax fibers from 8 to 30 mN/m. The obtained natural fiber-reinforced composite (NFRC) was prepared by belt-pressing with a PLA film, and its mechanical properties were evaluated by tensile testing. The results showed an elastic modulus up to 18.3 GPa, which is relevant in terms of mechanical properties and opens up a new pathway to use natural-based fiber-reinforced bio-based materials as a convenient approach to greener FRCs.

3.
Dent Mater J ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198175

RESUMEN

The purpose of this study was to investigate the fracture behavior of endodontically treated (ET) deciduous molar when directly restored with different restorative materials in Class II (MO) cavities in comparison with permanent teeth. MO cavities were prepared with 2.4-2.5 mm and 1.9-2.0 mm in buccolingual width, and mesiodistal width of each cavity walls, respectively, followed by direct restoration with different materials: resin-modified glass ionomer cement (RMGIC), composite resin (CR), and composite resin containing 25% short glass-fiber (SFRC). All specimens were subjected to mechanical loading tests at a speed of 1 mm/min and evaluated fracture resistance and fracture modes. A one-way ANOVA followed by a Tukey multiple comparisons analysis was used. Deciduous-SFRC (3,310.5±396.2 N) were significantly higher fracture resistance than permanent-RMGIC (1,633.8±346.8 N) (p<0.001), and permanent-CR (1,400.0±381.3 N) (p<0.001). For the direct restoration of MO cavity after endodontic treatment, SFRC demonstrated its promising performance in load-bearing capacity and failure mode, especially in ET deciduous molars.

4.
Sci Rep ; 14(1): 20126, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209871

RESUMEN

Leaf springs are designed to bear loads as well as shocks in automotive vehicles. Two leaves of glass fiber-reinforced composites (GFRCs) of various shapes sandwiched between steel plates were analyzed for application in a minitruck. Computer-aided engineering analysis was performed for five different types of GFRC material leaf springs: flat leaf, flat and parabolic leaf, both parabolic leaf, both parabolic leaf springs with aluminium alloy bushes at the eye-end and spring steel multi-leaf springs. A silencer pad was used in the parabolic leaf spring to reduce delamination and vibration at contact points of the mating leaf. The various shapes and combinations of leaves provided varying parameters, namely, the deformation, maximum equivalent strain, maximum equivalent stress and fatigue life. The CAE results showed that compared with the other combinations, the flat leaf and parabolic leaf combinations provided the maximum equivalent strain, maximum equivalent stress and fatigue life.

5.
Cureus ; 16(6): e63298, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39070406

RESUMEN

Aim This study aimed to compare the fracture resistance of different materials used in composite core buildups, including conventional filler composite, nanofiller composite, and short fiber-reinforced composite (SFRC). Methods This in vitro study was conducted on 30 freshly extracted premolars. The teeth were treated using a uniform endodontic procedure, and Fiber Posts (REFORPOST, Angelus) were placed. The teeth were then divided into three groups and restored using different materials. Group 1 was restored using SFRC (everX Posterior, GC, Europe), Group 2 using microfiller composite (Te-Econom Flow, Ivoclar Vivadent), and Group 3 using nanofiller composite (Tetric N-Flow, Ivoclar Vivadent). The restoration materials were then light-cured for 40 seconds. The teeth were placed in a Universal Testing Machine (Instron) and a load was applied with a stainless-steel ball (4 mm diameter) until the tooth fractured. The fracture load for each tooth was recorded, and after the mechanical test, the experimental groups were examined for failure modes. Statistical analysis was performed using SPSS version 21.0 software. A one-way ANOVA test was conducted to compare more than two groups, followed by Tukey's test for post hoc pairwise comparison. Results The mean fracture resistance of the microfiller composite (346.94±44.63) was the lowest among the three groups. When analyzed using Tukey's test at p<0.05, fracture resistance was significantly higher in the SFRC, followed by nanofillers and microfiller composites. Conclusion Due to the increasing demand for aesthetic restorations in recent years, composites have become important in modern restorative dentistry. The development and implementation of composite dental restorative materials rely on a comprehensive understanding of each composite component and consideration of methods for modifying each component. As a result, the findings of this study will be beneficial in determining which material to use based on specific cases.

6.
Polymers (Basel) ; 16(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000737

RESUMEN

Continuous-fiber-reinforced composite lattice structures (CFRCLSs) have garnered attention due to their lightweight and high-strength characteristics. Over the past two decades, many different topological structures including triangular, square, hexagonal, and circular units were investigated, and the basic mechanical responses of honeycomb structures under various load conditions, including tension, compression, buckling, shear, and fatigue were studied. To further improve the performance of the honeycombs, appropriate optimizations were also carried out. However, the mechanical properties of a single lattice often struggle to exceed the upper limit of its structure. This paper investigates the effect of permutation and hybrid mode on the mechanical properties of CFRCLSs by comparing five structures: rhomboid (R-type), octagon orthogonal array (OOA-type), octagon hypotenuse array (OHA-type), octagon nested array (ONA-type), and rhomboid circle (RC-type), with the conventional hexagonal structure (H-type). CFRCLS samples are fabricated using fused filament fabrication (FFF), with carbon-fiber-reinforced polylactic acid (PLA) as the matrix. The in-plane compression properties, energy absorption characteristics, and deformation behaviors of the hybrid structures were studied by experimental tests. The results demonstrate that different permutation and hybrid modes alter the deformation behaviors and mechanical properties of the structures. Taking elastic modulus as an example, the values of H-type, R-type, OOA-type, OHA-type, ONA-type, and RC-type are, respectively, 6.08 MPa, 5.76 MPa, 19.0 MPa, 10.3 MPa, 31.7 MPa, and 73.2 MPa, while the ratio of their masses is 1:1:1.10:1.52:1.66. Furthermore, hybrid lattice structures exhibit significantly improved mechanical properties compared to single lattice structures. Compared to the single structure R-type, the RC-type increases elastic modulus, yield strength, and energy absorption, respectively, by 12.7 times, 5.4 times, and 4.4 times.

7.
Microsc Res Tech ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072834

RESUMEN

This study compared the microshear bond strength (µSBS) of four calcium silicate-based cements (CSCs), TheraCal PT (TPT), TheraCal LC (TLC), Biodentine (BD), and Dia-Root Bio MTA (DR), with a short fiber-reinforced composite resin (SFRC). Forty cylindrical acrylic blocks were used, each with a center hole (diameter 5 mm, depth 2 mm). CSCs were placed in the holes (n = 10/group), and the blocks were incubated for 48 h. G-Premio BOND, a self-etching adhesive, was applied to the CSCs surfaces using a micro-applicator for 10 s and then air-dried for 5 s, followed by light curing for 20 s. SFRC materials placed in cylindrical polyethylene capsules (diameter 2 mm, height 2 mm) were polymerized for 20 s and placed over the CSCs. The samples were then incubated at 37°C and 100% humidity for 24 h, and their µSBSs were tested using an "Instron Universal Testing Machine." Data were statistically analyzed using chi-square and Kruskal-Wallis tests. Statistically significant differences were observed between the tested CSCs. The µSBS of TPT (45.17 ± 4.56 MPa) was significantly higher (p < .05) than that of the other materials: BD, TLC, and DR had µSBSs of 29.18 ± 2.86 MPa (p < .05), 23.86 ± 2.84 MPa (p > .05), and 18.08 ± 2.69 MPa (p < .05), respectively. Considering the importance of bond strength for CSC sealing with restorative material, using SFRC over CSC was promising for improving the µSBS, adhesion, and sealing of the material. RESEARCH HIGHLIGHTS: Adhesion is critical to the success of vital pulp restorations. To achieve strong adhesion, the bioceramic material and the resin composite to which it is bonded are very important. In our study, short fiber-reinforced composite resin, which is gaining popularity, was used and found to be a promising material for improved adhesion.

8.
Polymers (Basel) ; 16(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38891534

RESUMEN

This article is focused on the experimental study of flexural properties in different multi-layer carbon fiber-reinforced polymer (CFRP) composites and correlations with the results of finite element method (FEM) simulations of mechanical properties. The comparison of the results shows the possibility of reducing the number of experimental specimens for testing. The experimental study of flexural properties for four types of carbon fiber-reinforced polymer matrix composites with twill weaves (2 × 2) was carried out. As input materials, pre-impregnated carbon laminate GG 204 T and GG 630 T (prepreg) and two types of carbon fiber fabrics (GG 285 T and GG 300 T (fabric)) were used. Multi-layer samples were manufactured from two types of prepregs and two types of fabrics, which were hand-impregnated during sample preparation. The layers were stacked using same orientation. All specimens for flexural test were cut with the longer side in the weft direction. Pre-impregnated carbon laminates were further impregnated with resin DT 121H. Carbon fabrics were hand-impregnated with epoxy matrix LG 120 and hardener HG 700. To fulfill the aim of this research, finite element method (FEM)-based simulations of mechanical properties were performed. The FEM simulations and analysis were conducted in Hexagon's MSC Marc Mentat 2022.3 and Digimat 2022.4 software. This paper presents the results of actual experimental bending tests and the results of simulations of bending tests for different composite materials (mentioned previously). We created material models for simulations based on two methods-MF (Mean Field) and FE (Finite Element), and the comparative results show better agreement with the MF model. The composites (GG 285 T and GG 300 T) showed better flexural results than composites made from pre-impregnated carbon laminates (GG 204 T and GG 630 T). The difference in results for the hand-impregnated laminates was about 15% higher than for prepregs, but this is still within an acceptable tolerance as per the reported literature. The highest percentage difference of 14.25% between the simulation and the real experiment was found for the software tool Digimat FE 2022.4-GG 630 T composite. The lowest difference of 0.5% was found for the software tool Digimat MF 2022.4-GG 204 T composite. By comparing the results of the software tools with the results of the experimental measurements, it was found that the Digimat MF 2022.4 tool is closer to the results of the experimental measurements than the Digimat FE 2022.4 tool.

9.
Sci Rep ; 14(1): 13261, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858469

RESUMEN

Predicting and optimizing the mechanical performance of the helically wound nylon-reinforced rubber fertilizer hose (HWNR hose) is crucial for enhancing the performance of hose pumps. This study aims to enhance the service life of HWNR hoses and the efficiency of liquid fertilizer transport. First, a finite element simulation model and a mathematical model were established to analyze the influence of fiber layer arrangement on the maximum shear strain on the coaxial surface (MSS) and the reaction force on the extrusion roller (RF). For the first time, the Crested Porcupine Optimizer algorithm was used to improve the Generalized Regression Neural Network (CPO-GRNN) method to establish a surrogate model for predicting the mechanical properties of HWNR hoses, and it was compared with Response Surface Methodology (RSM). Results showed CPO-GRNN's superiority in handling complex nonlinear problems. Finally, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) was employed for optimization design. Compared to the original HWNR hose with an MSS of 0.906 and an RF of 30,376N, the optimized design reduced the MSS by 7.99% and increased the RF by 2.46%, significantly enhancing their service life and liquid fertilizer transport capacity. However, further research on fatigue damage is needed.

10.
Sci Rep ; 14(1): 14650, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918414

RESUMEN

An air spring (AS) for ships must have the structural strength of its bellows enhanced considerably to ensure its reliability under high internal pressure and strong impact. In this case, the stiffness of the bellows gradually dominates the overall stiffness of the AS. Nevertheless, the parameterization calculation of stiffness for an AS mainly focuses on its pneumatic stiffness. The bellows stiffness is normally analyzed by virtue of equivalent simplification or numeric simulation. There is not an effective parameterization calculation model for the stiffness of the bellows, making it difficult to achieve the structural optimization design of the bellows. In this paper, the shell theory was borrowed to build a mechanical model for the bellows. Subsequently, the state vector of the bellows was solved by precision integration and boundary condition. Iteration was conducted to identify the complex coupling relationship between the vector of the bellows and other parameters. On this basis, the parameterization calculation method was introduced for the stiffness of the bellows to obtain the vertical and horizontal stiffness of the AS. After that, a dual-membrane low-stiffness structure was designed to analyze the dominating factors affecting the strength and stiffness of the AS, which highlighted the way to the low-stiffness optimization design of high-strength ASs. In the end, three prototypes and one optimized prototype were tested to verify the correctness of the parameterization design model for stiffness as well as the effectiveness of the structural optimization design.

11.
Cureus ; 16(5): e60303, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38872667

RESUMEN

The reason to use post is to retain the core that holds the definitive prosthesis. The maxillary central incisor always poses a challenge during reconstruction using the post and core system. Dentapreg PINPost, a pre-cured flexible post made of fiber-reinforced composite (FRC), has many advantages over metallic posts and fiber posts. The purpose of this case report is to present an innovative technique to place both FRC posts and FRC sheets as a single assembly into the canal which gives a monoblock effect. This technique is feasible and may eradicate some of the problems associated with the failure of the post and core.

12.
Polymers (Basel) ; 16(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794555

RESUMEN

This review thoroughly investigates the mechanical recycling of carbon fiber-reinforced polymer composites (CFRPCs), a critical area for sustainable material management. With CFRPC widely used in high-performance areas like aerospace, transportation, and energy, developing effective recycling methods is essential for tackling environmental and economic issues. Mechanical recycling stands out for its low energy consumption and minimal environmental impact. This paper reviews current mechanical recycling techniques, highlighting their benefits in terms of energy efficiency and material recovery, but also points out their challenges, such as the degradation of mechanical properties due to fiber damage and difficulties in achieving strong interfacial adhesion in recycled composites. A novel part of this review is the use of finite element analysis (FEA) to predict the behavior of recycled CFRPCs, showing the potential of recycled fibers to preserve structural integrity and performance. This review also emphasizes the need for more research to develop standardized mechanical recycling protocols for CFRPCs that enhance material properties, optimize recycling processes, and assess environmental impacts thoroughly. By combining experimental and numerical studies, this review identifies knowledge gaps and suggests future research directions. It aims to advance the development of sustainable, efficient, and economically viable CFRPC recycling methods. The insights from this review could significantly benefit the circular economy by reducing waste and enabling the reuse of valuable carbon fibers in new composite materials.

13.
Dent Mater ; 40(8): e1-e10, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821838

RESUMEN

OBJECTIVE: Although glass fibers are more common, quartz fibers (QFs) are also considered as the ideal reinforcing material in dentistry, due to their superior mechanical strength, high purity, and good photoconductive properties. However, the relatively inert surfaces limit their further applications. Therefore, the aim of this study is to modify the fiber surface properties to improve the interfacial interactions with polymeric resins. METHODS: In this study, we systematically introduced four different surface modification strategies onto short quartz fibers (SQFs) for the preparation of dental composites. Particularly, the acid etching was a facile way to create mechanical interlocking structures. In addition, the silanization process, the sol-gel treatment, and the polymer grafting were further proposed to increase the surface roughness and the reactive sites. The effect of surface modifications on the fiber surface morphological changes, mechanical properties, water stability, and in vitro cell viability of dental composites were investigated. RESULTS: Among all surface-modified SQFs, SQFs-POSS (SQFs modified with methacrylate-POSS) exhibited the roughest surface morphology and highest grafting rates compared with other three materials. Furthermore, all these SQFs were applied as reinforcements to make dimethacrylate-based dental resin composites. Of all fillers, SQFs-POSS demonstrated the best reinforcing effect, providing significantly higher improvements of 55.7 %, 114.3 %, and 164.7 % for flexural strength, flexural modulus, and breaking energy, respectively, over those of SQFs-filled composite. The related reinforcing mechanism was further investigated. The SQFs-POSS-filled composite also exhibited the best water stability performance and in vitro cell viability. SIGNIFICANCE: This work provided valuable insights into the optimization of filler-matrix interaction through fiber surface modifications. Specifically, SQFs-POSS markedly outperformed other formulations in terms of the physicochemical performance and in vitro cytotoxicity, which offers possibilities for developing high-performance dental composites for clinical applications in restorative dentistry.


Asunto(s)
Supervivencia Celular , Resinas Compuestas , Ensayo de Materiales , Cuarzo , Propiedades de Superficie , Resinas Compuestas/química , Cuarzo/química , Técnicas In Vitro , Animales , Ratones , Resinas Acrílicas/química , Materiales Dentales/química
14.
J Mech Behav Biomed Mater ; 156: 106604, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810543

RESUMEN

OBJECTIVES: The aim of this study was to investigate the selected biomechanical properties of semi-anatomic implant plate made of biostable glass fiber-reinforced composite (GFRC) for mandibular reconstruction. Two versions of GFRC plates were tested in vitro loading conditions of a mandible segmental defect model, for determining the level of mechanical stress at the location of fixation screws, and in the body of the plate. METHODS: GFRC of bidirectional S3-glass fiber weaves with dimethacrylate resin matrix were used to fabricate semi-anatomic reconstruction plates of two GFRC laminate thicknesses. Lateral surface of the plate followed the contour of the resected part of the bone, and the medial surface was concave allowing for placement of a microvascular bone flap in the next stages of the research. Plates were fixed with screws to a plastic model of the mandible with a large segmental defect in the premolar-molar region. The mandible-plate system was loaded from incisal and molar locations with loads of 10, 50, and 100 N and stress (microstrain, µÎµ) at the location of fixation screws and the body of the plate was measured by strain gauges. In total the test set-up had four areas for measuring the stress of the plate. RESULTS: No signs of fractures or buckling failures of the plates were found during loading. Strain values at the region of the fixation screws were higher with thick plate, whereas thin plates demonstrated higher strain at the body of the plate. Vertical displacement of the mandible-plate system was proportional to the loading force and was higher with incisal than molar loading locations but no difference was found between thin and thick plates. CONCLUSION: GFRC plates withstood the loading conditions up to 100 N even when loaded incisally. Thick plates concentrated the stress to the ramus mandibulae region of the fixation screws whereas the thin plates showed stress concentration in the angulus mandibulae region of the fixation and the plate itself. In general, thin plates caused a lower magnitude of stress to the fixation screw areas than thick plates, suggesting absorption of the loading energy to the body of the plate.


Asunto(s)
Vidrio , Mandíbula , Ensayo de Materiales , Estrés Mecánico , Vidrio/química , Mandíbula/cirugía , Mandíbula/fisiología , Fenómenos Biomecánicos , Placas Óseas , Pruebas Mecánicas , Fenómenos Mecánicos , Humanos
15.
Polymers (Basel) ; 16(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732757

RESUMEN

This study aimed to evaluate the effect of direct restorations using unidirectional glass fiber orientations and a short-fiber-reinforced composite (SFRC) on the fracture resistance of endodontically treated premolars with mesio-occluso-distal cavities. Ninety double-rooted premolars were selected. Fifteen teeth were left intact/as a control group. The endodontic treatment and cavity preparations of seventy-five teeth were performed and divided into five experimental groups: Resin composite (RC), modified transfixed technique + RC, circumferential technique + RC, cavity floor technique + RC, and SFRC + RC. All teeth were fractured under oblique static loading at a 30° angle using a universal testing machine. The fracture patterns were observed and classified. Data were analyzed with one-way analysis of variance, Pearson chi-square, and Tukey HSD post hoc tests (p = 0.05). The highest fracture strength values were obtained in intact teeth (599.336 N), followed by modified transfixed + RC treated teeth (496.58 N), SFRC + RC treated teeth (469.62 N), RC (443.51 N), circumferential + RC treated teeth (442.835 N), and cavity floor + RC treated teeth (404.623 N) (p < 0.05). There was no significant difference between the RC and the circumferential technique + RC (p > 0.05). Unrepairable fractures were observed at low rates (20%) in the modified transfixed + RC and SFRC + RC teeth, and at higher rates in RC (73.3%), cavity floor + RC (60%), and circumferential + RC (80%) teeth. The application of an SFRC or the modified transfixed technique yielded an improved fracture strength and the fracture pattern of ETPs being restored with a universal injectable composite.

16.
BMC Oral Health ; 24(1): 523, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702708

RESUMEN

BACKGROUND: The rising demand for improved aesthetics has driven the utilization of recently introduced aesthetic materials for creating custom post and core restorations. However, information regarding the fracture resistance of these materials remains unclear, which limits their practical use as custom post and core restorations in clinical applications. AIM OF THE STUDY: This study aimed to evaluate the fracture resistance of three non-metallic esthetic post and core restorations and their modes of failure. MATERIALS AND METHODS: Thirty-nine single-rooted human maxillary central incisors were endodontically treated. A standardized post space preparation of 9mm length was performed to all teeth to receive custom-made post and core restorations. The prepared teeth were randomly allocated to receive a post and core restoration made of one of the following materials (n=13): glass fiber-reinforced composite (FRC), polyetheretherketone (PEEK) and polymer-infiltrated ceramic-network (PICN). An intraoral scanner was used to scan all teeth including the post spaces. Computer-aided design and computer-aided manufacturing (CAD-CAM) was used to fabricate post and core restorations. Post and core restorations were cemented using self-adhesive resin cement. All specimens were subjected to fracture resistance testing using a universal testing machine. Failure mode analysis was assessed using a stereomicroscope and SEM. The data was statistically analyzed using One-Way ANOVA test followed by multiple pairwise comparisons using Bonferroni adjusted significance level. RESULTS: Custom PEEK post and core restorations displayed the least fracture load values at 286.16 ± 67.09 N. In contrast, FRC exhibited the highest average fracture load at 452.60 ± 105.90 N, closely followed by PICN at 426.76 ± 77.99 N. In terms of failure modes, 46.2% of specimens with PICN were deemed non-restorable, while for PEEK and FRC, these percentages were 58.8% and 61.5%, respectively. CONCLUSIONS: Within the limitation of this study, both FRC and PICN demonstrated good performance regarding fracture resistance, surpassing that of PEEK.


Asunto(s)
Resinas Compuestas , Diseño Asistido por Computadora , Fracaso de la Restauración Dental , Estética Dental , Técnica de Perno Muñón , Humanos , Cerámica , Análisis del Estrés Dental , Benzofenonas , Incisivo/lesiones , Materiales Dentales/química , Polietilenglicoles , Cetonas/química , Polímeros , Vidrio , Ensayo de Materiales , Diseño de Prótesis Dental
17.
Polymers (Basel) ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611184

RESUMEN

Currently, fiber-reinforced polymer composites (FRPs) used for demanding structural applications predominantly utilize carbon, glass, and aramid fibers embedded in epoxy resin, albeit occasionally polyester and vinyl ester resins are also used. This study investigates the feasibility of employing recyclable and sustainable materials to formulate a composite suitable for load-bearing structural applications, particularly in scenarios involving low-velocity and high-velocity impacts (LVIs and HVIs, respectively). The paper presents a comparative analysis of the performance of basalt-Elium, a fully recyclable, sustainable, and environmentally friendly composite, with an epoxy-based counterpart. Moreover, an accurate and reliable numerical model has been developed and introduced through which the response of these composites can be examined efficiently and accurately under various loading states. The results of this investigation demonstrate the viability of the basalt-elium composite as a fully recyclable and sustainable material for crafting efficient and lightweight composites. Additionally, the accurately developed finite element model presented here can be used to assess the influence of several parameters on the composite, thereby optimizing it for a given situation.

18.
Clin Cosmet Investig Dent ; 16: 91-99, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650600

RESUMEN

Purpose: This research aimed to describe the stress distribution of an endodontically treated tooth with a mesio-occluso-distal (MOD) cavity restored with direct composite reinforced with polyethylene and e-glass ribbon fiber. Methods: This research was a descriptive study using the finite element method. A 3D model of the mandibular first molar solid after endodontic treatment with class II MOD preparation was prepared using Solidworks software. Finite element simulation was carried out using Abaqus software. In the first simulation, 180 N force was applied (vertically 90° perpendicular to the occlusal surface) at four points of loading: the tip of the mesiobuccal and distobuccal cusp, central fossa, and distal marginal ridge. For the second simulation, a 100 N force was applied at a 45° lateral angle to the occlusal surface at two loading points: the lingual slope of the mesiobuccal and distobuccal cusp. Results: This study showed that the stress concentration was located in the occlusal pit and fissure, CEJ distal area, bifurcation in dentin, and the 1/3 cervical area of root dentin. The stress value generated after vertical and lateral force did not exceed the tooth and restoration's compressive and tensile strength value. The failure occurred at the interface of enamel and composite near the loading point area due to vertical load, both on polyethylene and e-glass fiber ribbon-reinforced composite restoration. Stress distribution of an endodontically treated tooth with a MOD cavity restored with ribbon fiber-reinforced composite using the finite element method showed that the highest stress concentration occurred on the surface close to the loading point, in narrow, concave, and sharp areas, and more apically for endodontically treated teeth. Conclusion: Neither the tooth nor restoration failed after vertical and horizontal loads. The interface between enamel and composite on the occlusal surface failed.

19.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38475274

RESUMEN

In recent years, composite resin materials have been the most frequently used materials for direct restorations of posterior teeth. These materials have some clinically relevant limitations due to their lack of fracture toughness, especially when used in larger cavities with high volume factors or when utilized as direct or indirect overlays or crown restorations. Recently, short-fiber-reinforced composite materials have been used in bi-structure restorations as a dentine substituting material due to their superior mechanical properties; however, there is no scientific consensus as to whether they can be used as full restorations. The aim of our review was to examine the available literature and gather scientific evidence on this matter. Two independent authors performed a thorough literature search using PubMed and ScienceDirect up until December 2023. This study followed the PRISMA guidelines, and the risk of bias was assessed using the QUIN tool. The authors selected in vitro studies that used short-fiber-reinforced composite materials as complete restorations, with a conventional composite material as a comparison group. Out of 2079 potentially relevant articles, 16 met our inclusion criteria. All of the included studies reported that the usage of short-fiber-reinforced composites improved the restoration's load-bearing capacity. Fifteen of the included publications examined the fracture pattern, and thirteen of them reported a more favorable fracture outcome for the short-fiber-reinforced group. Only one article reported a more favorable fracture pattern for the control group; however, the difference between groups was not significant. Within the limitations of this review, the evidence suggests that short-fiber-reinforced composites can be used effectively as complete restorations to reinforce structurally compromised teeth.

20.
BMC Oral Health ; 24(1): 323, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468269

RESUMEN

OBJECTIVE: This study was conducted to assess the influence of combining different forms of fiber-reinforced composites (FRC) on the mechanical behavior and bond strength of compromised endodontically treated teeth (ETT). MATERIALS AND METHODS: Eighty extracted human premolar teeth were randomly divided into five experimental groups according to the type of intra-radicular restoration and the canal preparation design which was either non-flared (Group 1), flared (Groups 2-5), closed-apex (Groups 1,3,5) or open-apex (Groups 2,4). Standard prefabricated fiber posts were used as intra-radicular restoration for Groups 1-3 while Groups 4-5 were restored with anatomically customized relined fiber posts. After composite core fabrication, all samples were sent for an artificial aging process. Fracture resistance and push-out bond strength tests were then carried out through a universal testing machine followed by mode of failure analysis via a stereomicroscope and scanning electron microscope. RESULTS: Pairwise Log-Rank comparisons revealed that the survival rate of Group 2 and Group 3 was significantly lower than all other groups after artificial aging. The highest fracture resistance value (1796 N) was recorded in Group 5 and was significantly higher than that of the other groups (p < 0.05), while Group 2 exhibited the lowest fracture resistance (758 N), which was significantly lower compared to the other groups. Group 5 and Group 4 demonstrated a significantly higher push-out bond strength, at all root thirds, than Group 3, Group 2, and Group 1 (p < 0.05). The most frequently observed failure mode in the tested groups occurred between the resin cement and radicular dentin. CONCLUSION: The use of short fiber-reinforced composite (SFRC) to reline the prefabricated FRC post has been proven to have superior fracture resistance with favorable failure patterns and increased push-out bond strength values compared to standard prefabricated FRC posts.


Asunto(s)
Técnica de Perno Muñón , Fracturas de los Dientes , Diente no Vital , Humanos , Resinas Compuestas/química , Diente Premolar , Cementos de Resina/química , Ensayo de Materiales , Análisis del Estrés Dental , Fracturas de los Dientes/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA